神府矿区不同含水层水力联系的水化学证据

吴亚坤, 谢臣臣, 孙魁, 范靓慧, 孙亚乔, 马雄德. 2023. 神府矿区不同含水层水力联系的水化学证据. 西北地质, 56(6): 198-208. doi: 10.12401/j.nwg.2023010
引用本文: 吴亚坤, 谢臣臣, 孙魁, 范靓慧, 孙亚乔, 马雄德. 2023. 神府矿区不同含水层水力联系的水化学证据. 西北地质, 56(6): 198-208. doi: 10.12401/j.nwg.2023010
WU Yakun, XIE Chenchen, SUN Kui, FAN Jinghui, SUN Yaqiao, MA Xiongde. 2023. Hydrochemical Evidence for Hydraulic Connection of Different Aquifers in Shenfu Mining Area. Northwestern Geology, 56(6): 198-208. doi: 10.12401/j.nwg.2023010
Citation: WU Yakun, XIE Chenchen, SUN Kui, FAN Jinghui, SUN Yaqiao, MA Xiongde. 2023. Hydrochemical Evidence for Hydraulic Connection of Different Aquifers in Shenfu Mining Area. Northwestern Geology, 56(6): 198-208. doi: 10.12401/j.nwg.2023010

神府矿区不同含水层水力联系的水化学证据

  • 基金项目: 陕西省重点研发项目“渭河陕西段综合治理的水环境效应及应对关键技术(2020ZDLSF06-04)”“黄河流域(陕西段)土壤–地下水污染管控与修复关键技术研究(2021ZDLSF05-05)联合资助
详细信息
    作者简介: 吴亚坤(1997−),女,硕士研究生,主要从事土壤地下水污染与修复方面研究。E–mail:330711176@qq.com
  • 中图分类号: P641

Hydrochemical Evidence for Hydraulic Connection of Different Aquifers in Shenfu Mining Area

  • 神府矿区是陕北能源化工基地重要组成部分,煤矿开采过程中矿水害防治是亟待破解的科学问题与生产实践问题。其间,厘定不同含水层水力联系,可直接为水害防治提供科学依据,基于此,笔者综合利用水化学、多元统计学和2H、18O、3H同位素方法分析神府矿区萨拉乌苏组、直罗组风化基岩和直罗组基岩含水层间的水力联系。结果表明,研究区各含水层pH值均为7~11,为碱性水。萨拉乌苏组与直罗组风化基岩地下水TDS均值分别为294.55 mg/L和267.72 mg/L,属于低矿化度淡水;直罗组基岩地下水TDS均值为867.35 mg/L,矿化度较高。萨拉乌苏组与直罗组风化基岩含水层主要水化学类型为HCO3–Ca型水,直罗组基岩含水层主要水化学类型为HCO3–Na型水和HCO3·SO4–Na型水。水化学成分聚类分析结果表明萨拉乌苏组与直罗组风化基岩含水层有一定关联度。氢氧同位素特征显示萨拉乌苏组和直罗组风化基岩地下水补给来源相同,直罗组基岩地下水补给来源与两者不同;萨拉乌苏组地下水年龄较小,直罗组基岩地下水年龄相对较老。综合水化学和环境同位素信息,萨拉乌苏组与直罗组风化基岩含水层间水力联系较密切,两者与直罗组基岩含水层间水力联系较差。研究成果将为研究区煤炭开采、地下水合理利用及水害防治提供科学依据。

  • 加载中
  • 图 1  研究区位置图

    Figure 1. 

    图 2  研究区地质剖面图

    Figure 2. 

    图 3  地下水采样点分布图

    Figure 3. 

    图 4  各含水层主要指标箱型图

    Figure 4. 

    图 5  水化学组分Durov图

    Figure 5. 

    图 6  含水层水样聚类分析谱系图

    Figure 6. 

    图 7  地下水δ18O–δD关系图

    Figure 7. 

    图 8  研究区大气降水氚恢复曲线图(a)和活塞流模型氚输出曲线图(b)

    Figure 8. 

    图 9  含水层间水力联系示意图

    Figure 9. 

  • [1]

    陈陆望, 许冬清, 殷晓曦, 等. 华北隐伏型煤矿区地下水化学及其控制因素分析—以宿县矿区主要突水含水层为例[J]. 煤炭学报, 2017, 42(4): 996-1004

    CHEN Luwang, XU Dongqing, YIN Xiaoxi, et al. Analysis of groundwater chemistry and its control factors in hidden coal mining areas in North China -Taking the main water inrush aquifers in Suxian mining area as an example [J]. Journal of Coal, 2017, 42 (4): 996-1004.

