神南矿区直罗组含水层对矿井涌水贡献量预测分析

黄金廷, 宁博涵, 孙魁, 李宗泽, 王嘉玮, 宋歌. 2023. 神南矿区直罗组含水层对矿井涌水贡献量预测分析. 西北地质, 56(6): 176-185. doi: 10.12401/j.nwg.2023005
引用本文: 黄金廷, 宁博涵, 孙魁, 李宗泽, 王嘉玮, 宋歌. 2023. 神南矿区直罗组含水层对矿井涌水贡献量预测分析. 西北地质, 56(6): 176-185. doi: 10.12401/j.nwg.2023005
HUANG Jinting, NING Bohan, SUN Kui, LI Zongze, WANG Jiawei, SONG Ge. 2023. Contribution of Groundwater in Zhiluo Aquifer to Mine Water in Shennan Mining Area: Numerical Simulation. Northwestern Geology, 56(6): 176-185. doi: 10.12401/j.nwg.2023005
Citation: HUANG Jinting, NING Bohan, SUN Kui, LI Zongze, WANG Jiawei, SONG Ge. 2023. Contribution of Groundwater in Zhiluo Aquifer to Mine Water in Shennan Mining Area: Numerical Simulation. Northwestern Geology, 56(6): 176-185. doi: 10.12401/j.nwg.2023005

神南矿区直罗组含水层对矿井涌水贡献量预测分析

  • 基金项目: 国家自然科学基金“鄂尔多斯盆地风沙滩区土壤—地下水蒸散发机理研究”(41672250)、“旱区土壤–地下水蒸发与积盐互馈机制研究”(42177076),陕西省自然科学基金项目“气候变化对黄河流域(陕西段)生态系统影响与风险应对研究”(2021ZDLSF05-09)及陕西省自然科学基础研究计划—陕煤联合基金重点资助项目“古河道含水层地下水与煤层开采互馈机制研究”(2019JLZ-03)联合资助。
详细信息
    作者简介: 黄金廷(1979−),男,教授,博/硕士生导师,主要从事水资源可持续开发利用领域的研究工作。E–mail:hjinting@xust.edu.cn
  • 中图分类号: P641;TD742

Contribution of Groundwater in Zhiluo Aquifer to Mine Water in Shennan Mining Area: Numerical Simulation

  • 查明矿井涌水的来源及构成比例,对煤矿安全生产具有重要意义。基于神南矿区水文地质、典型煤矿矿井涌水量、煤矿开采裂采比等数据,建立了综合考虑延安组(J2y)、直罗组(J2z)、安定组(J2a)、新近系保德组(N2b)、第四系中更新统离石组(Qpl)、上更新统萨拉乌苏组(Qps)、马兰组(Qpm)、全新统冲积层(Qhal)和风积沙(Qheol)多个含(隔)水层的地下水流数值模拟模型,实现了第四系和直罗组含水层地下水流场的仿真模拟。结果显示,神南矿区煤矿开采直接影响直罗组含水层。柠条塔煤矿矿井涌水量为117743.52 m3/d(4905.98 m3/h),其中直罗组含水层贡献94.82%,2-2煤上覆延安组砂岩贡献2.79%。

  • 加载中
  • 图 1  研究区边界示意图

    Figure 1. 

    图 2  降水入渗补给系数分区图

    Figure 2. 

    图 3  观测孔水位计算值与实测值拟合图

    Figure 3. 

    图 4  潜水流场(a) 与直罗组流场末时刻拟合图(b)

    Figure 4. 

    图 5  实测与计算矿井涌水量对比图

    Figure 5. 

    图 6  预测期直罗组含水层地下水流场图

    Figure 6. 

    图 7  矿井涌水量预测结果图

    Figure 7. 

    表 1  包气带岩性、入渗系数及入渗补给强度表

    Table 1.  Lithologic character of unsaturated zone, recharge coefficient and recharge intensity

    包气带岩性类型入渗系数降水入渗强度(mm/year)
    风积沙0.23108.4
    萨拉乌苏组沙0.1570.7
    黄土0.1047.2
    基岩0.014.7
    下载: 导出CSV

    表 3  煤矿导水裂隙带高度实测值表

    Table 3.  Measured height of fracture at two mines

    井田工作面主采煤层钻孔号采厚(m)实测导高(m)实测裂采比
    张家峁N152035−2孔85.60165.1129.48
    N152035−2孔95.60165.9029.63
    柠条塔N11122−2孔44.80149.2831.10
    N11142−2孔64.80145.2330.26
    下载: 导出CSV

