山东蓬莱石家金矿床含金黄铁矿微量元素地球化学特征及其对成矿流体的约束

冯李强, 顾雪祥, 章永梅, 张英帅, 王鹏飞, 颜宏伟, 王大伟. 2023. 山东蓬莱石家金矿床含金黄铁矿微量元素地球化学特征及其对成矿流体的约束. 西北地质, 56(5): 262-277. doi: 10.12401/j.nwg.2023030
引用本文: 冯李强, 顾雪祥, 章永梅, 张英帅, 王鹏飞, 颜宏伟, 王大伟. 2023. 山东蓬莱石家金矿床含金黄铁矿微量元素地球化学特征及其对成矿流体的约束. 西北地质, 56(5): 262-277. doi: 10.12401/j.nwg.2023030
FENG Liqiang, GU Xuexiang, ZHANG Yongmei, ZHANG Yingshuai, WANG Pengfei, YAN Hongwei, WANG Dawei. 2023. Trace Element Geochemical Characteristics of Gold−Bearing Pyrite from the Shijia Gold Deposit in Penglai, Shandong Province and Its Constraints on Ore−Forming Fluids. Northwestern Geology, 56(5): 262-277. doi: 10.12401/j.nwg.2023030
Citation: FENG Liqiang, GU Xuexiang, ZHANG Yongmei, ZHANG Yingshuai, WANG Pengfei, YAN Hongwei, WANG Dawei. 2023. Trace Element Geochemical Characteristics of Gold−Bearing Pyrite from the Shijia Gold Deposit in Penglai, Shandong Province and Its Constraints on Ore−Forming Fluids. Northwestern Geology, 56(5): 262-277. doi: 10.12401/j.nwg.2023030

山东蓬莱石家金矿床含金黄铁矿微量元素地球化学特征及其对成矿流体的约束

  • 基金项目: 国家自然科学基金重点项目“新疆西天山北缘晚古生代斑岩–矽卡岩型铜钼铁多金属成矿与岩浆–热液作用过程”(42130804),中国地质调查局地质调查专项“全国金矿勘查成果集成与战略选区”(DD20230374)联合资助。
详细信息
    作者简介: 冯李强(1991−),男,工程师,主要从事矿床学及矿床地球化学研究。E−mail:fengliqiang_yes@126.com
    通讯作者: 顾雪祥(1963−),男,教授,博士生导师,主要从事矿床学与矿床地球化学研究。E−mail:xuexiang_gu@cugb.edu.cn
  • 中图分类号: P618.51;P578.2+92

Trace Element Geochemical Characteristics of Gold−Bearing Pyrite from the Shijia Gold Deposit in Penglai, Shandong Province and Its Constraints on Ore−Forming Fluids

More Information
  • 石家金矿床是位于胶东蓬莱−栖霞成矿带北段的一个石英脉型金矿床,其成矿过程大致可以分为石英−黄铁矿−绢云母阶段(Ⅰ)、石英−多金属硫化物−金阶段(Ⅱ)和石英−方解石−萤石阶段(Ⅲ)。为探讨石家金矿床成矿流体的性质,采用电感耦合等离子质谱仪(ICP−MS)技术,对石英−多金属硫化物−金阶段与自然金共生的黄铁矿开展微量元素分析。结果表明,黄铁矿富集Cu、Pb、Zn等亲硫元素,并且主要以矿物包裹体的形式赋存于黄铁矿中。稀土元素总量较低(ΣREE值为2.55×10−6~20.94×10−6),呈现出轻稀土元素富集、重稀土元素亏损的配分模式,LREE/HREE与(La/Yb)N值分别为16.15~52.12和18.26~481.62。黄铁矿表现出显著的Eu负异常(δEu值为0.16~0.62)而无明显Ce异常(δCe值为0.89~1.33),Hf/Sm、Th/La、Nb/La值均小于1。结合前人流体包裹体的研究,认为黄铁矿是在流体不混溶的作用下,从富Cl的还原性流体中沉淀的。Y/Ho、Zr/Hf、Nb/Ta值变化范围大,暗示成矿过程中热液体系受到了干扰,可能有大气降水的加入。Co、Ni含量和Co/Ni值显示黄铁矿为热液成因,成矿流体具有变质热液的特点,可能与富集岩石圈地幔的去挥发分作用有关。

  • 加载中
  • 图 1  胶东半岛大地构造位置图(a)(据Zhao et al.,2005修改)、胶东金矿集区金矿床分布图(b)(据Deng et al.,2020修改)、 大柳行地区地质简图(c)(据Feng et al.,2020修改)

    Figure 1. 