    [2]

    杜金龙. 潞安矿区中部煤矿充水水源水化学特征及水源识别意义[J]. 西北地质, 2022, 55(1): 208-215

    DU Jinlong. Hydrochemical characteristics of water filling source in Central Lu'an Mining Area and water source identification significance [J]. Northwestern Geology, 2022, 55(1): 208-215.

    [3]

    侯恩科, 车晓阳, 冯洁, 等. 榆神府矿区含水层富水特征及保水采煤途径[J]. 煤炭学报, 2019, 44(3): 813-820.

    HOU Enke, CHE Xiaoyang, FENG Jie, et al. Abundance of aquifers in Yushenfu coal field and the measures for water-preserved coal mining[J]. Journal of China Coal Society, 2019, 44(3): 812-819.

    [4]

    李超峰. 水力联系系数法定量评价含水层之间水力联系[J]. 吉林大学学报(地球科学版), 2021, 51(06): 1801-1810

    LI Chaofeng. Quantitative evaluation of hydraulic connection between hydraulic connection coefficient and aquifer [J]. Journal of Jilin University (Geoscience Edition): 2021, 51(06): 1801-1810.

    [5]

    刘兵, 王贺, 姜永海, 等. 基于水化学和氢氧同位素的东宫河流域不同水体转化关系研究[J]. 环境科学研究, 2020, 33(9): 1979-1990

    LIU Bing, WANG He, JIANG Yonghai, et al. Study on the transformation relationship of different water bodies in Donggong River Basin Based on hydrochemistry and hydrogen and oxygen isotopes[J]. Environmental Science Research, 2020, 33 (9): 1979-1990.

    [6]

    刘春雷, 杨会峰, 曹文庚. 利用环境同位素识别共和盆地地下水补给特征及其环境指示意义[J]. 西北地质, 2022, 55(2): 227-236

    LIU Chunlei, YANG Huifeng, CAO Wengeng. Identify Groundwater Recharge Characteristics and Environmental Implications in Gonghe Basin Using Environmental Isotopes in Gonghe Basin [J]. Northwestern Geology, 2022, 55(2): 227-236.

    [7]

    刘基, 高敏, 靳德武, 等. 榆神矿区地表水水化学特征及其影响因素分析[J]. 煤炭科学技术, 2020, 48(7): 354-361

    LIU Ji, GAO Min, JIN Dewu, et al. Analysis of hydrochemical characteristics and influencing factors of surface water in Yushen mining area [J]. Coal Science and Technology, 2020, 48 (7): 354-361.

    [8]

    刘基. 呼吉尔特矿区深埋含水层水文地球化学特征及其指示意义[J]. 干旱区资源与环境, 2021, 35(1): 154-159

    LIU Ji. Hydrogeochemical characteristics of deep aquifer in hujite mining area and its indicative significance [J]. Resources and Environment in Arid Area, 2021, 35 (1): 154-159.

    [9]

    牛兆轩, 蒋小伟, 胡云壮. 滦河三角洲地区深层地下水化学演化规律及成因分析[J]. 水文地质工程地质, 2019, 46(1): 27-34

    NIU Zhaoxuan, JIANG Xiaowei, HU Yunzhuang. Chemical evolution law and genetic analysis of deep groundwater in Luanhe River Delta [J]. Hydrogeology & Engineering Geology, 2019, 46 (1): 27-34.

    [10]

    彭涛, 龙良良, 刘凯祥, 等. 基于煤层顶板抽水试验的含水层水力联系研究[J]. 矿业安全与环保, 2019, 46(3): 66-69+73

    PENG Tao, LONG Liangliang, LIU Kaixiang, et al. Study on Aquifer Hydraulic Connection based on Pumping Test of Coal Seam Roof [J]. Mining Safety & Environmental Protection, 2019, 46(3): 66-69+73.

    [11]

    王恒纯. 同位素水文地质概论[M]. 北京: 地质出版社, 1991: 156−157

    WANG Hengchun. Introduction to isotope hydrogeology[M]. Beijing: Geology Press, 1991: 156-157.

    [12]

    王力, 卫三平, 张青峰, 等. 榆神府矿区土壤-植被-大气系统中水分的稳定性同位素特征[J]. 煤炭学报, 2010, 35(8): 1347-1353

    WANG Li, WEI Sanping, ZHANG Qingfeng, et al. Stable isotopic characteristics of water in soil vegetation atmosphere system in Yushenfu mining area [J]. Journal of Coal, 2010, 35 (8): 1347-1353.

