新疆北部可可托海地区伟晶岩脉LA–ICP–MS锆石U–Pb年龄、地球化学、Lu–Hf同位素特征及其地质意义

蔺新望, 王星, 张亚峰, 赵端昌, 赵江林, 刘坤. 2023. 新疆北部可可托海地区伟晶岩脉LA–ICP–MS锆石U–Pb年龄、地球化学、Lu–Hf同位素特征及其地质意义. 西北地质, 56(4): 75-90. doi: 10.12401/j.nwg.2023007
引用本文: 蔺新望, 王星, 张亚峰, 赵端昌, 赵江林, 刘坤. 2023. 新疆北部可可托海地区伟晶岩脉LA–ICP–MS锆石U–Pb年龄、地球化学、Lu–Hf同位素特征及其地质意义. 西北地质, 56(4): 75-90. doi: 10.12401/j.nwg.2023007
LIN Xinwang, WANG Xing, ZHANG Yafeng, ZHAO Duanchang, ZHAO Jianglin, LIU Kun. 2023. LA–ICP–MS Zircon U–Pb Isotopic Age, Geochemistry, Lu–Hf Isotopic Characteristics and Geological Significance of Pegmatite Vein, in Koktokay Area, Northern Xinjiang. Northwestern Geology, 56(4): 75-90. doi: 10.12401/j.nwg.2023007
Citation: LIN Xinwang, WANG Xing, ZHANG Yafeng, ZHAO Duanchang, ZHAO Jianglin, LIU Kun. 2023. LA–ICP–MS Zircon U–Pb Isotopic Age, Geochemistry, Lu–Hf Isotopic Characteristics and Geological Significance of Pegmatite Vein, in Koktokay Area, Northern Xinjiang. Northwestern Geology, 56(4): 75-90. doi: 10.12401/j.nwg.2023007

新疆北部可可托海地区伟晶岩脉LA–ICP–MS锆石U–Pb年龄、地球化学、Lu–Hf同位素特征及其地质意义

  • 基金项目: 陕西省公益性地质调查项目“陕西省南秦岭成矿带佛坪隆起南缘茅坪地区基础地质调查”(202102),新疆地勘基金中心项目“新疆富蕴县阿拉一带1∶5万L45E003023等五幅区域地质调查”(A16-1-LQ01),中国地质调查局项目“阿尔泰成矿带喀纳斯和东准地区地质矿产调查”(DD20160006)联合资助。
详细信息
    作者简介: 蔺新望(1972–),男,高级工程师,长期从事区域地质调查研究工作。E–mail:starcug@126.com
  • 中图分类号: P597.3

LA–ICP–MS Zircon U–Pb Isotopic Age, Geochemistry, Lu–Hf Isotopic Characteristics and Geological Significance of Pegmatite Vein, in Koktokay Area, Northern Xinjiang

  • 为了全面研究阿拉尔岩体与可可托海地区伟晶岩脉群在成因上的关系,笔者系统分析阿拉尔岩体西部阿热散一带含绿柱石伟晶岩脉中锆石U–Pb同位素年龄、地球化学、Hf同位素特征。结果显示:伟晶岩脉锆石206Pb/238U加权平均年龄为(203.9±2.2)Ma,地球化学特征表现为高Si、低Ti、富Al、富碱,富集大离子亲石元素Rb、Th、U和稀土元素La、Ce、Nd、Sm,亏损Ba、Nb、Ta、Zr、Hf、Sr、P、Ti,属于典型的低Ba、Sr岩石,锆石同位素176Hf/177Hf值为0.282714~0.282749,εHf(t)值为+2.56~+3.65,tDMC模式年龄为852~912 Ma,与阿拉尔岩体具有形成时代的一致性,地球化学特征的相关性,176Hf/177Hf值与εHf(t)值的相似性,表明两者具有密切的成因关系。结合区域资料认为,中生代稀有金属矿化伟晶岩脉与阿拉尔岩体所代表的岩浆活动可能均起源于前寒武纪变质砂岩及变质泥岩等地壳物质部分熔融,并发生了显著地结晶分异作用。

  • 加载中
  • 图 1  阿尔泰造山带构造位置图(a)(据何国琦等,1990)和构造分区图(b)(据Windley et al.,2002

    Figure 1. 

    图 2  阿拉尔地区地质简图

    Figure 2. 

    图 3  伟晶岩脉野外宏观照片

    Figure 3. 

    图 4  伟晶岩脉显微岩相照片

    Figure 4. 

    图 5  伟晶岩脉锆石阴极发光图像及年龄值

    Figure 5. 

    图 6  伟晶岩脉锆石U–Pb年龄谐和图(a)和加权平均图(b)

    Figure 6. 

    图 7  SiO2–K2O图(据Peccerillo et al.,1976

    Figure 7. 

    图 8  A/CNK–A/NK图(据Rickwood,1989

    Figure 8. 

    图 9  球粒陨石标准稀土配分图(标准化值据Taylor et al.,1985

    Figure 9. 

    图 10  原始地幔标准化蛛网图(标准化值据Sun et al.,1989

    Figure 10. 

