LA–ICP–MS Zircon U–Pb Isotopic Age, Geochemistry, Lu–Hf Isotopic Characteristics and Geological Significance of Pegmatite Vein, in Koktokay Area, Northern Xinjiang
-
摘要:
为了全面研究阿拉尔岩体与可可托海地区伟晶岩脉群在成因上的关系,笔者系统分析阿拉尔岩体西部阿热散一带含绿柱石伟晶岩脉中锆石U–Pb同位素年龄、地球化学、Hf同位素特征。结果显示:伟晶岩脉锆石206Pb/238U加权平均年龄为(203.9±2.2)Ma,地球化学特征表现为高Si、低Ti、富Al、富碱,富集大离子亲石元素Rb、Th、U和稀土元素La、Ce、Nd、Sm,亏损Ba、Nb、Ta、Zr、Hf、Sr、P、Ti,属于典型的低Ba、Sr岩石,锆石同位素176Hf/177Hf值为0.282714~0.282749,εHf(t)值为+2.56~+3.65,tDMC模式年龄为852~912 Ma,与阿拉尔岩体具有形成时代的一致性,地球化学特征的相关性,176Hf/177Hf值与εHf(t)值的相似性,表明两者具有密切的成因关系。结合区域资料认为,中生代稀有金属矿化伟晶岩脉与阿拉尔岩体所代表的岩浆活动可能均起源于前寒武纪变质砂岩及变质泥岩等地壳物质部分熔融,并发生了显著地结晶分异作用。
Abstract:In order to comprehensively study the genetic relationship between Aral Rock Mass and the Pegmatite Vein group in Koktokay area, this work systematically analyzed the Zircon U–Pb isotopic age, geochemistry and Hf isotopic characteristics of the Be bearing pegmatite vein in the Ahersan area of the western Aral Rock Mass. The results show that the Zircon 206Pb/238U weighted average age of the pegmatite vein is (203.9 ± 2.2) Ma. Its geochemical characteristics are high silicon, low titanium, rich aluminum, rich alkali, rich in large ion lithophile elements Rb, Th, U and rare earth elements La, Ce, Nd, Sm, and depleted in Ba, Nb, Ta, Zr, Hf, Sr, P, Ti. It belongs to typical low Ba, Sr rocks. The zircon isotope 176Hf/177Hf values range from 0.282714 to 0.282749, The range of εHf(t) value is +2.56~+3.65, the age of tDMC model is 852~912 Ma. the similarity of Zircon U–Pb isotopic age, the correlation of geochemical characteristics, the similarity of 176Hf/177Hf and εHf(t) values, indicates that they have a close genetic relationship. Based on the regional data, it is believed that the magmatic activities represented by the Mesozoic rare metal mineralized pegmatite vein and Aral Rock Mass are may originate from the partial melting of crustal materials such as Precambrian metasandstone and metamorphic mudstone, and significant crystallization differentiation occurred.
-
Key words:
- pegmatite vein /
- Be mineralization /
- zircon U–Pb isotopic age /
- geochemistry /
- Lu–Hf isotope /
- Koktokay area /
- Northern Xinjiang
-
图 1 阿尔泰造山带构造位置图(a)(据何国琦等,1990)和构造分区图(b)(据Windley et al.,2002)
Figure 1.
图 7 SiO2–K2O图(据Peccerillo et al.,1976)
Figure 7.
图 8 A/CNK–A/NK图(据Rickwood,1989)
Figure 8.
图 9 球粒陨石标准稀土配分图(标准化值据Taylor et al.,1985)
Figure 9.
图 10 原始地幔标准化蛛网图(标准化值据Sun et al.,1989)
Figure 10.
表 1 含绿柱石伟晶岩脉(DP01-4-3)锆石LA–ICP–MS U–Th–Pb同位素分析结果表
Table 1. Analysis result of LA–ICP–MS zircon U–Th–Pb of the beryl bearing pegmatite vein (DP01-4-3)
点
号含量 Th/U 同位素比值 年龄(Ma) 谐和
度Pb* Th U 207Pb/206Pb 207Pb/235U 206Pb/238U 208Pb/232Th 207Pb/206Pb 207Pb/235U 206Pb/238U 208Pb/232Th (10−6) 比值 1σ 比值 1σ 比值 1σ 年龄 1σ 年龄 1σ 年龄 1σ 年龄 1σ 1 147.58 81.00 5177.08 0.02 0.04803 0.00134 0.21199 0.00605 0.03186 0.00055 0.00933 0.00089 102 67 195 5 202 3 188 18 96% 2 230.80 134.08 8150.14 0.02 0.04778 0.00133 0.20533 0.00534 0.03108 0.00046 0.01036 0.00091 87 67 190 4 197 3 208 18 96% 3 281.72 162.16 9703.23 0.02 0.05009 0.00166 0.22362 0.00724 0.03247 0.00069 0.01619 0.00128 198 78 205 6 206 4 325 25 99% 4 1607.21 1711.35 54382.46 0.03 0.05249 0.00427 0.21352 0.00703 0.03156 