    [13]

    王文科, 王雁林, 段磊等. 关中盆地地下水环境演化与可再生维持途径[M]. 郑州: 黄河水利出版社, 2006: 41-46

    [14]

    蔚波, 王皓, 刘峰, 等. 孟加拉国巴拉普库利亚煤矿含水层水力联系研究[J]. 煤田地质与勘探, 2021, 49(4): 205-212 doi: 10.3969/j.issn.1001-1986.2021.04.025

    WEI Bo, WANG Hao, LIU Feng, et al. Study on hydraulic connection of aquifer in balapukulia coal mine, Bangladesh [J]. Coal Field Geology and Exploration, 2021, 49 (4): 205-212. doi: 10.3969/j.issn.1001-1986.2021.04.025

    [15]

    辛会翠, 徐志敏, 肖晓. 基于岩石物性和地下水矿化度约束的三维电性模型地下水分布特征研究[J]. 成都理工大学学报(自然科学版), 2023, 50(5): 588−600+612.

    XIN Huicui, XU Zhiming, XIAO Xiao. Study on distribution characteristics of groundwater based on three dimensional electrical model constrained by rock physical properties and groundwater salinity [J], Journal of Chengdu University of Technology (Science & Technology Edition), 2023, 50(5): 588−600+612.

    [16]

    肖武, 张文凯, 吕雪娇, 等. 西部生态脆弱区矿山不同开采强度下生态系统服务时空变化—以神府矿区为例[J]. 自然资源学报, 2020, 35(1): 68-81 doi: 10.31497/zrzyxb.20200107

    XIAO Wu, ZHANG Wenkai, LÜ Xuejiao, et al. Temporal and spatial changes of ecosystem services under different mining intensities in mines in ecologically fragile areas in the West - Taking Shenfu mining area as an example [J]. Journal of Natural Resources, 2020, 35 (1): 68-81. doi: 10.31497/zrzyxb.20200107

    [17]

    许蓬, 王明. 环境同位素技术在判定矿井含水层间水力联系的应用[J]. 煤炭科学技术, 2018, 46(S1): 227-230

    XU Peng, WANG Ming. Application of environmental isotope technology in determining the hydraulic connection between mine aquifers [J]. Coal Science and Technology, 2018, 46 (S1): 227-230.

    [18]

    薛建坤. 基于同位素方法的矿井突水水源定量分析研究[J]. 煤炭工程, 2019, 51(12): 150-153

    XUE Jiankun. Quantitative Analysis of Mine Water Inrush Using Isotope Method [J]. Coal Engineering, 2019, 51(12): 150-153.

    [19]

    俞发康. 鄂尔多斯白垩系盆地北区地下水可更新能力研究[D]. 长春: 吉林大学, 2007

    YU Fakang. Study on groundwater Renewability in the north area of Ordos Cretaceous Basin [D]. Jilin: Jilin University, 2007.

    [20]

    翟晓荣, 沈书豪, 张海潮, 等. 基于MODFLOW的含水层间水力联系分析研究[J]. 水文地质工程地质, 2015, 42(6): 8-11+43

    ZHAI Xiaorong, SHEN Shuhao, ZHANG Haichao, et al. An analysis of hydraulic connection between different aquifers based on MODFLOW [J]. Hydrogeology & Engineering Geology, 2015, 42(6): 8-11+43.

    [21]

    张帆, 王广才, 张茂省, 等. 产出水识别及受污染地下水水化学和氢氧稳定同位素特征[J]. 西北地质, 2023, 56(3): 98−108.

    ZHANG Fan, WANG Guangcai, ZHANG Maosheng, et al. Identification of Produced Water and Characteristics of Hydrochemistry and Stable Hydrogen−Oxygen Isotopes of Contaminated Groundwater[J]. Northwestern Geology, 2023, 56(3): 98−108.

    [22]

    张靖坤, 刘飞, 邹嘉文, 等. 华北平原典型压采区地下水循环的氢氧同位素示踪[J]. 南水北调与水利科技(中英文), 2022, 20(2): 385-392

    ZHANG Jingkun, LIU Fei, ZOUJiawen, et al. Hydrogen and oxygen isotope tracing of groundwater circulation in typical pressure mining areas in North China Plain [J]. South to North Water Transfer and Water Conservancy Science and Technology (Chinese and English), 2022, 20(2): 385-392.

    [23]

    张小文, 何江涛, 彭聪, 等. 地下水主要组分水化学异常识别方法对比: 以柳江盆地为例[J]. 环境科学, 2017, 38(8): 3225-3234

    ZHANG Xiaowen, HE Jiangtao, PENG Cong, et al. Comparison of identification methods of hydrochemical anomalies of main components of groundwater: Taking Liujiang Basin as an example [J]. Environmental Science, 2017, 38 (8): 3225-3234.

    [24]

    赵宝峰, 吕玉广. 基于底板砂岩含水层放水试验的多含水层水力联系研究[J]. 煤矿安全, 2020, 51(12): 34-39

    ZHAO Baofeng, LV Yuguang. Study on Hydraulic Connection of Multiple Aquifers Based on Dewatering Test of Sandstone Aquifer from Floor [J]. Safety in Coal Mines, 2020, 51(12): 34-39.