    表 1  含绿柱石伟晶岩脉(DP01-4-3)锆石LA–ICP–MS U–Th–Pb同位素分析结果表

    Table 1.  Analysis result of LA–ICP–MS zircon U–Th–Pb of the beryl bearing pegmatite vein (DP01-4-3)


    含量Th/U同位素比值年龄(Ma)谐和
    Pb*ThU207Pb/206Pb207Pb/235U206Pb/238U208Pb/232Th207Pb/206Pb207Pb/235U206Pb/238U208Pb/232Th
    (10−6比值比值比值年龄年龄年龄年龄
    1147.5881.005177.080.020.048030.001340.211990.006050.031860.000550.009330.00089102671955202318818 96%
    2230.80134.088150.140.020.047780.001330.205330.005340.031080.000460.010360.000918767190419732081896%
    3281.72162.169703.230.020.050090.001660.223620.007240.032470.000690.016190.0012819878205620643252599%
    41607.211711.3554382.460.030.052490.004270.213520.007030.031560.001020.007720.0004430618719762006155998%
    5180.82109.456092.360.020.052370.001530.239880.009400.033070.000950.020870.0014530267218821064172996%
    6401.66329.5414053.460.020.050970.001650.226310.009410.031850.000680.015190.0013623981207820243052797%
    7508.57271.9616891.520.020.055840.001570.249980.012090.032340.001250.048050.00316456582271020589496190%
    8180.6362.576148.720.010.048370.001260.222700.008670.033140.000810.011530.0010611761204721052322197%
    9181.2878.136152.340.010.049050.001500.222880.007670.033100.000790.011900.0011715072204621052392397%
    10164.12112.775558.500.020.049050.001770.216160.008300.032190.001120.024270.0017515083199720474853597%
    11312.28127.7210286.260.010.046130.001310.208490.007340.032720.000720.010590.00094400−322192620842131992%
    12202.0985.536761.020.010.049140.001530.225500.008440.033360.000850.019070.0012115477206721253822497%
    13210.77136.646979.740.020.048620.001270.219350.005820.033050.000800.012480.0009312856201521052511995%
    14177.49228.275389.960.040.066800.003480.311750.024460.033900.002040.038230.00520831108276192151375810175%
    15105.18224.502417.340.090.078670.003430.452120.022230.042050.001320.048780.004311165863791626689638364%
    16142.4877.864704.980.020.052420.005160.231930.022870.032260.001610.019570.0042230223121219205103928496%
    17338.51178.5511435.530.020.049140.001530.215850.010200.031800.000970.013480.0009415477198920262711998%
    18207.78129.636852.780.020.046920.002010.210380.011420.032700.001300.014130.0011256911941020782842293%
    19780.17343.2421577.300.020.047670.001410.250850.008080.038330.000850.012340.000828370227724252481693%
    20589.57291.5020100.950.010.049960.001180.214270.006050.031260.000640.010380.0007719528197519842091599%
    21290.04130.879612.800.010.049510.001630.219280.008870.032300.001010.016870.0020717278201720563384198%
    22268.29101.808934.030.010.048490.001730.213080.009630.031960.000990.010720.0012812485196820362152696%
    23192.6370.956418.380.010.051010.001610.224460.008520.032090.000910.008970.0010324377206720461812199%
    24251.08103.948437.390.010.049020.001570.214600.008520.031910.000950.009870.0009615074197720361991997%
     注:Pb*=0.241×206Pb+0.221×207Pb+0.524×208Pb。
    下载: 导出CSV

    表 2  含绿柱石伟晶岩脉(DP01-4-3)主量元素(%)、稀土元素(10−6)和微量元素(10−6)分析结果表

    Table 2.  Major element (%), REE (10−6) and trace element (10−6) dataes of the beryl bearing pegmatite vein (DP01-4-3)