    表 4  规划工作面导高预测表

    Table 4.  Predicted height of fracture in planning working face

    井田平均采厚(m)发育高度(m)导高顶界埋深(m)导高顶界到达层位
    4−25−24−25−24−25−24−25−2
    柠条塔2.654.4371.55119.61167.84185.96直罗组直罗组
    张家峁3.516.1094.77164.791.6587.90第四系第四系
    红柳林3.34.9389.1133.11119.56141.72安定组直罗组
    下载: 导出CSV

    表 5  预测期水均衡表

    Table 5.  Water balance in the predicted period

    项 目均衡项均衡量(m3/d)占比
    补给项河流补给3.06×1044.48%
    侧向补给4.79×1030.70%
    降水入渗补给6.47×10594.82%
    总补给量6.82×105100.00%
    排泄项河流排泄3.09×10434.92%
    矿井涌水2.1×1032.37%
    河沟排泄2.82×10431.86%
    蒸散发排泄2.73×10430.85%
    总排泄量3.09×105100.00%
    均衡差 5.94×105 
    下载: 导出CSV

    表 6  柠条塔井田水均衡统计表

    Table 6.  Water balance of Ningtiaota coal Mine

    流入项侧向流入量 (m3/d)8758.7975.67%
    下层流入量 (m3/d)2815.7824.33%
    合计 (m3/d)11574.57
    流出项侧向流出量 (m3/d)120404.3895.18%
    流出下层量 (m3/d)6097.924.82%
    合计 (m3/d)126502.30
    均衡差侧向流差值 (m3/d)−111645.6094.82%
    垂向流差值 (m3/d)−3282.142.79%
    合计 (m3/d)−117743.52
    下载: 导出CSV
  • [1]

    曹虎麒. 陕北典型煤矿开采引起含水层破坏机理物理模拟试验研究[D]. 西安: 长安大学, 2015

    CAO Huqi. Study on failure mechanism physical experiment ofaquifers in northern Shaanxi typical mine [D]. Xi’an: Chang’an University, 2015.

    [2]

    陈佩. 煤矿采空区不同部位岩层裂隙率与其渗透性关系的实验研究[D]. 太原: 太原理工大学, 2016.

    CHEN Pei. Experimental study on the relationship between fracture rate and permeability of rock strata in different parts of coal mine goaf [D]. Taiyuan: Taiyuan University of Technology, 2016.

    [3]

    杜臻, 张茂省, 冯立, 等. 鄂尔多斯盆地煤炭采动的生态系统响应机制研究现状与展望[J]. 西北地质, 2023, 56(3): 78−88.

    DU Zhen, ZHANG Maosheng, FENG Li, et al. Research Status and Prospect of Ecosystem Response Mechanism to Coal Mining in Ordos Basin[J]. Northwestern Geology, 2023, 56(3): 78−88.

    [4]

    冯更辰, 郝俊杰, 谭俊, 等. VISUAL MODFLOW模型在白涧铁矿区矿井涌水量预测中的应用[J]. 中国岩溶, 2011, (3): 271-277

    Feng Gengchen, Hao Junjie, Tan Jun, et al. Application of VISUAL MODFLOW model in prediction of mine water inflow in Baijian iron mine area [J]. China Karst, 2011, ( 3 ) : 271-277

    [5]

    冯立, 张鹏飞, 张茂省, 等. 新时期榆林煤矿区生态保护修复与综合治理策略及路径探索[J]. 西北地质, 2023, 56(3): 19−29.

    FENG Li, ZHANG Pengfei, ZHANG Maosheng, et al. Strategies and Practical Paths for Ecological Restoration and Comprehensive Management in Yulin Coal Mining Area in the New Era[J]. Northwestern Geology, 2023, 56(3): 19-29.

    [6]

    冯书顺, 王国瑞, 马自强, 等. 基于Visual Modflow的矿井涌水量预测模拟研究[J]. 煤炭技术, 2016, (2): 239-242

    Feng Shushun, Wang Guorui, Ma Ziqiang, et al. Research on simulation of mine water inflow forecast based on Visual Modflow [J]. Coal technology, 2016, (2) : 239-242

    [7]

    韩朝辉, 王郅睿, 田辉, 等. 汉中盆地地下水水化学特征及其成因研究[J]. 西北地质, 2023, 56(4): 263−273.

    HAN Chaohui, WANG Zhirui, TIAN Hui, et al. Hydrochemical Characteristics and Genesis of Groundwater in the Hanzhong Basin[J]. Northwestern Geology, 2023, 56(4): 263−273.