    图 2  石家金矿区地质图(a)、 −400 m中段平面图(b)与 84号勘探线剖面图(c)

    Figure 2. 

    图 3  石家金矿床矿体与矿石特征图

    Figure 3. 

    图 4  石家金矿床围岩蚀变特征图

    Figure 4. 

    图 5  石家金矿床矿物生成顺序图

    Figure 5. 

    图 6  石家金矿床主成矿阶段黄铁矿稀土元素配分曲线(球粒陨石REE数据据Sun et al.,1989

    Figure 6. 

    图 7  石家金矿床主成矿阶段黄铁矿中国东部大陆地壳标准化微量元素蛛网图

    Figure 7. 

    图 8  石家金矿床主成矿阶段黄铁矿微量元素二元图解

    Figure 8. 

    图 9  石家金矿床主成矿阶段黄铁矿Co–Ni判别图解

    Figure 9. 

    表 1  石家金矿床主成矿阶段黄铁矿微量元素分析品采样位置统计表

    Table 1.  Location of trace element analysis sample of ore–main stage pyrite from the Shijia gold deposit

    序号样品编号矿体编号勘探线编号采样深度(m)样品类型
    1SJ-1Py32628线−595含黄铁矿石英脉
    2SJ-2Py32628线−555含黄铁矿石英脉
    3SJ-3Py32628线−515含黄铁矿石英脉
    4SJ-4Py32628线−475含黄铁矿石英脉
    5SJ-5Py32628线−435含黄铁矿石英脉
    6SJ-6Py32628线−395多金属硫化物石英脉
    7SJ-7Py32628线−355乳白色石英–多金属硫化物脉
    8SJ-8Py32632线−315乳白色石英–多金属硫化物脉
    9SJ-9Py32640线−280乳白色石英–多金属硫化物脉
    10SJ-10Py32640线−240乳白色石英硫化物脉
    11SJ-11Py32652~56线−205乳白色石英硫化物脉
    12SJ-12Py32656线−165乳白色石英硫化物脉
    13SJ-13PyM212线−745石英硫化物脉
    14SJ-14PyM24线−635石英硫化物脉
    15SJ-15PyM24线−595含黄铁矿石英脉
    16SJ-16PyM24线−555石英硫化物脉
    下载: 导出CSV

    表 2  石家金矿床主成矿阶段黄铁矿稀土元素含量(10−6)及其特征值统计表

    Table 2.  REE content (10−6) and characteristic values of the ore–main stage pyrite from the Shijia gold deposit

    样品
    编号
    LaCePrNdSmEuGdTbDyHoErTmYbLuΣREELREE/HREE(La/Yb)NδEuδCe
    SJ-1Py1.092.110.230.840.110.0050.0870.0030.0290.0040.0030.0054.5133.42156.370.161.04
    SJ-2Py1.732.950.291.090.140.0190.1020.0060.0180.0110.0020.0056.3643.19248.190.481.02
    SJ-3Py4.710.10.993.560.280.040.2850.0170.0820.0390.0030.00720.1145.44481.620.431.15
    SJ-4Py1.031.910.210.730.080.0040.0520.0150.0050.0020.0024.0452.12369.410.191.01
    SJ-5Py1.552.410.281.040.10.0060.0960.0390.0050.0060.025.5632.4955.590.180.89
    SJ-6Py1.644.330.391.470.130.0170.1270.0080.0430.0150.0030.0148.1937.9884.030.41.33
    SJ-7Py3.386.750.773.090.440.0280.320.0270.0920.0270.0030.01414.9329.92173.180.231.03
    SJ-8Py4.117.570.853.240.480.040.3420.0350.1430.0050.0420.0060.050.00316.9226.0258.960.30.99
    SJ-9Py0.641.190.120.450.070.0030.0450.0140.0070.0030.0112.5530.941.730.171.05
    SJ-10Py0.561.090.120.540.090.0120.0670.0030.0430.0090.0050.0222.5616.1518.260.481.03
    SJ-11Py4.327.340.813.20.490.0570.3670.0330.1590.0140.0610.010.0540.00616.9223.0357.380.410.96
    SJ-12Py1.052.210.261.070.180.0130.1060.010.0560.020.0030.0140.0034.9922.5453.80.291.05
    SJ-13Py15.526.73.0611.71.740.2911.170.1220.460.0320.1170.0190.060.01760.9929.54185.300.620.95
    SJ-14Py1.372.450.2681.040.1620.010.1170.0120.0460.0040.0320.0080.030.0055.5520.8732.760.220.99
    SJ-15Py4.729.11.114.40.7660.0890.4850.050.1710.0030.0280.0040.01720.9426.63199.160.450.97
    SJ-16Py1.071.860.1960.740.0810.010.0680.0140.0030.0044.0544.46191.880.411.00
     注:–表示低于检测限。
    下载: 导出CSV