    元素TC03/H3TC03/H10TC03-1/H3TC03-2/H3TC05/H4TC05-1/H2TC05-1/H6
    SiO273.7775.0779.1177.4575.5776.7673.01
    TiO20.020.020.020.020.020.020.02
    Al2O314.613.8211.6512.2213.3912.9514.91
    T Fe2O31.570.740.81.030.430.861.03
    FeO0.790.340.370.420.190.340.49
    Fe2O3*0.70.360.390.560.220.480.49
    MnO0.590.030.160.040.030.110.09
    MgO0.20.20.20.20.20.20.2
    CaO0.60.40.360.10.10.440.59
    Na2O6.544.664.422.682.715.987.88
    K2O1.484.72.775.617.532.282.29
    P2O50.10.160.110.080.10.170.16
    LOI0.580.370.460.520.090.390.18
    Total99.97100.13100.0299.9100.15100.12100.31
    A/CNK1.091.031.071.151.050.990.9
    A/NK1.181.081.131.171.061.050.97
    Mg#20.0534.8733.1327.7847.9631.5427.78
    SI2.061.952.452.111.842.151.76
    La2.82.823.50.890.61.061.44
    下载: 导出CSV
    续表2
    元素TC03/H3TC03/H10TC03-1/H3TC03-2/H3TC05/H4TC05-1/H2TC05-1/H6
    Ce5.165.136.641.31.262.452.94
    Pr0.60.630.760.190.120.260.31
    Nd2.142.22.510.720.430.921.19
    Sm0.470.560.640.180.0820.30.33
    Eu0.0590.0610.0530.0610.0740.0640.12
    Gd0.440.490.420.150.0750.30.32
    Tb0.130.120.0960.0270.0150.0860.068
    Dy10.620.490.130.0740.410.35
    Ho0.250.110.0980.0260.0130.0710.055
    Er0.850.280.320.0770.0390.160.13
    Tm0.20.0510.0690.0110.0050.0250.018
    Yb1.720.350.550.0710.030.140.13
    Lu0.270.0480.0870.0120.0050.0190.018
    Y9.454.263.680.920.482.852.04
    Ti119.9119.9119.9119.9119.9119.9119.9
    K12286.23901722995.146571.362510.218927.419010.4
    P436698480349436742698
    Sr15.619.11115.721.121.221.8
    Ba30.3361813718743.691.1
    Cr6.184.373.674.634.727.45.32
    Co0.760.540.490.650.440.810.73
    Ni2.892.331.72.131.912.053.29
    Ga27.220.220.526.217.522.420.7
    Th3.662.611.640.490.30.821.42
    U1.841.013.121.590.194.043.66
    Zr83.839.62828.125.436.927.7
    Hf6.381.561.771.611.141.552.45
    Ge4.32.923.283.433.24.274.09
    B14.411.728.714.94.758.3322.5
    Sn1.81.911.72.230.481.550.76
    F757463636519266826412
    Li78.363.973.977.224.1100.945.8
    Be104.5107.1149.1342.8131.2193125
    Nb34.714.62331.88.527.415.9
    Cs18.240.824.6120.467.846.733.6
    Ta7.732.752.786.941.432.721.56
    W3.881.912.122.710.892.570.85
    Sc3.35.41.42.53.91.53.1
    Rb253.2478.2353.4604.4749.3378317.6
     注:Fe2O3*值通过实测得TFe2O3和FeO含量计算得出,计算公式为Fe2O3*=TFe2O3-FeO×1.1113。
    下载: 导出CSV

    表 3  阿拉尔岩体西部含绿柱石伟晶岩脉(DP01-4-3)锆石Hf同位素结果表

    Table 3.  Zircon Hf isotope results of the beryl bearing pegmatite vein (DP01-4-3)

    点号年龄(Ma)1s176Yb/177Hf2SE176Lu/177Hf2SE176Hf/177Hf2SEεHf(0)εHftTDM1TDM2fLu/Hf
    DP01-4-3205.994.320.000.000.0000890.0000000.2827230.000006−1.731.052.781.05732897−1.00
    DP01-4-4200.316.400.000.000.0000930.0000010.2827320.000006−1.411.052.981.06719883−1.00
    DP01-4-5209.765.940.000.000.0000660.0000000.2827290.000007−1.531.053.071.06723886−1.00
    DP01-4-6202.154.240.010.000.0002240.0000030.2827190.000007−1.871.052.541.06740907−0.99
    DP01-4-9210.205.050.000.000.0001170.0000050.2827210.000007−1.811.052.791.06735901−1.00
    DP01-4-10209.944.920.000.000.0000300.0000000.2827140.000007−2.041.052.561.06743912−1.00
    DP01-4-11204.267.020.000.000.0000380.0000000.2827300.000006−1.501.052.981.06722886−1.00
    DP01-4-13211.525.320.000.000.0000670.0000000.2827160.000006−1.991.052.651.06741909−1.00
    DP01-4-17204.6810.070.000.000.0000930.0000000.2827390.000006−1.171.053.311.07710869−1.00
    DP01-4-18201.836.070.000.000.0000580.0000010.2827220.000005−1.761.042.661.05732900−1.00
    DP01-4-21198.404.000.000.000.0000480.0000010.2827330.000007−1.381.052.971.06717882−1.00
    DP01-4-22204.936.330.010.000.0001880.0000060.2827490.000006−0.831.053.651.06698852−0.99
    DP01-4-24202.796.170.000.000.0000640.0000010.2827390.000007−1.161.053.291.06709869−1.00
    DP01-4-25203.615.660.000.000.0000830.0000000.2827180.000009−1.901.072.561.08738907−1.00
    DP01-4-26202.505.930.010.000.0004690.0000040.2827340.000010−1.331.093.051.09723881−0.99
     注:该表中的点号与表1中的点号对应。
    下载: 导出CSV
  • [1]

    陈剑锋. 阿尔泰3号脉缓倾斜部分的形成和演化[D]. 贵阳: 中国科学院地球化学研究所, 2011, 1-86

    CHEN Jianfeng. Geochemistry of the plate part in Altai No. 3 pegmatite and its formation and evolution (Dissertation for the Degree of Master of Philosophy)[D]. Guiyang: Institute of Geochemistry, Chinese Academy of Sciences. 2011, 1–86.