0.00102 0.00772 0.00044 306 187 197 6 200 6 155 9 98% 5 180.82 109.45 6092.36 0.02 0.05237 0.00153 0.23988 0.00940 0.03307 0.00095 0.02087 0.00145 302 67 218 8 210 6 417 29 96% 6 401.66 329.54 14053.46 0.02 0.05097 0.00165 0.22631 0.00941 0.03185 0.00068 0.01519 0.00136 239 81 207 8 202 4 305 27 97% 7 508.57 271.96 16891.52 0.02 0.05584 0.00157 0.24998 0.01209 0.03234 0.00125 0.04805 0.00316 456 58 227 10 205 8 949 61 90% 8 180.63 62.57 6148.72 0.01 0.04837 0.00126 0.22270 0.00867 0.03314 0.00081 0.01153 0.00106 117 61 204 7 210 5 232 21 97% 9 181.28 78.13 6152.34 0.01 0.04905 0.00150 0.22288 0.00767 0.03310 0.00079 0.01190 0.00117 150 72 204 6 210 5 239 23 97% 10 164.12 112.77 5558.50 0.02 0.04905 0.00177 0.21616 0.00830 0.03219 0.00112 0.02427 0.00175 150 83 199 7 204 7 485 35 97% 11 312.28 127.72 10286.26 0.01 0.04613 0.00131 0.20849 0.00734 0.03272 0.00072 0.01059 0.00094 400 −322 192 6 208 4 213 19 92% 12 202.09 85.53 6761.02 0.01 0.04914 0.00153 0.22550 0.00844 0.03336 0.00085 0.01907 0.00121 154 77 206 7 212 5 382 24 97% 13 210.77 136.64 6979.74 0.02 0.04862 0.00127 0.21935 0.00582 0.03305 0.00080 0.01248 0.00093 128 56 201 5 210 5 251 19 95% 14 177.49 228.27 5389.96 0.04 0.06680 0.00348 0.31175 0.02446 0.03390 0.00204 0.03823 0.00520 831 108 276 19 215 13 758 101 75% 15 105.18 224.50 2417.34 0.09 0.07867 0.00343 0.45212 0.02223 0.04205 0.00132 0.04878 0.00431 1165 86 379 16 266 8 963 83 64% 16 142.48 77.86 4704.98 0.02 0.05242 0.00516 0.23193 0.02287 0.03226 0.00161 0.01957 0.00422 302 231 212 19 205 10 392 84 96% 17 338.51 178.55 11435.53 0.02 0.04914 0.00153 0.21585 0.01020 0.03180 0.00097 0.01348 0.00094 154 77 198 9 202 6 271 19 98% 18 207.78 129.63 6852.78 0.02 0.04692 0.00201 0.21038 0.01142 0.03270 0.00130 0.01413 0.00112 56 91 194 10 207 8 284 22 93% 19 780.17 343.24 21577.30 0.02 0.04767 0.00141 0.25085 0.00808 0.03833 0.00085 0.01234 0.00082 83 70 227 7 242 5 248 16 93% 20 589.57 291.50 20100.95 0.01 0.04996 0.00118 0.21427 0.00605 0.03126 0.00064 0.01038 0.00077 195 28 197 5 198 4 209 15 99% 21 290.04 130.87 9612.80 0.01 0.04951 0.00163 0.21928 0.00887 0.03230 0.00101 0.01687 0.00207 172 78 201 7 205 6 338 41 98% 22 268.29 101.80 8934.03 0.01 0.04849 0.00173 0.21308 0.00963 0.03196 0.00099 0.01072 0.00128 124 85 196 8 203 6 215 26 96% 23 192.63 70.95 6418.38 0.01 0.05101 0.00161 0.22446 0.00852 0.03209 0.00091 0.00897 0.00103 243 77 206 7 204 6 181 21 99% 24 251.08 103.94 8437.39 0.01 0.04902 0.00157 0.21460 0.00852 0.03191 0.00095 0.00987 0.00096 150 74 197 7 203 6 199 19 97% 注:Pb*=0.241×206Pb+0.221×207Pb+0.524×208Pb。 表 2 含绿柱石伟晶岩脉(DP01-4-3)主量元素(%)、稀土元素(10−6)和微量元素(10−6)分析结果表
Table 2. Major element (%), REE (10−6) and trace element (10−6) dataes of the beryl bearing pegmatite vein (DP01-4-3)