    表 3  石家金矿床主成矿阶段黄铁矿微量元素含量(10−6)及其特征值统计表

    Table 3.  Trace elements content (10−6) and characteristic values of the ore−main stage pyrite from the Shijia gold deposit

    样品
    编号
    SJ-
    1Py
    SJ-
    2Py
    SJ-
    3Py
    SJ-
    4Py
    SJ-
    5Py
    SJ-
    6Py
    SJ-
    7Py
    SJ-
    8Py
    SJ-
    9Py
    SJ-
    10Py
    SJ-
    11Py
    SJ-
    12Py
    SJ-
    13Py
    SJ-
    14Py
    SJ-
    15Py
    SJ-
    16Py
    Li0.320.2780.3190.3190.5370.8010.3860.2910.3250.3960.8540.2420.550.1850.330.268
    Be0.0040.0110.0090.0020.0140.0330.0080.0060.0240.0040.0220.0030.0030.005
    Sc0.2750.230.2520.3710.0360.2930.3740.4950.4350.2680.390.280.4290.2750.2290.29
    V0.2630.1970.3030.2560.4530.370.260.7450.4790.3291.290.280.4290.4420.2170.239
    Cr0.7261.921.890.7450.0082.253.471.060.2152.160.081.551.07
    Co88.246.819.64.723.011.459.9711030.845.941.753.920919629546.4
    Ni88.743.911.95.552.962.758.3388.811.310.874.834.550.119362943.7
    Cu15713318623129319817927.912514726367.821.585.6184131
    Zn85841953163292>100003426881118557618711979123051.46321245425
    Ga0.4470.3980.9130.9141.21.10.9170.5620.4050.6570.6730.4030.4251.360.380.408
    Rb0.4160.2990.4210.3510.5850.4470.5212.420.7870.7371.430.3940.8040.4720.2720.31
    Sr3.241.014.052.144.344.553.053.352.955.064.311.270.8711.011.151.04
    Y0.0690.0740.1350.5840.1160.2030.1910.4030.0850.2170.4250.1530.7190.1940.2520.055
    Mo0.0130.2940.1580.0060.0280.0480.2290.590.430.5020.0830.0550.8320.276
    Cd5.633.5930.520.363.719.945.21.013.7913.711.260.223.936.13.49
    In0.8446.22.231.922.040.4670.1550.0390.1730.1760.0570.0210.0080.2470.2166.11
    Sb4.142.046.7510.914.919.58.524.266.9310.476.86.753.7432.86.442.06
    Cs0.0090.0070.0050.0070.0080.0170.0070.0460.0110.0150.0260.0070.0250.0090.0060.002
    Ba1.331.052.191.391.991.351.746.752.482.936.252.161.871.721.841.32
    La1.091.734.71.031.551.643.384.110.6440.5584.321.0515.51.374.721.07
    Sm0.1070.1430.2840.0810.1030.130.4360.4810.0650.0890.4920.181.740.1620.7660.081
    Ho0.0050.0140.0320.0040.003
    W0.0070.0260.0180.0050.0440.0090.0170.1280.0260.0720.0080.024
    Pb6162684661634298025189413629835117095>1000026471174737947265
    Bi1.6716.71.430.8920.1744.680.1990.4890.3090.2532.951.192.6416
    Th0.0390.1310.1220.0090.0570.0570.1321.540.2430.0461.170.6670.5171.060.0830.068
    U0.0140.1050.0330.0150.010.040.0560.3060.0560.0760.1250.5390.070.3940.0440.025
    Nb0.0090.0240.0290.020.0230.0220.0180.4470.0240.0090.0860.0130.0150.0620.0030.011
    Ta0.0030.0040.0040.0050.0060.0030.020.0050.0060.0070.0050.0050.0130.0020.004
    Zr0.3680.40.4060.3740.4070.3350.4881.890.5810.4431.331.40.5131.690.3560.359
    Hf0.0080.010.0220.0080.0120.0180.0210.1170.0170.0160.0560.0860.0220.0540.0180.012
    Sn3.7611.611.820.87.498.0610.50.5412.733.221.320.6130.172.810.5311.4
    Co/Ni0.991.071.650.851.020.531.201.242.734.250.561.564.171.020.471.06
    Hf/Sm0.070.070.080.100.120.140.050.240.260.180.110.480.010.330.020.15
    Nb/La0.010.010.010.020.010.010.010.110.040.020.020.010.000.050.000.01
    Th/La0.040.080.030.010.040.030.040.370.380.080.270.640.030.770.020.06
    Y/Ho80.6030.3622.4748.5084.00
    Zr/Hf46.0040.0018.4546.7533.9218.6123.2416.1534.1827.6923.7516.2823.3231.3019.7829.92
    Nb/Ta3.006.007.254.603.676.0022.354.801.5012.292.603.004.771.502.75
     注:−表示低于检测限。
    下载: 导出CSV
  • [1]