    [2]

    陈剑锋, 张辉, 张锦煦, 等. 新疆可可托海3号伟晶岩脉锆石U-Pb 定年、Hf 同位素特征及地质意义[J]. 中国有色金属学报, 2018, 28(9): 1832-1844

    CHEN Jianfeng, ZHANG Hui, ZHANG Jinxu, et al. Geochronology and Hf isotope of zircon for Koktokay No. 3 granitic pegmatite in Xinjiang and its geological implications[J]. The Chinese Journal of Nonferrous Metals, 2018, 28(9): 1832-1844 (in Chinese with English abstract).

    [3]

    韩宝福. 中俄阿尔泰山中生代花岗岩与稀有金属矿床的初步对比分析[J]. 岩石学报, 2008, 24(4): 655-660.

    HAN Baofu. A preliminary comparison of Mesozoic granitoids and rare metal deposits in Chinese and Russian Altai Mountains[J]. Acta Petrologica Sinica, 2008, 24(4): 655-660.

    [4]

    何国琦, 韩宝福, 岳永君, 等. 中国阿尔泰造山带的构造分区和地壳演化[M]. 北京: 地质出版社, 1990: 14−25

    HE Guoqi, HAN Baofu, YUE Yongjun, et al. Tectonic division and crustal evolution of Altay orogenic belt in China[M]. Beijing: Geological Publishing House, 1990: 14−25.

    [5]

    计文化, 王永和, 杨博, 等. 西北地区地质、资源、环境与社会经济概貌[J]. 西北地质, 2022, 55(3): 15-27 doi: 10.19751/j.cnki.61-1149/p.2022.03.002

    JI Wenhua, WANG Yonghe, YANG Bo, et al. Overview of Geology, Resources, Environment and Social Economy in Northwest China[J]. Northwestern Geology, 2022, 55(3): 15-27 (in Chinese with English abstract). doi: 10.19751/j.cnki.61-1149/p.2022.03.002

    [6]

    孔会磊, 李文渊, 任广利, 等. 伟晶岩型锂矿床研究现状及其在中国西部的找矿前景[J]. 西北地质, 2023, 56(1): 11−30.

    KONG Huilei, LI Wenyuan, REN Guangli, et al. Research Status of Pegmatite-hosted Li Deposits and Their Exploration Prospect in West China[J]. Northwestern Geology, 2023, 56(1): 11-30

    [7]

    蔺新望, 王星, 赵江林, 等. 新疆富蕴县北部金格岩体斜长花岗岩LA-ICP-MS 锆石 U-Pb同位素年龄及其地质意义[J]. 地质通报, 2019, 38(11), 1813-1824.

    LIN Xinwang, WANG Xing, ZHAO Jianglin, et al. LA-ICP-MS zircon U-Pb age of the Jinge lagiogranite in northern Fuyun of Xinjiang and its geological implications[J]. Geological Bulletin of China, 2019, 38(11): 1813-1824 (in Chinese with English abstract).

    [8]

    蔺新望, 王星, 陈光庭, 等. 新疆北部阿尔泰山东段泥盆纪岩浆活动及侵位方式的探讨[J]. 现代地质, 2020, 34(3), 514-531 doi: 10.19657/j.geoscience.1000-8527.2020.03.016

    LIN Xinwang, WANG Xing, CHEN Guangting, et al. Magmatic Activity and Emplacement in Eastern Altay[J]. Northern Xinjiang Geoscience, 2020, 34(3), 514-531 (in Chinese with English abstract). doi: 10.19657/j.geoscience.1000-8527.2020.03.016

    [9]

    蔺新望, 张亚峰, 王星, 等. 新疆阿尔泰友谊峰地区木孜他乌岩体锆石U-Pb年龄及其地质意义[J]. 西北地质, 2017, 50(3), 83-91.

    LIN Xinwang, ZHANG Yafeng, WANG Xing, et al. Zircon U-Pb Dating of the Muzitawu Plutons from the Fraendship Peak Region in Altay, Xinjiang and its Geological Significance[J]. Northwestern Geology, 2017, 50( 3): 83-91 (in Chinese with English abstract).

    [10]

    蔺新望, 张亚峰, 陈国超, 等. 阿尔泰造山带南缘岩浆混合作用: 阿克布拉克岩体岩石学、地球化学和年代学证据[J]. 地球科学, 2021: 1−26.https://kns.cnki.net/kcms/detail/42.1874.P.20211214.1625.006.html.

    LIN Xinwang, ZHANG Yafeng, CHEN Guochao, et al. LA-ICP-MS U-Pb Geochronology, Geochemistry and Petrography of Akebulake Plutons in Southern Altay Orogenic Belt: An Example for Magma Mixing[J]. Earth Science, 2021:1−26.https://kns.cnki.net/kcms/detail/42.1874.P.20211214.1625.006.html

    [11]

    刘锋, 曹峰, 张志欣, 等. 新疆可可托海近3号脉花岗岩成岩时代及地球化学特征研究[J]. 岩石学报, 2014, 30(1) : 1- 15.

    LIU Feng, CAO Feng, ZHANG Zhixin, et al. Chronology and geochemistry of the granite near the Keketuohai No. 3 pegmatite in Xinjiang[J]. Acta Petrologica Sinica, 2014, 30(1) : 1-15 (in Chinese with English abstract).