元素 TC03/H3 TC03/H10 TC03-1/H3 TC03-2/H3 TC05/H4 TC05-1/H2 TC05-1/H6 SiO2 73.77 75.07 79.11 77.45 75.57 76.76 73.01 TiO2 0.02 0.02 0.02 0.02 0.02 0.02 0.02 Al2O3 14.6 13.82 11.65 12.22 13.39 12.95 14.91 T Fe2O3 1.57 0.74 0.8 1.03 0.43 0.86 1.03 FeO 0.79 0.34 0.37 0.42 0.19 0.34 0.49 Fe2O3* 0.7 0.36 0.39 0.56 0.22 0.48 0.49 MnO 0.59 0.03 0.16 0.04 0.03 0.11 0.09 MgO 0.2 0.2 0.2 0.2 0.2 0.2 0.2 CaO 0.6 0.4 0.36 0.1 0.1 0.44 0.59 Na2O 6.54 4.66 4.42 2.68 2.71 5.98 7.88 K2O 1.48 4.7 2.77 5.61 7.53 2.28 2.29 P2O5 0.1 0.16 0.11 0.08 0.1 0.17 0.16 LOI 0.58 0.37 0.46 0.52 0.09 0.39 0.18 Total 99.97 100.13 100.02 99.9 100.15 100.12 100.31 A/CNK 1.09 1.03 1.07 1.15 1.05 0.99 0.9 A/NK 1.18 1.08 1.13 1.17 1.06 1.05 0.97 Mg# 20.05 34.87 33.13 27.78 47.96 31.54 27.78 SI 2.06 1.95 2.45 2.11 1.84 2.15 1.76 La 2.8 2.82 3.5 0.89 0.6 1.06 1.44 续表2 元素 TC03/H3 TC03/H10 TC03-1/H3 TC03-2/H3 TC05/H4 TC05-1/H2 TC05-1/H6 Ce 5.16 5.13 6.64 1.3 1.26 2.45 2.94 Pr 0.6 0.63 0.76 0.19 0.12 0.26 0.31 Nd 2.14 2.2 2.51 0.72 0.43 0.92 1.19 Sm 0.47 0.56 0.64 0.18 0.082 0.3 0.33 Eu 0.059 0.061 0.053 0.061 0.074 0.064 0.12 Gd 0.44 0.49 0.42 0.15 0.075 0.3 0.32 Tb 0.13 0.12 0.096 0.027 0.015 0.086 0.068 Dy 1 0.62 0.49 0.13 0.074 0.41 0.35 Ho 0.25 0.11 0.098 0.026 0.013 0.071 0.055 Er 0.85 0.28 0.32 0.077 0.039 0.16 0.13 Tm 0.2 0.051 0.069 0.011 0.005 0.025 0.018 Yb 1.72 0.35 0.55 0.071 0.03 0.14 0.13 Lu 0.27 0.048 0.087 0.012 0.005 0.019 0.018 Y 9.45 4.26 3.68 0.92 0.48 2.85 2.04 Ti 119.9 119.9 119.9 119.9 119.9 119.9 119.9 K 12286.2 39017 22995.1 46571.3 62510.2 18927.4 19010.4 P 436 698 480 349 436 742 698 Sr 15.6 19.1 11 15.7 21.1 21.2 21.8 Ba 30.3 36 18 137 187 43.6 91.1 Cr 6.18 4.37 3.67 4.63 4.72 7.4 5.32 Co 0.76 0.54 0.49 0.65 0.44 0.81 0.73 Ni 2.89 2.33 1.7 2.13 1.91 2.05 3.29 Ga 27.2 20.2 20.5 26.2 17.5 22.4 20.7 Th 3.66 2.61 1.64 0.49 0.3 0.82 1.42 U 1.84 1.01 3.12 1.59 0.19 4.04 3.66 Zr 83.8 39.6 28 28.1 25.4 36.9 27.7 Hf 6.38 1.56 1.77 1.61 1.14 1.55 2.45 Ge 4.3 2.92 3.28 3.43 3.2 4.27 4.09 B 14.4 11.7 28.7 14.9 4.75 8.33 22.5 Sn 1.8 1.91 1.7 2.23 0.48 1.55 0.76 F 757 463 636 519 266 826 412 Li 78.3 63.9 73.9 77.2 24.1 100.9 45.8 Be 104.5 107.1 149.1 342.8 131.2 193 125 Nb 34.7 14.6 23 31.8 8.5 27.4 15.9 Cs 18.2 40.8 24.6 120.4 67.8 46.7 33.6 Ta 7.73 2.75 2.78 6.94 1.43 2.72 1.56 W 3.88 1.91 2.12 2.71 0.89 2.57 0.85 Sc 3.3 5.4 1.4 2.5 3.9 1.5 3.1 Rb 253.2 478.2 353.4 604.4 749.3 378 317.6 注:Fe2O3*值通过实测得TFe2O3和FeO含量计算得出,计算公式为Fe2O3*=TFe2O3-FeO×1.1113。 表 3 阿拉尔岩体西部含绿柱石伟晶岩脉(DP01-4-3)锆石Hf同位素结果表
Table 3. Zircon Hf isotope results of the beryl bearing pegmatite vein (DP01-4-3)
点号 年龄(Ma) 1s 176Yb/177Hf 2SE 176Lu/177Hf 2SE 176Hf/177Hf 2SE εHf(0) 2σ εHf(t) 2σ TDM1 TDM2 fLu/Hf DP01-4-3 205.99 4.32 0.00 0.00 0.000089 0.000000 0.282723 0.000006 −1.73 1.05 2.78 1.05 732 897 −1.00 DP01-4-4 200.31 6.40 0.00 0.00 0.000093 0.000001 0.282732 0.000006 −1.41 1.05 2.98 1.06 719 883 −1.00 DP01-4-5 209.76 5.94 0.00 0.00 0.000066 0.000000 0.282729 0.000007 −1.53 1.05 3.07 1.06 723 886 −1.00 DP01-4-6 202.15 4.24 0.01 0.00 0.000224 0.000003 0.282719 0.000007 −1.87 1.05 2.54 1.06 740 907 −0.99 DP01-4-9 210.20 5.05 0.00 0.00 0.000117 0.000005 0.282721 0.000007 −1.81 1.05 2.79 1.06 735 901 −1.00 DP01-4-10 209.94 4.92 0.00 0.00 0.000030 0.000000 0.282714 0.000007 −2.04 1.05 2.56 1.06 743 912 −1.00 DP01-4-11 204.26 7.02 0.00 0.00 0.000038 0.000000 0.282730 0.000006 −1.50 1.05 2.98 1.06 722 886 −1.00 DP01-4-13 211.52 5.32 0.00 0.00 0.000067 0.000000 0.282716 0.000006 −1.99 1.05 2.65 1.06 741 909 −1.00 DP01-4-17 204.68 10.07 0.00 0.00 0.000093 0.000000 0.282739 0.000006 −1.17 1.05 3.31 1.07 710 869 −1.00 DP01-4-18 