    毕献武, 胡瑞忠, 彭建堂, 等. 黄铁矿微量元素地球化学特征及其对成矿流体性质的指示[J]. 矿物岩石地球化学通报, 2004, 23(1): 1-4

    Bi X W, Hu R Z, Peng J T, et al. REE and HFSE geochemical characteristics of pyrites in Yao’an gold deposit: Tracing ore forming fluid signatures[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2004, 23(1): 1-4.

    [2]

    陈炳翰, 王中亮, 李海林, 等. 胶东台上金矿床成矿流体演化: 载金黄铁矿稀土元素和微量元素组成约束[J]. 岩石学报, 2014, 30(9): 2518-2532

    Chen B H, Wang Z L, Li H L, et al. Evolution of ore fluid of the Taishang gold deposit, Jiaodong: Constraints on REE and trace element component of auriferous pyrite[J]. Acta Petrologica Sinica, 2013, 30(9): 2518-2532.

    [3]

    丁振举, 刘丛强, 姚书振, 等. 东沟坝多金属矿床喷流沉积成矿特征的稀土元素地球化学示踪[J]. 岩石学报, 2003, 19(4): 792-798 doi: 10.3321/j.issn:1000-0569.2003.04.022

    Ding Z J, Liu C Q, Yao S Z, et al. The Characteristics of exhalation-sedimentary deposit of Donggouba polymetal deposit: evidence from ore’s REE composition[J]. Acta Petrological Sinica, 2003, 19(4): 792-798. doi: 10.3321/j.issn:1000-0569.2003.04.022

    [4]

    范宏瑞, 冯凯, 李兴辉, 等. 胶东-朝鲜半岛中生代金成矿作用[J]. 岩石学报, 2016, 32(10): 3225-3238.

    Fan H R, Feng K, Li X H, et al. Mesozoic gold mineralization in the Jiaodong and Korean peninsula[J]. Acta Petrological Sinica, 2016, 32(1): 3225-3258.

    [5]

    范宏瑞, 李兴辉, 左亚彬, 等. LA-(MC)-ICPMS和(Nano)SIMS硫化物微量元素和硫同位素原位分析与矿床形成的精细过程[J]. 岩石学报, 2018, 34(12): 3479-3496

    Fan H R, Li X H, Zuo Y B, et al. In-situ LA-(MC)-ICPMS and (Nano)SIMS trace elements and sulfur isotope analyses on sulfides and application to confine metallogenic process of ore deposit. Acta Petrologica Sinica, 2018, 34(12): 3479-3496.

    [6]

    冯李强. 山东蓬莱石家金矿床成因与找矿方向[D]. 北京: 中国地质大学(北京), 2022

    FENG Liqiang. Genesis and prospecting direction of the Shijia gold deposit, Penglai, Shandong Province[D]. Beijing: China University of Geosciences (Beijing), 2022.

    [7]

    高山, 骆庭川, 张本仁, 等. 中国东部地壳的结构和组成[J]. 中国科学(D辑), 1999, 29(3): 204-213

    Gao S, Luo T C, Zhang B R, et al. The structure and composition of the crust in eastern China[J]. Science in China (Series D), 1999, 29(3): 204-213.

    [8]

    顾雪祥, 刘建明, Oskar S, 等. 湖南沃溪金-锑-钨矿床成因的稀土元素地球化学证据[J]. 地球化学, 2005, 34(5): 428-437 doi: 10.3321/j.issn:0379-1726.2005.05.002

    Gu X X, Liu J M, Oskar S, et al. REE geochemical evidence for the genesis of the Woxi Au-Sb-W deposit, Hunnan Province[J]. Geochimica, 2005, 34(5): 428-437. doi: 10.3321/j.issn:0379-1726.2005.05.002

    [9]

    顾雪祥, 李葆华, 章永梅, 等. 矿床学研究方法及应用[M]. 北京: 地质出版社, 2019

    GU Xuexiang, LI Baohua, ZHANG Yongmei, et al. Methods and Applications of Ore Deposit Study[M]. Beijing: Geological Publishing House, 2019.