    [12]

    刘锋, 张志欣, 李强, 等. 新疆可可托海3号伟晶岩脉成岩时代的限定: 来自辉钼矿Re-Os定年的证据[J]. 矿床地质, 2012, 31(5) : 1111 -1118.

    LIU Feng, ZHANG Zhixin, LI Qiang, et al. New age constraints on Koktokay pegmatite No. 3 Vein, Altay Mountains, Xinjiang: Evidence from molybdnite Re-Os dating[J]. Mineral Deposits, 2012, 31(5) : 1111-1118 (in Chinese with English abstract).

    [13]

    刘宏. 新疆阿尔泰阿拉尔花岗岩与可可托海3号伟晶岩脉成因关系地球化学研究[D]. 昆明: 昆明理工大学, 2013: 1-62.

    LIU Hong. Geochemical characteristics of Aral granite and the evolutionary relationship between it and Keketuohai No. 3 pegmatite vein, Altay Xinjiang [D]. Kunming: Kunming University of Science and Technology, 2013 :1-62(in Chinese with English abstract).

    [14]

    刘文政. 新疆阿斯喀尔特花岗岩-伟晶岩地球化学演化及其Be-Mo成矿作用[D]. 北京: 中国科学院大学,2014, 8−48.

    LIU Wenzheng. The geochemical evolution of the Asikaerte granite-pegmatite system and its implication for themetallogenesis of Be and Mo, Xinjiang, China[D]. Beijing: University of Chinese Academy of Sciences, 2014: 1−86.

    [15]

    刘文政, 张辉, 唐虹峰, 等. 新疆阿斯喀尔特铍钼矿床中辉钼矿Re-Os定年及成因意义[J]. 地球化学, 2015, 44(2): 145-154 doi: 10.19700/j.0379-1726.2015.02.004

    LIU Wenzheng, ZHANG Hui, TANG Hongfeng, et al. Molybdenite Re-Os dating of the Asikaerte Be-Mo eposit in Xinjiang, China and its genetic implications[J]. Geochimica, 2015, 44(2): 145-154 (in Chinese with English abstract). doi: 10.19700/j.0379-1726.2015.02.004

    [16]

    彭素霞, 程建新, 丁建刚, 等. 阿尔泰阿拉尔岩体周缘花岗岩序列与伟晶岩成因关系探讨[J]. 西北地质, 2015, 48(3) : 202 -213.

    PENG Suxia, CHENG Jianxin, DING Jiangang, et al. Relationship between the Sequences of Granite around Alai Granite and Pegmatite Causes, Altay, Xinjiang[J]. Northwestern Geology, 2015, 48(3) : 202 -213 (in Chinese with English abstract).

    [17]

    秦克章, 申茂德, 唐冬梅, 等. 阿尔泰造山带伟晶岩型稀有金属矿化类型与成岩成矿时代[J]. 新疆地质, 2013, 31(增1): 1-7

    QIN Kezhang, SHEN Maode, TANG Dongmei, et al. Types, intrusive and mineralization ages of pegmatite rare-element deposits in Chinese Altay[J]. Xinjiang Geology, 2013, 31( Sup. 1): 1-7 (in Chinese with English abstract

    [18]

    任宝琴, 张辉, 唐勇, 等. 阿尔泰造山带伟晶岩年代学及其地质意义[J]. 矿物学报, 2011, 31 (3) : 587 - 596.

    REN Baoqin, ZHANG Hui, TANG Yong, et al. LA-ICPMS U-Pb zircon geochronology of the Altai pegmatites and its geological significance[J]. Acta Mineralogica Sinica, 2011, 31 ( 3 ) : 587-596 (in Chinese with English abstract)

    [19]

    王春龙, 秦克章, 唐冬梅, 等. 阿尔泰阿斯喀尔特Be-Nb-Mo矿床年代学锆石Hf同位素研究及其地质意义. 岩石学报, 2015, 31(8): 2337-2352

    WANG Chunlong, QIM Kezhang, TANG Dongmei, et al. Geochronology and Hf isotope of zircon for the Arskartor Be-Nb-Mo deposit in Altay and its geological implications[J]. Acta Petrologica Sinica, 2015, 31(8): 2337-2352 (in Chinese with English abstract).

    [20]

    王登红, 陈毓川, 徐志刚. 阿尔泰加里东期变质成因伟晶岩型白云母矿床的成矿年代证据及其意义[J]. 地质学报, 2001, 75(3): 419−425 doi: 10.3321/j.issn:0001-5717.2001.03.016

    WANG Denghong, CHEN Yuchuan, XU Zhigang. Chronological Study of Caledonian MetamorPhic Pegmatite Museovite Deposits in the Altay Mountains, Northwestern China, and its Significance[J]. Acta Geologicasinica, 2001, 75(3): 419−425 (in Chinese with English abstract). doi: 10.3321/j.issn:0001-5717.2001.03.016

    [21]

    王登红, 陈毓川, 徐志刚. 新疆阿尔泰印支期伟晶岩的成矿年代学研究[J]. 矿物岩石地球化学通报, 2003, 22(1) : 14- 17.