201.83 6.07 0.00 0.00 0.000058 0.000001 0.282722 0.000005 −1.76 1.04 2.66 1.05 732 900 −1.00 DP01-4-21 198.40 4.00 0.00 0.00 0.000048 0.000001 0.282733 0.000007 −1.38 1.05 2.97 1.06 717 882 −1.00 DP01-4-22 204.93 6.33 0.01 0.00 0.000188 0.000006 0.282749 0.000006 −0.83 1.05 3.65 1.06 698 852 −0.99 DP01-4-24 202.79 6.17 0.00 0.00 0.000064 0.000001 0.282739 0.000007 −1.16 1.05 3.29 1.06 709 869 −1.00 DP01-4-25 203.61 5.66 0.00 0.00 0.000083 0.000000 0.282718 0.000009 −1.90 1.07 2.56 1.08 738 907 −1.00 DP01-4-26 202.50 5.93 0.01 0.00 0.000469 0.000004 0.282734 0.000010 −1.33 1.09 3.05 1.09 723 881 −0.99 注:该表中的点号与表1中的点号对应。 -
[1] 陈剑锋. 阿尔泰3号脉缓倾斜部分的形成和演化[D]. 贵阳: 中国科学院地球化学研究所, 2011, 1-86
CHEN Jianfeng. Geochemistry of the plate part in Altai No. 3 pegmatite and its formation and evolution (Dissertation for the Degree of Master of Philosophy)[D]. Guiyang: Institute of Geochemistry, Chinese Academy of Sciences. 2011, 1–86.
[2] 陈剑锋, 张辉, 张锦煦, 等. 新疆可可托海3号伟晶岩脉锆石U-Pb 定年、Hf 同位素特征及地质意义[J]. 中国有色金属学报, 2018, 28(9): 1832-1844
CHEN Jianfeng, ZHANG Hui, ZHANG Jinxu, et al. Geochronology and Hf isotope of zircon for Koktokay No. 3 granitic pegmatite in Xinjiang and its geological implications[J]. The Chinese Journal of Nonferrous Metals, 2018, 28(9): 1832-1844 (in Chinese with English abstract).
[3] 韩宝福. 中俄阿尔泰山中生代花岗岩与稀有金属矿床的初步对比分析[J]. 岩石学报, 2008, 24(4): 655-660.
HAN Baofu. A preliminary comparison of Mesozoic granitoids and rare metal deposits in Chinese and Russian Altai Mountains[J]. Acta Petrologica Sinica, 2008, 24(4): 655-660.
[4] 何国琦, 韩宝福, 岳永君, 等. 中国阿尔泰造山带的构造分区和地壳演化[M]. 北京: 地质出版社, 1990: 14−25
HE Guoqi, HAN Baofu, YUE Yongjun, et al. Tectonic division and crustal evolution of Altay orogenic belt in China[M]. Beijing: Geological Publishing House, 1990: 14−25.
[5] 计文化, 王永和, 杨博, 等. 西北地区地质、资源、环境与社会经济概貌[J]. 西北地质, 2022, 55(3): 15-27 doi: 10.19751/j.cnki.61-1149/p.2022.03.002
JI Wenhua, WANG Yonghe, YANG Bo, et al. Overview of Geology, Resources, Environment and Social Economy in Northwest China[J]. Northwestern Geology, 2022, 55(3): 15-27 (in Chinese with English abstract). doi: 10.19751/j.cnki.61-1149/p.2022.03.002
[6] 孔会磊, 李文渊, 任广利, 等. 伟晶岩型锂矿床研究现状及其在中国西部的找矿前景[J]. 西北地质, 2023, 56(1): 11−30.
KONG Huilei, LI Wenyuan, REN Guangli, et al. Research Status of Pegmatite-hosted Li Deposits and Their Exploration Prospect in West China[J]. Northwestern Geology, 2023, 56(1): 11-30
[7] 蔺新望, 王星, 赵江林, 等. 新疆富蕴县北部金格岩体斜长花岗岩LA-ICP-MS 锆石 U-Pb同位素年龄及其地质意义[J]. 地质通报, 2019, 38(11), 1813-1824.
LIN Xinwang, WANG Xing, ZHAO Jianglin, et al. LA-ICP-MS zircon U-Pb age of the Jinge lagiogranite in northern Fuyun of Xinjiang and its geological implications[J]. Geological Bulletin of China, 2019, 38(11): 1813-1824 (in Chinese with English abstract).
[8] 蔺新望, 王星, 陈光庭, 等. 新疆北部阿尔泰山东段泥盆纪岩浆活动及侵位方式的探讨[J]. 现代地质, 2020, 34(3), 514-531 doi: 10.19657/j.geoscience.1000-8527.2020.03.016
LIN Xinwang, WANG Xing, CHEN Guangting, et al. Magmatic Activity and Emplacement in Eastern Altay[J]. Northern Xinjiang Geoscience, 2020, 34(3), 514-531 (in Chinese with English abstract). doi: 10.19657/j.geoscience.1000-8527.2020.03.016
[9] 蔺新望, 张亚峰, 王星, 等. 新疆阿尔泰友谊峰地区木孜他乌岩体锆石U-Pb年龄及其地质意义[J]. 西北地质, 2017, 50(3), 83-91.