    [10]

    郭林楠, 黄春梅, 张良, 等. 胶东罗山金矿床成矿流体来源: 蚀变岩型和石英脉型矿石载金黄铁矿稀土和微量元素特征约束[J]. 现代地质, 2019, 33(1): 121-136

    Guo L N, Huang C M, Zhang L, et al. Source of ore-forming fluids in the Luoshan gold deposit, Jiaodong: Constrains from REE and trace element features of auriferous pyrite in the altered-rock type and auriferous quartz vein type ores[J]. Geoscience, 2019, 3(1): 121-136.

    [11]

    孔庆波. 苏鲁地体古元古代花岗质片麻岩锆石的U-Pb定年、REE和Lu-Hf同位素特征[J]. 地质通报, 2009, 28(1): 51-62 doi: 10.3969/j.issn.1671-2552.2009.01.007

    Kong Q B. Zircon U-Pb dating, REE and Lu-Hf isotopic characteristics of Paleoproterozoic orthogneiss in Sulu UHP terrane, eastern China[J]. Geological Bulletin of China, 2009, 28(1): 51-62 doi: 10.3969/j.issn.1671-2552.2009.01.007

    [12]

    李厚民, 沈远超, 毛景文, 等. 石英、黄铁矿及其包裹体的稀土元素特征——以胶东焦家式金矿为例[J]. 岩石学报, 2003, 19(2): 267-274 doi: 10.3321/j.issn:1000-0569.2003.02.008

    Li H M, Shen Y C, Mao J W, et al. REE features of quartz and pyrite and their fluids inclusions: an example of Jiaojia-type gold deposits, northwestern Jiaodong peninsula[J]. Acta Petrologica Sinica, 2003, 19(2): 267-274. doi: 10.3321/j.issn:1000-0569.2003.02.008

    [13]

    李杰, 宋明春, 梁金龙, 等. 焦家深部金矿床成矿流体来源: 来自黄铁矿微量元素及S-He-Ar同位素的约束[J]. 岩石学报, 2020, 36(1): 297-313 doi: 10.18654/1000-0569/2020.01.23

    Li J, Song M C, Liang J L, et al. Source of ore-forming fluids of the Jiaojia deeply-seated gold deposit: Evidences from trace elements and sulfur-helium-argon isotopes of pyrite[J]. Acta Petrologica Sinica, 2020, 36(1): 297-313. doi: 10.18654/1000-0569/2020.01.23

    [14]

    李秀章, 王勇军, 李衣鑫, 等. 胶东蓬莱黑岚沟金矿床黄铁矿微区地球化学特征及对成矿流体的启示[J]. 地质通报, 2022, 41(6): 1023-1038

    Li X Z, Wang Y J, Li Y X, et al. Micro-geochemical characteristic of pyrites in the Heilangou gold deposit of penglai area and its implications for ore-forming fluid, Jiaodong gold province[J]. Geological Bulletin of China, 2022, 41(6): 1023-1038.

    [15]

    刘福来, 薛怀明, 刘平华. 苏鲁超高压岩石部分熔融时间的准确限定: 来自含黑云母花岗岩中锆石U-Pb定年、REE和Lu-Hf同位素的证据. 岩石学报, 2009, 25(5): 1039-1055

    Liu F L, Xue H M, Liu P H. Partial melting time of ultrahigh-pressure metamorphic rocks in the Sulu UHPterrane: Contrained by zircon U-Pb ages, trace elements and Lu-Hf isotope compositions of biotite-bearing granite[J]. Acta Petrologica Sinica, 2009, 25(5): 1039-1055.

    [16]

    马玉波, 杜晓慧, 张增杰, 等. 青城子层状/脉状铅锌矿床稀土元素地球化学特征及地质意义[J]. 矿床地质, 2013, 32(6): 1236-1248

    Ma Y B, Du X H, Zhang Z J, et al. REE geochemical characteristics of Qingchengzi stratiform/veined Pb-Zn ore district[J]. Mineral Deposits, 2013, 32(6): 1236-1248.

    [17]

    任凤楼, 柳忠泉, 邱连贵, 等. 胶莱盆地莱阳期原型盆地恢复[J]. 沉积学报, 2008, 26(2): 221-233 doi: 10.14027/j.cnki.cjxb.2008.02.006

    Ren F L, Liu Z Q, Qiu L G, et al. The prototype character of Jiaolai basinin Cretaceous Laiyang Period[J]. Acta Sedimentologica Sinica, 2008, 26(2): 221-233. doi: 10.14027/j.cnki.cjxb.2008.02.006

    [18]

    邱志伟, 李占轲, 袁中正. 胶东三山岛金矿床黄铁矿显微结构和微量元素特征: 对金富集机制的指示[J]. 地球科学, 2022, 47(1): 290-308 doi: 10.3321/j.issn.1000-2383.2022.1.dqkx202201023