    WANG Denghong, CHEN Yuchuan, XU Zhigang. 40Ar /39 Ar isotope dating on muscovites from Indosinian rare metal deposits in Central Altay, northwestern China[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2003, 22( 1) : 14-17 ( in Chinese with English abstract).

    [22]

    王登红, 陈毓川, 邹天人, 等. 新疆阿尔泰阿祖拜稀有金属一宝石矿床的成矿时代—燕山期稀有金属成矿的新证据[J]. 地质论评, 2000, 46 ( 3): 307 -311.

    WANG Denghong, CHEN Yuchuan, ZOU Tianren, et al. 40Ar /39 Ar dating for the Azubai rare metal-gem deposit in Altay, Xinjiang: New evidence for Yanshanian mineralization of rare metals[J]. Geological Review, 2000, 46( 3) : 307-311 (in Chinese with English abstract)

    [23]

    王星, 蔺新望, 赵端昌, 等. 阿尔泰北部喀纳斯群碎屑岩锆石U-Pb同位素年龄及其意义[J]. 西北地质, 2016, 49(3) : 13 -27.

    WANG Xing, LIN Xinwang, ZHAO Duanchang, et al. Detrital Zircon Age of the Kanas Group in the North of Altay and Its Geological Significance[J]. Northwestern Geology, 2016, 49(3) : 13-27 (in Chinese with English abstract).

    [24]

    王星, 蔺新望, 张亚峰, 等. 新疆北部阿尔泰山西段乞格拉塔乌岩体LA-ICP-MS锆石U-Pb同位素年龄及其地质意义[J]. 地质论评, 2019, 65(2) : 370-385.

    WANG Xing, LIN Xinwang, ZHANG Yafeng, et al. LA-ICP-MS Zircon U-Pb Dating and Its Geological Implications of Intrusion from Qigelatawu Rocks in Western Altay , the Northern of Xinjiang[J]. Geological Review, 2019, 65(2) : 370 -385 (in Chinese with English abstract).

    [25]

    王 星, 蔺新望, 张亚峰, 等. 新疆北部友谊峰一带喀纳斯群碎屑锆石U-Pb年龄分布特征及对阿尔泰造山带构造演化的启示[J]. 地质通报, 2022, 41(9): 1574-1588 doi: 10.12097/j.issn.1671-2552.2022.09.007

    WANG Xing, LIN Xinwang, ZHANG Yafeng, et al. Detrital Zircon U-Pb Age Distribution Characteristics of the Kanas Group from the Friendship Peak Region in Northern Xinjiang and Its Implications for the Tectonic Evolution of the Altay Orogenic Blet[J]. Geological Bulletin of China, 2022, 41(9): 1574-1588( in Chinese with English abstract). doi: 10.12097/j.issn.1671-2552.2022.09.007

    [26]

    吴元保, 郑永飞. 锆石成因矿物学研究及其对U−Pb年龄解释的制约[J]. 科学通报, 2004, 49(16): 1589−1604 doi: 10.3321/j.issn:0023-074X.2004.16.002

    WU Yuanbao, ZHENG Yongfei. A review on the minerageny and its restriction for zircon U-Pb age [J]. Science Bulletion, 2004, 49(16): 1589-1604 (in Chinese). doi: 10.3321/j.issn:0023-074X.2004.16.002

    [27]

    杨富全, 张志欣, 刘国仁, 等. 新疆中亚造山带三叠纪矿床地质特征、时空分布及找矿方向[J]. 矿床地质, 2020, 39(2): 197–214 doi: 10.16111/j.0258-7106.2020.02.001

    YANG Fuquan, ZHANG Zhixing, LIU Guoren, et al. A review of geological characteristics and time-space distribution as well as prospecting direction of Triassic deposits in Central Asian Orogenic Belt, Xinjiang[J]. Mineral Deposits, 2020, 39(2): 197–214 (in Chinese with English abstract). doi: 10.16111/j.0258-7106.2020.02.001

    [28]

    杨富全, 张忠利, 王 蕊, 等. 新疆阿尔泰稀有金属矿地质特征及成矿作用[J]. 大地构造与成矿学, 2018, 42 (6): 1010 - 1026.

    YANG Fuquan, ZHANG Zhongli, WANG Rui, et al. Rare metal deposits in the Altay, Xinjiang: Geological characteristics and metallogenesis[J]. Geotectonica et Metallogenia, 2018, 42(6): 1010-1026 (in Chinese with English abstract).

    [29]

    张辉, 吕正航, 唐勇. 新疆阿尔泰造山带中伟晶岩型稀有金属矿床成矿规律、找矿模型及其找矿方向[J]. 矿床地质, 2019, 38(4): 792-814

    ZHANG Hui, LÜ ZhengHang and TANG Yong Metallogeny and prospecting model as well as prospecting direction of pegma⁃tite-type rare metal ore deposits in Altay orogenic belt, Xinjiang[J]. Mineral Deposits, 2019, 38(4): 792-814 (in Chinese with English abstract).