LIN Xinwang, ZHANG Yafeng, WANG Xing, et al. Zircon U-Pb Dating of the Muzitawu Plutons from the Fraendship Peak Region in Altay, Xinjiang and its Geological Significance[J]. Northwestern Geology, 2017, 50( 3): 83-91 (in Chinese with English abstract).
[10] 蔺新望, 张亚峰, 陈国超, 等. 阿尔泰造山带南缘岩浆混合作用: 阿克布拉克岩体岩石学、地球化学和年代学证据[J]. 地球科学, 2021: 1−26.https://kns.cnki.net/kcms/detail/42.1874.P.20211214.1625.006.html.
LIN Xinwang, ZHANG Yafeng, CHEN Guochao, et al. LA-ICP-MS U-Pb Geochronology, Geochemistry and Petrography of Akebulake Plutons in Southern Altay Orogenic Belt: An Example for Magma Mixing[J]. Earth Science, 2021:1−26.https://kns.cnki.net/kcms/detail/42.1874.P.20211214.1625.006.html
[11] 刘锋, 曹峰, 张志欣, 等. 新疆可可托海近3号脉花岗岩成岩时代及地球化学特征研究[J]. 岩石学报, 2014, 30(1) : 1- 15.
LIU Feng, CAO Feng, ZHANG Zhixin, et al. Chronology and geochemistry of the granite near the Keketuohai No. 3 pegmatite in Xinjiang[J]. Acta Petrologica Sinica, 2014, 30(1) : 1-15 (in Chinese with English abstract).
[12] 刘锋, 张志欣, 李强, 等. 新疆可可托海3号伟晶岩脉成岩时代的限定: 来自辉钼矿Re-Os定年的证据[J]. 矿床地质, 2012, 31(5) : 1111 -1118.
LIU Feng, ZHANG Zhixin, LI Qiang, et al. New age constraints on Koktokay pegmatite No. 3 Vein, Altay Mountains, Xinjiang: Evidence from molybdnite Re-Os dating[J]. Mineral Deposits, 2012, 31(5) : 1111-1118 (in Chinese with English abstract).
[13] 刘宏. 新疆阿尔泰阿拉尔花岗岩与可可托海3号伟晶岩脉成因关系地球化学研究[D]. 昆明: 昆明理工大学, 2013: 1-62.
LIU Hong. Geochemical characteristics of Aral granite and the evolutionary relationship between it and Keketuohai No. 3 pegmatite vein, Altay Xinjiang [D]. Kunming: Kunming University of Science and Technology, 2013 :1-62(in Chinese with English abstract).
[14] 刘文政. 新疆阿斯喀尔特花岗岩-伟晶岩地球化学演化及其Be-Mo成矿作用[D]. 北京: 中国科学院大学,2014, 8−48.
LIU Wenzheng. The geochemical evolution of the Asikaerte granite-pegmatite system and its implication for themetallogenesis of Be and Mo, Xinjiang, China[D]. Beijing: University of Chinese Academy of Sciences, 2014: 1−86.
[15] 刘文政, 张辉, 唐虹峰, 等. 新疆阿斯喀尔特铍钼矿床中辉钼矿Re-Os定年及成因意义[J]. 地球化学, 2015, 44(2): 145-154 doi: 10.19700/j.0379-1726.2015.02.004
LIU Wenzheng, ZHANG Hui, TANG Hongfeng, et al. Molybdenite Re-Os dating of the Asikaerte Be-Mo eposit in Xinjiang, China and its genetic implications[J]. Geochimica, 2015, 44(2): 145-154 (in Chinese with English abstract). doi: 10.19700/j.0379-1726.2015.02.004
[16] 彭素霞, 程建新, 丁建刚, 等. 阿尔泰阿拉尔岩体周缘花岗岩序列与伟晶岩成因关系探讨[J]. 西北地质, 2015, 48(3) : 202 -213.
PENG Suxia, CHENG Jianxin, DING Jiangang, et al. Relationship between the Sequences of Granite around Alai Granite and Pegmatite Causes, Altay, Xinjiang[J]. Northwestern Geology, 2015, 48(3) : 202 -213 (in Chinese with English abstract).
[17] 秦克章, 申茂德, 唐冬梅, 等. 阿尔泰造山带伟晶岩型稀有金属矿化类型与成岩成矿时代[J]. 新疆地质, 2013, 31(增1): 1-7
QIN Kezhang, SHEN Maode, TANG Dongmei, et al. Types, intrusive and mineralization ages of pegmatite rare-element deposits in Chinese Altay[J]. Xinjiang Geology, 2013, 31( Sup. 1): 1-7 (in Chinese with English abstract
[18] 任宝琴, 张辉, 唐勇, 等. 阿尔泰造山带伟晶岩年代学及其地质意义[J]. 矿物学报, 2011, 31 (3) : 587 - 596.