    [25]

    赵振华, 吴吉春, 袁革新, 等. 塔里木盆地东北部大气降水氚浓度的恢复及应用[J]. 水文地质工程地质, 2017, 44(1): 16-22

    ZHAO Zhenhua, WU Jichun, YUAN Chuangxin, et al. Recovery and application of tritium concentration in atmospheric precipitation in the northeast of Tarim Basin [J]. Hydrogeology & Engineering Geology, 2017, 44 (1): 16-22.

    [26]

    M. Bello B, Ketchemen-tandia B, Nlend F, et al. Shallow groundwater quality evolution after 20 years of exploitation in the southern Lake Chad: hydrochemistry and stable isotopes survey in the far north of Cameroon[J]. Environmental Earth Sciences, 2019, 78(15): 474. doi: 10.1007/s12665-019-8494-7

    [27]

    Chen Y, Zhu S Y, Xiao S J. Discussion on controlling factors of hydrogeochemistry and hydraulic connections of groundwater in different mining districts[J]. Natural Hazards, 2019, 99: 689-704. doi: 10.1007/s11069-019-03767-1

    [28]

    Craig H. Isotopic Variations in Meteoric Waters. [J]. Science (New York, N. Y. ), 1961, 133(3465): 1702-1703. doi: 10.1126/science.133.3465.1702

    [29]

    Dansgaard W. Stable Isotopes in Precipitation [J]. Tellus, 1964, 16: 436-468. doi: 10.1111/j.2153-3490.1964.tb00181.x

    [30]

    Lehr C, Poschke F, Lewandowski J, et al. A novel method to evaluate the effect of a stream restoration on the spatial pattern of hydraulic connection of stream and groundwater[J]. Journal of Hydrology, 2015, 23: 394-401.

    [31]

    Li P Y, Wu J H, Tian R, et al. Geochemistry, Hydraulic Connectivity and Quality Appraisal of Multilayered Groundwater in the Hongdunzi Coal Mine, Northwest China[J]. Mine Water and the Environment, 2018, 37(2): 222-237. doi: 10.1007/s10230-017-0507-8

    [32]

    Liao D W, Pang Z H, Xiao W Y, et al. Constraining the Water Cycle Model of an Important Karstic Catchment in Southeast Tibetan Plateau Using Isotopic Tracers (2H, 18O, 3H, 222Rn)[J]. Water, 2020, 12(12): 3306. doi: 10.3390/w12123306

    [33]

    Lucas L L, Unterweger M P. Comprehensive review and critical evaluation of the half-time of tritium[J]. Journal of Research of the National Institute of Standards and Technology, 2000, 105(4): 541-549. doi: 10.6028/jres.105.043

    [34]

    Omo-irabor O O, Olobaniyi S B, Oduyemi K, et al. Surface and groundwater water quality assessment using multivariate analytical methods: A case study of the Western Niger Delta, Nigeria[J]. Physics & Chemistry of the Earth, 2008, 33(8-13): 666-673.

    [35]

    Qu S, Shi Z M, Wang G C, et al. Application of multiple approaches to investigate hydraulic connection in multiple aquifers system in coalfield[J]. Journal of Hydrology, 2020, 595(3): 1-13.

    [36]

    Su H, Kang W D, Xu Y J, et al. Assessing Groundwater Quality and Health Risks of Nitrogen Pollution in the Shenfu Mining Area of Shaanxi Province, Northwest China[J]. Exposure and Health, 2018, 10(2): 77-97. doi: 10.1007/s12403-017-0247-9

    [37]

    Tiwari A K, Singh A K, Singh A K, et al. Hydrogeochemical analysis and evaluation of surface water quality of Pratapgarh district, Uttar Pradesh, India[J]. Applied Water Science, 2017, 7(4): 1609-1623. doi: 10.1007/s13201-015-0313-z

    [38]

    Wang S X. Hydrochemical and isotopic characteristics of groundwater in the Yanqi Basin of Xinjiang Province, Northwest China[J]. Environmental Earth Sciences, 2014, 71(1): 427-440. doi: 10.1007/s12665-013-2450-8

    [39]

    Wei J C, Yu G Y S, Xie D L, et al. Drainage feasibility of a Carboniferous thin-layer limestone aquifer based on a dewatering test: Luxi coal mine, China[J]. Carbonates and Evaporites, 2020, 35(3): 80. doi: 10.1007/s13146-020-00616-2

  • 加载中

(9)

计量
  • 文章访问数:  775
  • PDF下载数:  11
  • 施引文献:  0
出版历程
收稿日期:  2022-07-18
修回日期:  2022-10-08
录用日期:  2023-02-10
刊出日期:  2023-12-20

目录