    [30]

    张辉, 唐勇, 吕正航, 等. 新疆阿尔泰成矿带哈龙-青河一带稀有金属成矿规律及找矿靶区预测研究[R]. 新疆有色金属工业集团, 2014: 1−154.

    [31]

    张亚峰, 蔺新望, 郭岐明, 等. 阿尔泰南缘可可托海地区阿拉尔花岗岩体LA ICP MS锆石U-Pb定年、岩石地球化学特征及其源区意义[J]. 地质学报, 2015, 89(2): 339-354

    ZHANG Yafeng, LIN Xinwang, GUO Qiming, et al. LA-ICP-MS Zircon U-Pb Dating and Geochemistry of Aral Granitic Plutons in Koktokay Area in the Southern Altay Margin and Their Source Significance[J]. Acta Geologica Sinica, 2015, 89(2): 339-354 (in Chinese with English abstract).

    [32]

    张亚峰, 蔺新望, 赵玉梅, 等. 新疆北部青河县阿斯喀尔特铍矿区花岗质岩石年代学及地球化学特征[J]. 矿床地质, 2017, 36(03): 643-658 doi: 10.16111/j.0258-7106.2017.03.007

    ZHANG Yafeng, LIN Xinwang, ZHAO Yumei, et al. Geochronology and geochemistry of granitoids of Ascalt beryllium deposit in Qinghe County, northern Xinjiang[J]. Mineral Deposits, 2017, 36(03): 643-658 (in Chinese with English abstract). doi: 10.16111/j.0258-7106.2017.03.007

    [33]

    张照伟, 谭文娟, 王小红, 等. 西北地质调查与战略性矿产找矿勘查[J]. 西北地质, 2022, 55(3): 44-63 doi: 10.19751/j.cnki.61-1149/p.2022.03.004

    ZHANG Zhaowei, TAN Wenjuan, WANG Xiaohong, et al. Geological Survey and Prospecting of Strategic Minerals in Northwest China[J]. Northwestern Geology, 2022, 55(3): 44-63 (in Chinese with English abstract). doi: 10.19751/j.cnki.61-1149/p.2022.03.004

    [34]

    周起凤, 秦克章, 唐冬梅, 等. 阿尔泰可可托海3 号脉伟晶岩型稀有金属矿床云母和长石的矿物学研究及意义[J]. 岩石学报, 2013, 29(9) : 3004- 3022.

    ZHOU Qengqi, QIN Kezhang, TANG Dongmei, et al. Mineralogy and significance of micas and feldspars from the Koktokay No. 3 pegmatitic rare-element deposit, Altai[J]. Acta Petrologica Sinica, 2013, 29( 9) : 3004-3022 (in Chinese with English abstract).

    [35]

    邹天人, 张相宸, 贾富义, 等. 论阿尔泰3号伟晶岩脉的成因[J]. 矿床地质, 1986 , 5(4): 35 -47.

    ZOU Tianren, ZHANG Xiangchen , JIA Fuyi, et al. The origin of No . 3 pegmatite in Altayshan , Xinjiang[J]. Mineral Deposits , 1986 , 5(4): 35-47 (in Chinese with English abstract).

    [36]

    邹天人, 李庆昌. 中国新疆稀有金属及稀土金属矿床[M]. 北京: 地质出版社, 2006: 1−264.

    ZOU Tianren , LI Qingchang. Rare-elements and REE Deposits in Xinjiang, China[M]. Beijing: Geological Publishing House, 2006: 1−264.

    [37]

    朱永峰. 新疆的印支运动与成矿[J]. 地质通报, 2007, 26(5): 510 - 519.

    ZHU Yongfeng. Indosin movement and metallogeny in Xinjiang, China [J]. Geol Bulletin China, 2007, 26(5): 510-519 (in Chinese with English abstract).

    [38]

    Annikova I Yu, Vladimirov A G, Vystavnoi S A, et al. U-Pb, 39Ar/40Ar data and Sm-Nd, Pb-Pb isotopic study of Kalguty Molybdenum-tungsten ore-magmatic system, Southern Altai[J]. Petrology, 2006, 14(1): 81-97. doi: 10.1134/S0869591106010073

    [39]

    Berzina A N , Stein H J , Zimmerman A, et al. Re-Os ages for molybdenite from porphyry Cu-Mo and greisen Mo-W deposits of southern Siberia (Russia) preserve metallogenic record[C]. Biennial SGA meeting, Institute of Geology, Novosibirsk, Russia, 2003: 231−234.

    [40]

    Che X D, Wu F Y, Wang R C, et al. In situ U-Pb isotopic dating of columbite-tantalite by LA-ICP-MS[J]. Ore Geology Reviews, 2015, 65: 979-989. doi: 10.1016/j.oregeorev.2014.07.008

    [41]

    Dobretsov N L, Berzin N A and Buslov M. Opening and tectonic evolution of the Paleo-Asian Ocean[J]. International Geology Review, 1995, 37: 335-360. doi: 10.1080/00206819509465407

    [42]

    Glorie S, De Grave J, Buslov MM, et al. Structural control on Meso-Cenozoic tectonic reactivation and denudation in the Siberian Altai: Insights from multi-method thermochronometry[J]. Tectonophysics, 2012, 544-545: 75-92 doi: 10.1016/j.tecto.2012.03.035

    [43]

    Li J Y, Xiao W J, Wang K Z, et al. Neoproterozoic−Paleozoic tectonostratigraphy, magmatic activities and tectonic evolution of eastern Xinjian, N W China[J]. In: Mao J W, Goldfarb, Seltman, et al. Tectonic Evolution and Metallogeny of the Chinese Altay and Tinanshan[M]. London: CER CAM/NHM, 2003: 31−74.