REN Baoqin, ZHANG Hui, TANG Yong, et al. LA-ICPMS U-Pb zircon geochronology of the Altai pegmatites and its geological significance[J]. Acta Mineralogica Sinica, 2011, 31 ( 3 ) : 587-596 (in Chinese with English abstract)
[19] 王春龙, 秦克章, 唐冬梅, 等. 阿尔泰阿斯喀尔特Be-Nb-Mo矿床年代学锆石Hf同位素研究及其地质意义. 岩石学报, 2015, 31(8): 2337-2352
WANG Chunlong, QIM Kezhang, TANG Dongmei, et al. Geochronology and Hf isotope of zircon for the Arskartor Be-Nb-Mo deposit in Altay and its geological implications[J]. Acta Petrologica Sinica, 2015, 31(8): 2337-2352 (in Chinese with English abstract).
[20] 王登红, 陈毓川, 徐志刚. 阿尔泰加里东期变质成因伟晶岩型白云母矿床的成矿年代证据及其意义[J]. 地质学报, 2001, 75(3): 419−425 doi: 10.3321/j.issn:0001-5717.2001.03.016
WANG Denghong, CHEN Yuchuan, XU Zhigang. Chronological Study of Caledonian MetamorPhic Pegmatite Museovite Deposits in the Altay Mountains, Northwestern China, and its Significance[J]. Acta Geologicasinica, 2001, 75(3): 419−425 (in Chinese with English abstract). doi: 10.3321/j.issn:0001-5717.2001.03.016
[21] 王登红, 陈毓川, 徐志刚. 新疆阿尔泰印支期伟晶岩的成矿年代学研究[J]. 矿物岩石地球化学通报, 2003, 22(1) : 14- 17.
WANG Denghong, CHEN Yuchuan, XU Zhigang. 40Ar /39 Ar isotope dating on muscovites from Indosinian rare metal deposits in Central Altay, northwestern China[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2003, 22( 1) : 14-17 ( in Chinese with English abstract).
[22] 王登红, 陈毓川, 邹天人, 等. 新疆阿尔泰阿祖拜稀有金属一宝石矿床的成矿时代—燕山期稀有金属成矿的新证据[J]. 地质论评, 2000, 46 ( 3): 307 -311.
WANG Denghong, CHEN Yuchuan, ZOU Tianren, et al. 40Ar /39 Ar dating for the Azubai rare metal-gem deposit in Altay, Xinjiang: New evidence for Yanshanian mineralization of rare metals[J]. Geological Review, 2000, 46( 3) : 307-311 (in Chinese with English abstract)
[23] 王星, 蔺新望, 赵端昌, 等. 阿尔泰北部喀纳斯群碎屑岩锆石U-Pb同位素年龄及其意义[J]. 西北地质, 2016, 49(3) : 13 -27.
WANG Xing, LIN Xinwang, ZHAO Duanchang, et al. Detrital Zircon Age of the Kanas Group in the North of Altay and Its Geological Significance[J]. Northwestern Geology, 2016, 49(3) : 13-27 (in Chinese with English abstract).
[24] 王星, 蔺新望, 张亚峰, 等. 新疆北部阿尔泰山西段乞格拉塔乌岩体LA-ICP-MS锆石U-Pb同位素年龄及其地质意义[J]. 地质论评, 2019, 65(2) : 370-385.
WANG Xing, LIN Xinwang, ZHANG Yafeng, et al. LA-ICP-MS Zircon U-Pb Dating and Its Geological Implications of Intrusion from Qigelatawu Rocks in Western Altay , the Northern of Xinjiang[J]. Geological Review, 2019, 65(2) : 370 -385 (in Chinese with English abstract).
[25] 王 星, 蔺新望, 张亚峰, 等. 新疆北部友谊峰一带喀纳斯群碎屑锆石U-Pb年龄分布特征及对阿尔泰造山带构造演化的启示[J]. 地质通报, 2022, 41(9): 1574-1588 doi: 10.12097/j.issn.1671-2552.2022.09.007
WANG Xing, LIN Xinwang, ZHANG Yafeng, et al. Detrital Zircon U-Pb Age Distribution Characteristics of the Kanas Group from the Friendship Peak Region in Northern Xinjiang and Its Implications for the Tectonic Evolution of the Altay Orogenic Blet[J]. Geological Bulletin of China, 2022, 41(9): 1574-1588( in Chinese with English abstract). doi: 10.12097/j.issn.1671-2552.2022.09.007
[26] 吴元保, 郑永飞. 锆石成因矿物学研究及其对U−Pb年龄解释的制约[J]. 科学通报, 2004, 49(16): 1589−1604 doi: 10.3321/j.issn:0023-074X.2004.16.002
WU Yuanbao, ZHENG Yongfei. A review on the minerageny and its restriction for zircon U-Pb age [J]. Science Bulletion, 2004, 49(16): 1589-1604 (in Chinese). doi: 10.3321/j.issn:0023-074X.2004.16.002
[27] 杨富全, 张志欣, 刘国仁, 等. 新疆中亚造山带三叠纪矿床地质特征、时空分布及找矿方向[J]. 矿床地质, 2020, 39(2): 197–214 doi: 10.16111/j.0258-7106.2020.02.001
YANG Fuquan, ZHANG Zhixing, LIU Guoren, et al. A review of geological characteristics and time-space distribution as well as prospecting direction of Triassic deposits in Central Asian Orogenic Belt, Xinjiang[J]. Mineral Deposits, 2020, 39(2): 197–214 (in Chinese with English abstract). doi: 10.16111/j.0258-7106.2020.02.001
[28] 杨富全, 张忠利, 王 蕊, 等. 新疆阿尔泰稀有金属矿地质特征及成矿作用[J]. 大地构造与成矿学, 2018, 42 (6): 1010 - 1026.
