Contribution of Groundwater in Zhiluo Aquifer to Mine Water in Shennan Mining Area: Numerical Simulation
-
摘要:
查明矿井涌水的来源及构成比例,对煤矿安全生产具有重要意义。基于神南矿区水文地质、典型煤矿矿井涌水量、煤矿开采裂采比等数据,建立了综合考虑延安组(J2y)、直罗组(J2z)、安定组(J2a)、新近系保德组(N2b)、第四系中更新统离石组(Qpl)、上更新统萨拉乌苏组(Qps)、马兰组(Qpm)、全新统冲积层(Qhal)和风积沙(Qheol)多个含(隔)水层的地下水流数值模拟模型,实现了第四系和直罗组含水层地下水流场的仿真模拟。结果显示,神南矿区煤矿开采直接影响直罗组含水层。柠条塔煤矿矿井涌水量为117743.52 m3/d(4905.98 m3/h),其中直罗组含水层贡献94.82%,2-2煤上覆延安组砂岩贡献2.79%。
Abstract:Illustration water sources and ratio from different aquifers has significant means to mining water management. In this paper, based on the hydrogeological data, mining water and ratio of the height of the fractured zone to the mining height of typical mine area in Shennan mining area, a numerical simulation model was set up. Totally, 7 layers including aquifer and aquiclude are contained in the model. And it predicted the groundwater flow field of Quaternary and Zhiluo aquifer groundwater in Jurassic system very well via the model calibration. Furthermore, simulation results shows that mining action affects Zhiluo aquifer groundwater directly. For example, Zhiluo aquifer groundwater contributes nearly 94.82 percentage when mining water quantity reaches 117743.52 m3/d in Ningtiaota mining area.
-
Key words:
- mine inflow /
- multi-aquifer /
- numerical simulation /
- Ningtiaota coal mine /
- Shennan Mining area
-
表 1 包气带岩性、入渗系数及入渗补给强度表
Table 1. Lithologic character of unsaturated zone, recharge coefficient and recharge intensity
包气带岩性类型 入渗系数 降水入渗强度(mm/year) 风积沙 0.23 108.4 萨拉乌苏组沙 0.15 70.7 黄土 0.10 47.2 基岩 0.01 4.7 表 3 煤矿导水裂隙带高度实测值表
Table 3. Measured height of fracture at two mines
井田 工作面 主采煤层 钻孔号 采厚(m) 实测导高(m) 实测裂采比 张家峁 N15203 5−2煤 孔8 5.60 165.11 29.48 N15203 5−2煤 孔9 5.60 165.90 29.63 柠条塔 N1112 2−2煤 孔4 4.80 149.28 31.10 N1114 2−2煤 孔6 4.80 145.23 30.26 表 4 规划工作面导高预测表
Table 4. Predicted height of fracture in planning working face
井田 平均采厚(m) 发育高度(m) 导高顶界埋深(m) 导高顶界到达层位 4−2煤 5−2煤 4−2煤 5−2煤 4−2煤 5−2煤 4−2煤 5−2煤 柠条塔 2.65 4.43 71.55 119.61 167.84 185.96 直罗组 直罗组 张家峁 3.51 6.10 94.77 164.7 91.65 87.90 第四系 第四系 红柳林 3.3 4.93 89.1 133.11 119.56 141.72 安定组 直罗组 表 5 预测期水均衡表
Table 5. Water balance in the predicted period
项 目 均衡项 均衡量(m3/d) 占比 补给项 河流补给 3.06×104 4.48% 侧向补给 4.79×103 0.70% 降水入渗补给 6.47×105 94.82% 总补给量 6.82×105 100.00% 排泄项 河流排泄 3.09×104 34.92% 矿井涌水 2.1×103 2.37% 河沟排泄 2.82×104 31.86% 蒸散发排泄 2.73×104 30.85% 总排泄量 3.09×105 100.00% 均衡差 5.94×105 表 6 柠条塔井田水均衡统计表
Table 6. Water balance of Ningtiaota coal Mine
流入项 侧向流入量 (m3/d) 8758.79 75.67% 下层流入量 (m3/d) 2815.78 24.33% 合计 (m3/d) 11574.57 流出项 侧向流出量 (m3/d) 120404.38 95.18% 流出下层量 (m3/d) 6097.92 4.82% 合计 (m3/d) 126502.30 均衡差 侧向流差值 (m3/d) −111645.60 94.82% 垂向流差值 (m3/d) −3282.14 2.79% 合计 (m3/d) −117743.52 -
[1] 曹虎麒. 陕北典型煤矿开采引起含水层破坏机理物理模拟试验研究[D]. 西安: 长安大学, 2015
CAO Huqi. Study on failure mechanism physical experiment ofaquifers in northern Shaanxi typical mine [D]. Xi’an: Chang’an University, 2015.
[2] 陈佩. 煤矿采空区不同部位岩层裂隙率与其渗透性关系的实验研究[D]. 太原: 太原理工大学, 2016.
CHEN Pei. Experimental study on the relationship between fracture rate and permeability of rock strata in different parts of coal mine goaf [D]. Taiyuan: Taiyuan University of Technology, 2016.
[3] 杜臻, 张茂省, 冯立, 等. 鄂尔多斯盆地煤炭采动的生态系统响应机制研究现状与展望[J]. 西北地质, 2023, 56(3): 78−88.
DU Zhen, ZHANG Maosheng, FENG Li, et al. Research Status and Prospect of Ecosystem Response Mechanism to Coal Mining in Ordos Basin[J]. Northwestern Geology, 2023, 56(3): 78−88.