    Qiu Z W, Li Z K, Yuan Z Z. Microstructure and trace elements of pyrite from Sanshandao gold deposit in Jiaodong district: Implications for mechanism of gold enrichment[J]. Earth Science, 2022, 47(1): 290-308. doi: 10.3321/j.issn.1000-2383.2022.1.dqkx202201023

    [19]

    赛盛勋, 邱昆峰. 胶东乳山金矿床成矿过程: 周期性压力波动诱发的流体不混溶[J]. 岩石学报, 2020, 36(5): 1547-1566 doi: 10.18654/1000-0569/2020.05.14

    Sai S X, Qiu K F. Ore-forming processes of the Rushan gold deposit, Jiaodong: Fluid immiscibility induced by episodic fluid pressure fluctuations[J]. Acta Petrologica Sinica, 2020, 36(5): 1547-1566. doi: 10.18654/1000-0569/2020.05.14

    [20]

    申俊峰, 李胜荣, 马广钢, 等. 玲珑金矿黄铁矿标型特征及其大纵深变化规律与找矿意义[J]. 地学前缘, 2013, 20(3): 55-75

    Shen J F, Li S R, Ma G G, et al. Typomorphic characteristics of pyrite from the Linglong gold deposi: Its vertical variation and prospecting significance[J]. Earth Science Frontiers, 2013, 20(3): 55-75.

    [21]

    宋明春, 林少一, 杨立强, 等. 胶东金矿成矿模式[J]. 矿床地质, 2020, 39(2): 215-236 doi: 10.16111/j.0258-7106.2020.02.002

    Song M C, Lin S Y, Yang L Q, et al. Metallogenic model of Jiaodong Peninsula gold deposits[J]. Mineral Deposits, 2020, 39(2): 215-236. doi: 10.16111/j.0258-7106.2020.02.002

    [22]

    王立强, 程文斌, 罗茂澄, 等. 西藏蒙亚啊铅锌矿床金属硫化物、石英稀土元素组成特征及其成因研究[J]. 中国地质, 2012, 39(3): 740-749 doi: 10.3969/j.issn.1000-3657.2012.03.015

    Wang L Q, Cheng W B, Luo M C, et al. A study of metallic sulfides, quartz REE composition characteristics and genesis of the Mengya’a lead-zinc deposit[J]. Geology in China, 2012, 39(3): 740-749. doi: 10.3969/j.issn.1000-3657.2012.03.015

    [23]

    续海金, 宋衍茹, 叶凯. 苏鲁超高压地体部分熔融时间的厘定: 荣成花岗质片麻岩中浅色条带的锆石U-Pb定年、微量元素和Lu-Hf同位素证据[J]. 岩石学报, 2013, 29(5): 1594-1606

    Xu H J, Song Y R, Ye K, et al. Partial melting time of the Sulu UHP terrane: Constraints from zircon U-Pb age, trace element and Lu-Hf isotope composition of leucosome in Rongcheng granitic gneiss[J]. Acta Petrologica Sincia, 2013, 29(5): 1594-1606.

    [24]

    严育通, 李胜荣, 贾宝剑, 等. 中国不同成因类型金矿床的黄铁矿成分标型特征及统计分析[J]. 地学前缘, 2012, 19(4): 214-226

    Yan Y T, Li S R, Jia B J, et al. Composition typomorphic characteristics and statistic analysis of pyrite in gold deposits of different genetic types[J]. Earth Science Frontiers, 2012, 19(4): 214-226.

    [25]

    杨立强, 邓军, 王中亮, 等. 胶东中生代金成矿系统[J]. 岩石学报, 2014, 30(9): 2447-2467

    Yang L Q, Deng J, Wang Z L, et al. Mesozoic gold metallogenic system of the Jiaodong gold province, eastern China[J]. Acta Petrologica Sinica, 2014, 30(9): 2447-2467.

    [26]

    张红雨, 赵青青, 赵刚, 等. LA-ICP-MS原位微区分析黄铁矿微量元素技术方法及其在金矿床研究中的应用[J]. 矿床地质, 2022, 41(6): 1-18

    Zhang H Y, Zhao Q Q, Zhao G, et al. In situ LA-ICP-MS trace element analysis of pyrite and its application in study of Au deposit[J]. Mineral Deposits, 2022, 41(6): 1-18.

    [27]

    张英帅, 顾雪祥, 章永梅, 等. 山东蓬莱石家金矿原生晕地球化学特征及深部找矿预测[J]. 现代地质, 2021, 35(1): 258−269.

    ZHANG Yingshuai, GU Xuexiang, ZHANG Yongmei, et al. Geochemical characteristics of primary halos and deep prospecting prediction of the Shijia gold deposit in Penglai, Shandong Province[J]. Geosciences, 2021, 35(1): 258−269.