YANG Fuquan, ZHANG Zhongli, WANG Rui, et al. Rare metal deposits in the Altay, Xinjiang: Geological characteristics and metallogenesis[J]. Geotectonica et Metallogenia, 2018, 42(6): 1010-1026 (in Chinese with English abstract).
[29] 张辉, 吕正航, 唐勇. 新疆阿尔泰造山带中伟晶岩型稀有金属矿床成矿规律、找矿模型及其找矿方向[J]. 矿床地质, 2019, 38(4): 792-814
ZHANG Hui, LÜ ZhengHang and TANG Yong Metallogeny and prospecting model as well as prospecting direction of pegma⁃tite-type rare metal ore deposits in Altay orogenic belt, Xinjiang[J]. Mineral Deposits, 2019, 38(4): 792-814 (in Chinese with English abstract).
[30] 张辉, 唐勇, 吕正航, 等. 新疆阿尔泰成矿带哈龙-青河一带稀有金属成矿规律及找矿靶区预测研究[R]. 新疆有色金属工业集团, 2014: 1−154.
[31] 张亚峰, 蔺新望, 郭岐明, 等. 阿尔泰南缘可可托海地区阿拉尔花岗岩体LA ICP MS锆石U-Pb定年、岩石地球化学特征及其源区意义[J]. 地质学报, 2015, 89(2): 339-354
ZHANG Yafeng, LIN Xinwang, GUO Qiming, et al. LA-ICP-MS Zircon U-Pb Dating and Geochemistry of Aral Granitic Plutons in Koktokay Area in the Southern Altay Margin and Their Source Significance[J]. Acta Geologica Sinica, 2015, 89(2): 339-354 (in Chinese with English abstract).
[32] 张亚峰, 蔺新望, 赵玉梅, 等. 新疆北部青河县阿斯喀尔特铍矿区花岗质岩石年代学及地球化学特征[J]. 矿床地质, 2017, 36(03): 643-658 doi: 10.16111/j.0258-7106.2017.03.007
ZHANG Yafeng, LIN Xinwang, ZHAO Yumei, et al. Geochronology and geochemistry of granitoids of Ascalt beryllium deposit in Qinghe County, northern Xinjiang[J]. Mineral Deposits, 2017, 36(03): 643-658 (in Chinese with English abstract). doi: 10.16111/j.0258-7106.2017.03.007
[33] 张照伟, 谭文娟, 王小红, 等. 西北地质调查与战略性矿产找矿勘查[J]. 西北地质, 2022, 55(3): 44-63 doi: 10.19751/j.cnki.61-1149/p.2022.03.004
ZHANG Zhaowei, TAN Wenjuan, WANG Xiaohong, et al. Geological Survey and Prospecting of Strategic Minerals in Northwest China[J]. Northwestern Geology, 2022, 55(3): 44-63 (in Chinese with English abstract). doi: 10.19751/j.cnki.61-1149/p.2022.03.004
[34] 周起凤, 秦克章, 唐冬梅, 等. 阿尔泰可可托海3 号脉伟晶岩型稀有金属矿床云母和长石的矿物学研究及意义[J]. 岩石学报, 2013, 29(9) : 3004- 3022.
ZHOU Qengqi, QIN Kezhang, TANG Dongmei, et al. Mineralogy and significance of micas and feldspars from the Koktokay No. 3 pegmatitic rare-element deposit, Altai[J]. Acta Petrologica Sinica, 2013, 29( 9) : 3004-3022 (in Chinese with English abstract).
[35] 邹天人, 张相宸, 贾富义, 等. 论阿尔泰3号伟晶岩脉的成因[J]. 矿床地质, 1986 , 5(4): 35 -47.
ZOU Tianren, ZHANG Xiangchen , JIA Fuyi, et al. The origin of No . 3 pegmatite in Altayshan , Xinjiang[J]. Mineral Deposits , 1986 , 5(4): 35-47 (in Chinese with English abstract).
[36] 邹天人, 李庆昌. 中国新疆稀有金属及稀土金属矿床[M]. 北京: 地质出版社, 2006: 1−264.
ZOU Tianren , LI Qingchang. Rare-elements and REE Deposits in Xinjiang, China[M]. Beijing: Geological Publishing House, 2006: 1−264.
[37] 朱永峰. 新疆的印支运动与成矿[J]. 地质通报, 2007, 26(5): 510 - 519.
ZHU Yongfeng. Indosin movement and metallogeny in Xinjiang, China [J]. Geol Bulletin China, 2007, 26(5): 510-519 (in Chinese with English abstract).
[38] Annikova I Yu, Vladimirov A G, Vystavnoi S A, et al. U-Pb, 39Ar/40Ar data and Sm-Nd, Pb-Pb isotopic study of Kalguty Molybdenum-tungsten ore-magmatic system, Southern Altai[J]. Petrology, 2006, 14(1): 81-97. doi: 10.1134/S0869591106010073
[39] Berzina A N , Stein H J , Zimmerman A, et al. Re-Os ages for molybdenite from porphyry Cu-Mo and greisen Mo-W deposits of southern Siberia (Russia) preserve metallogenic record[C]. Biennial SGA meeting, Institute of Geology, Novosibirsk, Russia, 2003: 231−234.