[4] 冯更辰, 郝俊杰, 谭俊, 等. VISUAL MODFLOW模型在白涧铁矿区矿井涌水量预测中的应用[J]. 中国岩溶, 2011, (3): 271-277
Feng Gengchen, Hao Junjie, Tan Jun, et al. Application of VISUAL MODFLOW model in prediction of mine water inflow in Baijian iron mine area [J]. China Karst, 2011, ( 3 ) : 271-277
[5] 冯立, 张鹏飞, 张茂省, 等. 新时期榆林煤矿区生态保护修复与综合治理策略及路径探索[J]. 西北地质, 2023, 56(3): 19−29.
FENG Li, ZHANG Pengfei, ZHANG Maosheng, et al. Strategies and Practical Paths for Ecological Restoration and Comprehensive Management in Yulin Coal Mining Area in the New Era[J]. Northwestern Geology, 2023, 56(3): 19-29.
[6] 冯书顺, 王国瑞, 马自强, 等. 基于Visual Modflow的矿井涌水量预测模拟研究[J]. 煤炭技术, 2016, (2): 239-242
Feng Shushun, Wang Guorui, Ma Ziqiang, et al. Research on simulation of mine water inflow forecast based on Visual Modflow [J]. Coal technology, 2016, (2) : 239-242
[7] 韩朝辉, 王郅睿, 田辉, 等. 汉中盆地地下水水化学特征及其成因研究[J]. 西北地质, 2023, 56(4): 263−273.
HAN Chaohui, WANG Zhirui, TIAN Hui, et al. Hydrochemical Characteristics and Genesis of Groundwater in the Hanzhong Basin[J]. Northwestern Geology, 2023, 56(4): 263−273.
[8] 全国煤化工信息站. 国务院办公厅发布《能源发展战略行动计划(2014-2020年)》[J]. 煤化工, 2014, (6): 71-71.
[9] 郭贤才. 陕西省煤炭资源简况[J]. 西北地质, 1990(03): 61-63
Guo Xiancai. Coal Resources in Shaanxi Province [J]. Northwest Geology, 1990 ( 03 ): 61-63.
[10] 侯恩科, 夏玉成, 樊怀仁, 等. 矿井陷落柱的成因分析及其预测[J]. 西北地质, 1994(02): 18-22
Hou Enke, Xia Yucheng, Fan Huairen, et al. Cause analysis and prediction of mine collapse column [J]. Northwest Geology, 1994 ( 02 ): 18-22.
[11] “能源领域咨询研究”综合组. 中国煤炭清洁高效可持续开发利用战略研究[J]. 中国工程科学, 2015, 17(9): 1-5
The Comprehensive Research Group for Energy Consulting and Research. Strategic research on clean, efficient and sustainable and utilization of coal in China [J]. China Engineering Science, 2015, 17 ( 9 ): 1-5.
[12] 申涛, 马雄德, 戴国锋. 浅埋煤层开采的矿井水来源判别[J]. 中国煤炭地质, 2011, 23(10): 35-38
Shen Tao, Ma Xiongde, Dai Guofeng. Source discrimination of mine water from shallow buried coal seam mining [J]. China Coal Geology, 2011, 23 ( 10 ): 35-38.
[13] 唐涛. 我国区域能源协调发展战略中重大能源生产基地建设研究[D]. 成都: 四川省社会科学院, 2011
TANG Tao. Research on the construction of major energy production bases in China 's regional energy coordinated development strategy [D]. Chengdu: Sichuan Academy of Social Sciences, 2011.
[14] 杨彦利, 李娟. 基于MODFLOW对陶二煤矿矿井涌水量预测研究[J]. 西部探矿工程, 2018, 30(02): 139-141+146
Yang Yanli, Li Juan. Prediction of Mine Water Inflow in Taoer Coal Mine Based on MODFLOW [J]. Western Exploration Engineering, 2018, Vol. 30 ( 2 ) : 139-141+146
[15] 杨志. 陕北榆神矿区生态地质环境特征及煤炭开采影响机理研究[D]. 徐州: 中国矿业大学, 2019.
YANG Zhi. Study on the characteristics eco-geological environment and mining effect mechanism in Yushen coal mine district of northern Shaanxi [D]. Xuzhou: China University of Mining and Technology, 2019.
[16] 伊茂森. 神东矿区浅埋深煤层关键层理论及其应用研究[D]. 徐州: 中国矿业大学, 2008.
YI Maosen. Study and application of key strata theory in shallow seam of Shendong mining area [D]. Xuzhou: China University of Mining and Technology, 2008.
[17] 张保建. 基于Visual Modflow的台格庙勘查区矿井涌水量预测[J]. 煤炭科学技术, 2015, 43(S1): 146-149+172
Zhang Baojian. Mine water inflow forecast based on Visual Modflow in Taigemiao exploration area [J]. Coal Science and Technology, 2015, 43(S1): 146-149+172
[18] Xie Y, Qi J, Zhang R, et al. Toward a Carbon-Neutral State: A Carbon–Energy–Water Nexus Perspective of China’s Coal Power Industry[J]. Energies, 2022, 15(12): 4466. doi: 10.3390/en15124466
[19] Liu S, Dai S, Zhang W, et al. Impacts of underground coal mining on phreatic water level variation in arid and semiarid mining areas: a case study from the Yushenfu mining area, China[J]. Environmental earth sciences, 2022(9): 81.
[20] Xu S, Zhang Y, Shi H, et al. Impacts of Aquitard Properties on an Overlying Unconsolidated Aquifer in a Mining Area of the Loess Plateau: Case Study of the Changcun Colliery, Shanxi[J]. Mine Water and the Environment, 2020, 39(1): 121-134. doi: 10.1007/s10230-019-00649-7