    [28]

    甄世民, 庞振山, 朱晓强, 等. 山西梨园金矿黄铁矿微量元素及S-Pb-He-Ar同位素地球化学特征及其地质意义[J]. 地学前缘, 2020, 27(2): 373-390 doi: 10.13745/j.esf.sf.2020.3.27

    Zhen S M, Pang Z S, Zhu XQ, et al. The characteristics of trace elements and S, Pb, He and Ar isotopes in the Liyuan gold deposit in Shanxi Province, and their siginificance[J]. Earth Science Frontiers, 2020, 27(2): 373-390. doi: 10.13745/j.esf.sf.2020.3.27

    [29]

    Ames L, Zhou G Z, Xiong B C. Geochronology and isotopic character of ultrahigh-pressure metamorphism with implications for collision of the Sino-Korean and Yangtze cratons, central China[J]. Tectonics, 1996, 15: 472-89.

    [30]

    Bau M. REE mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium[J]. Chemical Geology, 1991, 93: 219-230. doi: 10.1016/0009-2541(91)90115-8

    [31]

    Bau M, Dulskip. Comparative study of yttrium and rare-earth element behaviours in fluorine-rich hydrothermal fluids[J]. Contributions to Mineralogy and Petrology, 1995, 119(2): 213-223.

    [32]

    Bralia A, Sabatini G, Troja F. A revaluation of the Co/Ni ratio in pyrite as geochemical tool in ore genesis problems[J]. Mineralium Deposita, 1979, 14(3): 353-374.

    [33]

    Deng J, Yang L Q, Groves D I, et al. An integrated mineral system model for the gold deposits of the giant Jiaodong province, eastern China[J]. Earth-Science Reviews, 2020, 208: 103274. doi: 10.1016/j.earscirev.2020.103274

    [34]

    Deng J, Wang Q F, Liu X F, et al. The formation of the Jiaodong gold province[J]. Acta Geologica Sinica (English Edition), 2022, 96(6): 1801-1820. doi: 10.1111/1755-6724.15026

    [35]

    Douville E, Bienvenu P, Charlou J L. Yttrium and rare-earth elements in fluids from various deep-sea hydrothermal systems[J]. Geochimicaet Cosmochimica Acta, 1999, 63(5): 627-643. doi: 10.1016/S0016-7037(99)00024-1

    [36]

    Feng L Q, Gu X X, Zhang Y M, et al. Geology and geochronology of the Shijia gold deposit, Jiaodong Peninsula, China[J]. Ore Geology Reviews, 2020, 120: 103432. doi: 10.1016/j.oregeorev.2020.103432

    [37]

    Goldfarb R J, Santosh M. The dilemma of the Jiaodong gold deposits: Are they unique?[J] Geoscience Frontiers, 2014, 5(2): 139-153. doi: 10.1016/j.gsf.2013.11.001

    [38]

    Henderson P. Rare earth element geochemistry[M]. Amsterdam: Elseriver Science Publishers, 1984: 123-125.

    [39]

    Hu H L, Fan H R, Santosh M, et al. Ore-forming processes in the Wang’ershan gold deposit (Jiaodong, China): Insight from microtexture, mineral chemistry and sulfur isotope compositions[J]. Ore Geology Reviews, 2022, 123: 103600.

    [40]

    Jahn B M, Liu D Y, Wan Y S, et al. Archean crustal evolution of the Jiaodong peninsula, China, as revealed by zircon SHRIMP geochronology, elemental and Nd-isotope geochemistry[J]. American Journal of Science, 2008, 308: 232-269. doi: 10.2475/03.2008.03

    [41]

    Large R R, Danyushevsky L V, Hollit C, et al. Gold and trace element zonation in pyrite using a laser imaging technique: Implications for the timing of gold in orogenic and Carlin-style sediment hosted deposits[J]. Economic Geology, 2009, 104(5): 635-668. doi: 10.2113/gsecongeo.104.5.635

    [42]

    Li L, Santosh M, Li S R. The ‘Jiaodong type’ gold deposits: Characteristics, origin and prospecting[J]. Ore Geology Reviews, 2015, 65: 589-611. doi: 10.1016/j.oregeorev.2014.06.021

    [43]

    Mao G Z, Hua R M, Gao J F, et al. Existing forms of REE in gold-bearing pyrite of the Jinshan gold deposit, Jiangxi Province, China[J]. Journal of Rare Earths, 2009, 27(6): 1079-1087. doi: 10.1016/S1002-0721(08)60392-0

    [44]

    Mao J W, Wang Y T, Li H M, et al. The relationship of mantle-derived fluids to gold metallogenesis in the Jiaodong Peninsula: evidence from D-O-C-S isotope systematics. Ore Geology Reviews, 2008, 33: 361-381.