    [44]

    Lü Z H, Zhang H, Tang Y, et al. Petrogenesis and magmatic–hydrothermal evolution time limitation of Kelumute No. 112 pegmatite in Altay, Northwestern China: Evidence from zircon U-Pb and Hf isotopes[J]. Lithos, 2012, 154(1): 374-391.

    [45]

    Ludwig K R. Users Manual for Isoplot/Ex rex 2.49 A Geochronological Toolkit for Microsoft Excel[J]. Berkeley Geochronology Center: Special Publication, 2001, No. 1a2001: 1-55.

    [46]

    Peccerillo A, Taylor S R. Geochemistry of Eocene calc−alkaline volcanic rocks from the Kastamonu area, northern Turkey[J]. Contributions to Mineralogy and Petrology, 1976, 58(1): 63−81. doi: 10.1007/BF00384745

    [47]

    Potseluev A A, Babkin D I, Kotegov V I. The Kalguty complex deposit, the Gorny Altai: mineralogical and geochemical characteristics and fluid regime of ore formation[J]. Geologiya Rudnykh Mestorozhdenii, 2006, 48(5) : 439-459.

    [48]

    Rickwood P C. Boundary lines within petrologic diagrams which use oxides for major and minor element[J]. Lithos, 1989, 22: 246-263.

    [49]

    Sengör A M C, Natal’in B A and Burtman V S. Evolution of the Altaid tectonic collage and Paleozoic crustal growth in Eurasia[J]. Nature, 1993, 364(22): 299-307.

    [50]

    Sun S S, Mcdonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society, London, Special Publication, 1989, 42 : 313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    [51]

    Taylor S R, Mclenann S M. The continental crust: Its composition and evolution [M]. Blackwell: Oxford Press, 1985: 1-312.

    [52]

    Wang T, Hong D W, Jahn B M, et al. Timing, Petrogenesis, and Setting of Paleozoic Synorogenic intrusions from the Altai Mountains, Northwest China: implications for the tectonic evolution of an accret ionary Orogen[J]. Journal of Geology, 2006, 114 : 735 -751. doi: 10.1086/507617

    [53]

    Wang T, Tong Y, Jahn B M, et al. SHRIMP U-Pb zircon geochronology of the Altai No. 3 Pegmatite, NW China, and its implications for the origin and tectonic setting of the pegmatite[J]. Ore Geology Reviews, 2007, 32: 325-336. doi: 10.1016/j.oregeorev.2006.10.001

    [54]

    Wang T, Jahn B M, Kovachet V P, et al. Mesozoic anorogenic granitic magmatism in the Altai Paleozoic accretionary orogen, NW China, and its Implications for crustal architecture and growth[C]. In: Abstract SE53~ A010, AOGS 5th Annual General Meeting, Busan, Korea,2008.

    [55]

    Windley B F, Krner A, Guo J H, et al. Neoproterozoic to Paleozoic geology of the Altai orogen, NW China: new zircon age data and tectonic evolution[J]. The Journal of Geology, 2002, 110 : 719-737. doi: 10.1086/342866

    [56]

    Xiao W J, Windley B F, Badarch G, et al. Palaeozoic accretionary and convergent tectonics of the southern Altaids: implications for the growth of Central Asia[J]. Journal of the Geological Society, 2004, 161: 339-342. doi: 10.1144/0016-764903-165

    [57]

    Yakubchuk A. Architecture and mineral deposit settings of the Altaid orogenic collage: A revised model[J]. Journal of Asian Earth Sciences, 2004, 23( 5) : 761-779 doi: 10.1016/j.jseaes.2004.01.006

    [58]

    Yuan H L, Gao S, Liu X M, et al. Accurate U-−Pb age and trace element determinations of zircon by laser ablation-−inductively coupled plasma-−mass spectrometry[J]. Geostandards and Geoanalytical Research, 2004, 28(3): 353-370. doi: 10.1111/j.1751-908X.2004.tb00755.x

    [59]

    Zhu Y F, Zeng Y S, Gu L B. Geochemistry of the rare metalbearing pegmatite No. 3 vein and related granites in the Keketuohai region, Altay Mountains, Northwest China[J]. Journal of Asian Earth Sciences, 2006, 27: 61-77. doi: 10.1016/j.jseaes.2005.01.007

  • 加载中

(10)

(4)

计量
  • 文章访问数:  418
  • PDF下载数:  24
  • 施引文献:  0
出版历程
收稿日期:  2022-04-07
修回日期:  2022-10-27
刊出日期:  2023-08-20

目录