[40] Che X D, Wu F Y, Wang R C, et al. In situ U-Pb isotopic dating of columbite-tantalite by LA-ICP-MS[J]. Ore Geology Reviews, 2015, 65: 979-989. doi: 10.1016/j.oregeorev.2014.07.008
[41] Dobretsov N L, Berzin N A and Buslov M. Opening and tectonic evolution of the Paleo-Asian Ocean[J]. International Geology Review, 1995, 37: 335-360. doi: 10.1080/00206819509465407
[42] Glorie S, De Grave J, Buslov MM, et al. Structural control on Meso-Cenozoic tectonic reactivation and denudation in the Siberian Altai: Insights from multi-method thermochronometry[J]. Tectonophysics, 2012, 544-545: 75-92 doi: 10.1016/j.tecto.2012.03.035
[43] Li J Y, Xiao W J, Wang K Z, et al. Neoproterozoic−Paleozoic tectonostratigraphy, magmatic activities and tectonic evolution of eastern Xinjian, N W China[J]. In: Mao J W, Goldfarb, Seltman, et al. Tectonic Evolution and Metallogeny of the Chinese Altay and Tinanshan[M]. London: CER CAM/NHM, 2003: 31−74.
[44] Lü Z H, Zhang H, Tang Y, et al. Petrogenesis and magmatic–hydrothermal evolution time limitation of Kelumute No. 112 pegmatite in Altay, Northwestern China: Evidence from zircon U-Pb and Hf isotopes[J]. Lithos, 2012, 154(1): 374-391.
[45] Ludwig K R. Users Manual for Isoplot/Ex rex 2.49 A Geochronological Toolkit for Microsoft Excel[J]. Berkeley Geochronology Center: Special Publication, 2001, No. 1a2001: 1-55.
[46] Peccerillo A, Taylor S R. Geochemistry of Eocene calc−alkaline volcanic rocks from the Kastamonu area, northern Turkey[J]. Contributions to Mineralogy and Petrology, 1976, 58(1): 63−81. doi: 10.1007/BF00384745
[47] Potseluev A A, Babkin D I, Kotegov V I. The Kalguty complex deposit, the Gorny Altai: mineralogical and geochemical characteristics and fluid regime of ore formation[J]. Geologiya Rudnykh Mestorozhdenii, 2006, 48(5) : 439-459.
[48] Rickwood P C. Boundary lines within petrologic diagrams which use oxides for major and minor element[J]. Lithos, 1989, 22: 246-263.
[49] Sengör A M C, Natal’in B A and Burtman V S. Evolution of the Altaid tectonic collage and Paleozoic crustal growth in Eurasia[J]. Nature, 1993, 364(22): 299-307.
[50] Sun S S, Mcdonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society, London, Special Publication, 1989, 42 : 313-345. doi: 10.1144/GSL.SP.1989.042.01.19
[51] Taylor S R, Mclenann S M. The continental crust: Its composition and evolution [M]. Blackwell: Oxford Press, 1985: 1-312.
[52] Wang T, Hong D W, Jahn B M, et al. Timing, Petrogenesis, and Setting of Paleozoic Synorogenic intrusions from the Altai Mountains, Northwest China: implications for the tectonic evolution of an accret ionary Orogen[J]. Journal of Geology, 2006, 114 : 735 -751. doi: 10.1086/507617
[53] Wang T, Tong Y, Jahn B M, et al. SHRIMP U-Pb zircon geochronology of the Altai No. 3 Pegmatite, NW China, and its implications for the origin and tectonic setting of the pegmatite[J]. Ore Geology Reviews, 2007, 32: 325-336. doi: 10.1016/j.oregeorev.2006.10.001
[54] Wang T, Jahn B M, Kovachet V P, et al. Mesozoic anorogenic granitic magmatism in the Altai Paleozoic accretionary orogen, NW China, and its Implications for crustal architecture and growth[C]. In: Abstract SE53~ A010, AOGS 5th Annual General Meeting, Busan, Korea,2008.
[55] Windley B F, Krner A, Guo J H, et al. Neoproterozoic to Paleozoic geology of the Altai orogen, NW China: new zircon age data and tectonic evolution[J]. The Journal of Geology, 2002, 110 : 719-737. doi: 10.1086/342866
[56] Xiao W J, Windley B F, Badarch G, et al. Palaeozoic accretionary and convergent tectonics of the southern Altaids: implications for the growth of Central Asia[J]. Journal of the Geological Society, 2004, 161: 339-342. doi: 10.1144/0016-764903-165
[57] Yakubchuk A. Architecture and mineral deposit settings of the Altaid orogenic collage: A revised model[J]. Journal of Asian Earth Sciences, 2004, 23( 5) : 761-779 doi: 10.1016/j.jseaes.2004.01.006
[58] Yuan H L, Gao S, Liu X M, et al. Accurate U-−Pb age and trace element determinations of zircon by laser ablation-−inductively coupled plasma-−mass spectrometry[J]. Geostandards and Geoanalytical Research, 2004, 28(3): 353-370. doi: 10.1111/j.1751-908X.2004.tb00755.x
[59] Zhu Y F, Zeng Y S, Gu L B. Geochemistry of the rare metalbearing pegmatite No. 3 vein and related granites in the Keketuohai region, Altay Mountains, Northwest China[J]. Journal of Asian Earth Sciences, 2006, 27: 61-77. doi: 10.1016/j.jseaes.2005.01.007