    [45]

    Mills R A, Elderfield H. Rare earth element geochemistry of hydrothermal deposits from the active TAG Mound, 26°N Mid-Atlantic Ridge.[J] Geochimica et Cosmochimica Acta, 1995, 59(17): 3511-3524.

    [46]

    Oreskes N, Einaodi MT. Origin of rare earth element-enriched hematite breccias at the Olympic Dam Cu-U-Au-Ag deposit, Roxby Downs, South Australia[J]. Economic Geology, 1990, 85: 1-28. doi: 10.2113/gsecongeo.85.1.1

    [47]

    Tang J, Zheng Y F, Wu Y B, et al. Geocheronology and geochemistry of metamorphic rocks in the Jiaobei terrane: Constraints on its tectonic affinity in the Sulu orogeny[J]. Precambrian Research, 2007, 152(1-2): 48-82. doi: 10.1016/j.precamres.2006.09.001

    [48]

    Schade J, Cornell D H, Theart H F J. Rare-earth element and isotopic evidence for the genesis of the Prieska massive sulfide deposit, South Africa[J]. Economic Geology, 1989, 84(1): 49-63. doi: 10.2113/gsecongeo.84.1.49

    [49]

    Shanon R D. Revised effective ionic radii and systematic studies of interatomic in halides and chalcogenides[J]. Acta Crystallographica, 1976, A32: 751-767.

    [50]

    Sun S S, McDonough W F. Chemical and isotopic systematic of oceanic basalts: Implications for composition and process[J]. Geological Society, London, Special Publications, 1989, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    [51]

    Sverjensky D A. Europium redox equilibria in aqueous solution[J]. Earth and Planetary Science Letters, 1984, 67: 70-78. doi: 10.1016/0012-821X(84)90039-6

    [52]

    Voute F, Hagemann S G, Evans N J, et al. Sulfur isotopes, trace element, and textural analyses of pyrite, arsenopyrite and base metal sulfides associated with gold mineralization in the Pataz-Parcoy district, Peru: implication for paragenesis, fluid source, and gold deposition mechanisms[J]. Mineralium Deposita, 2019, 54: 1077-1100. doi: 10.1007/s00126-018-0857-6

    [53]

    Wang H, Lan T G, Fan H R, et al. Fluid origin and critical ore-forming processes for the giant gold mineralization in the Jiaodong Peninsula, China: Constraints from in situ elemental and oxygen isotopic compositions of quartz and LA-ICP-MS analysis of fluid inclusions[J]. Chemical Geology, 2022, 608: 121027. doi: 10.1016/j.chemgeo.2022.121027

    [54]

    Yang K F, Fan H R, Santosh M, et al. Reactivation of the Archean lower crust: Implications for zircon geochronology, elemental and Sr-Nd-Hf isotopic geochemistry of late Mesozoic granitoids from northwestern Jiaodong Terrane, the North China Craton[J]. Lithos, 2012: 146-147: 112-127. doi: 10.1016/j.lithos.2012.04.035

    [55]

    Yang Q Y, Santosh M, Shen J F, et al. Juvenile vs. recycled crust in NE China: Zircon U-Pb geochronology, Hf isotope and an integrated model for Mesozoic gold mineralization in the Jiaodong Peninsula[J]. Gondwana Research, 2014, 25(4): 1445-1468. doi: 10.1016/j.gr.2013.06.003

    [56]

    Yaxley G M, Green D H, Kamenetsky V. Carbonatite metasomatism in the southeastern Australian lithosphere[J]. Journal of Petrology, 1998, 39: 1917-1930. doi: 10.1093/petroj/39.11-12.1917

    [57]

    Zhao G C, Sun M, Wilde S A, et al. Late Archean to Paleoproterozoic evolution of the North China Craton: Key issues revisited[J]. Precambrian Research, 2005, 136(2): 177-202. doi: 10.1016/j.precamres.2004.10.002

    [58]

    Zhao K D, Jiang S Y. Rare-earth element and yttrium analyses of sulfides from the Dachang Sn-polymetallie ore field, Guangxi Province, China: Implication for ore genesis[J]. Geochemical Journal, 2007, 41(2): 121-134. doi: 10.2343/geochemj.41.121

  • 加载中

(9)

(3)

计量
  • 文章访问数:  1248
  • PDF下载数:  157
  • 施引文献:  0
出版历程
收稿日期:  2022-12-24
修回日期:  2023-02-23
录用日期:  2023-02-27
刊出日期:  2023-10-20

目录