    [8]

    全国煤化工信息站. 国务院办公厅发布《能源发展战略行动计划(2014-2020年)》[J]. 煤化工, 2014, (6): 71-71.

    [9]

    郭贤才. 陕西省煤炭资源简况[J]. 西北地质, 1990(03): 61-63

    Guo Xiancai. Coal Resources in Shaanxi Province [J]. Northwest Geology, 1990 ( 03 ): 61-63.

    [10]

    侯恩科, 夏玉成, 樊怀仁, 等. 矿井陷落柱的成因分析及其预测[J]. 西北地质, 1994(02): 18-22

    Hou Enke, Xia Yucheng, Fan Huairen, et al. Cause analysis and prediction of mine collapse column [J]. Northwest Geology, 1994 ( 02 ): 18-22.

    [11]

    “能源领域咨询研究”综合组. 中国煤炭清洁高效可持续开发利用战略研究[J]. 中国工程科学, 2015, 17(9): 1-5

    The Comprehensive Research Group for Energy Consulting and Research. Strategic research on clean, efficient and sustainable and utilization of coal in China [J]. China Engineering Science, 2015, 17 ( 9 ): 1-5.

    [12]

    申涛, 马雄德, 戴国锋. 浅埋煤层开采的矿井水来源判别[J]. 中国煤炭地质, 2011, 23(10): 35-38

    Shen Tao, Ma Xiongde, Dai Guofeng. Source discrimination of mine water from shallow buried coal seam mining [J]. China Coal Geology, 2011, 23 ( 10 ): 35-38.

    [13]

    唐涛. 我国区域能源协调发展战略中重大能源生产基地建设研究[D]. 成都: 四川省社会科学院, 2011

    TANG Tao. Research on the construction of major energy production bases in China 's regional energy coordinated development strategy [D]. Chengdu: Sichuan Academy of Social Sciences, 2011.

    [14]

    杨彦利, 李娟. 基于MODFLOW对陶二煤矿矿井涌水量预测研究[J]. 西部探矿工程, 2018, 30(02): 139-141+146

    Yang Yanli, Li Juan. Prediction of Mine Water Inflow in Taoer Coal Mine Based on MODFLOW [J]. Western Exploration Engineering, 2018, Vol. 30 ( 2 ) : 139-141+146

    [15]

    杨志. 陕北榆神矿区生态地质环境特征及煤炭开采影响机理研究[D]. 徐州: 中国矿业大学, 2019.

    YANG Zhi. Study on the characteristics eco-geological environment and mining effect mechanism in Yushen coal mine district of northern Shaanxi [D]. Xuzhou: China University of Mining and Technology, 2019.

    [16]

    伊茂森. 神东矿区浅埋深煤层关键层理论及其应用研究[D]. 徐州: 中国矿业大学, 2008.

    YI Maosen. Study and application of key strata theory in shallow seam of Shendong mining area [D]. Xuzhou: China University of Mining and Technology, 2008.

    [17]

    张保建. 基于Visual Modflow的台格庙勘查区矿井涌水量预测[J]. 煤炭科学技术, 2015, 43(S1): 146-149+172

    Zhang Baojian. Mine water inflow forecast based on Visual Modflow in Taigemiao exploration area [J]. Coal Science and Technology, 2015, 43(S1): 146-149+172

    [18]

    Xie Y, Qi J, Zhang R, et al. Toward a Carbon-Neutral State: A Carbon–Energy–Water Nexus Perspective of China’s Coal Power Industry[J]. Energies, 2022, 15(12): 4466. doi: 10.3390/en15124466

    [19]

    Liu S, Dai S, Zhang W, et al. Impacts of underground coal mining on phreatic water level variation in arid and semiarid mining areas: a case study from the Yushenfu mining area, China[J]. Environmental earth sciences, 2022(9): 81.

    [20]

    Xu S, Zhang Y, Shi H, et al. Impacts of Aquitard Properties on an Overlying Unconsolidated Aquifer in a Mining Area of the Loess Plateau: Case Study of the Changcun Colliery, Shanxi[J]. Mine Water and the Environment, 2020, 39(1): 121-134. doi: 10.1007/s10230-019-00649-7

  • 加载中

(7)

(5)

计量
  • 文章访问数:  609
  • PDF下载数:  7
  • 施引文献:  0
出版历程
收稿日期:  2022-11-26
修回日期:  2023-03-07
录用日期:  2023-03-09
刊出日期:  2023-12-20

目录