Petrogenesis and Tectonic Implications of Late Ordovician Alkaline Gabbro in the South Altyn Orogenic Belt
-
摘要:
笔者以阿尔金造山带南缘出露的碱性辉长岩为研究对象,在详细的野外地质调查基础上,通岩相学、锆石U−Pb定年和全岩地球化学分析,确定其成因环境和源区性质,来探讨阿尔金造山带在该时期的构造演化过程。辉长岩锆石U−Pb测试结果显示其206Pb/238U加权平均年龄为(448.1±3.3)Ma,代表了晚奥陶世的侵位时代。全岩地球化学分析结果表明,辉长岩样品的SiO2含量为42.40%~44.21%,全碱含量为3.56%~3.66%,且富Na、贫K,里特曼指数(σ)和碱度率(AR)分别为11~33和1.33~1.44,为典型的富Na碱质辉长岩。稀土元素配分图和微量元素蛛网图显示辉长岩样品富集轻稀土元素和大离子亲石元素(如Sr、Sc),而亏损高场强元素(如Zr和Hf),且Nb、Th元素变化较大,结合构造环境判别图解以及区域地质最新研究成果,推测大洋俯冲板片流体交代了形成于后碰撞构造环境的碱性辉长岩岩浆源区,随后该碱性岩浆在上升侵位过程中遭受了一定程度的地壳混染作用。碱性辉长岩的发现进一步证明阿尔金造山带在早古生代时期处于后碰撞构造环境。
Abstract:Alkaline gabbro, located at south Altyn orogeny, is used to discuss petrogenesis and mantle source by comprehensive studies of detailed field work, petrography, zircon dating and whole−rock geochemical analysis, which provide the more evidence to constrain the tectonic evolution process in the southern Altyn orogeny. Zircon U−Pb dating of the gabbro sample yielded a weighted 206Pb/238U age of (448.1±3.3) Ma, which is interpreted as intrusive time of the gabbro. Geochemical results show that the gabbro have relative low content of SiO2 (42.40%~44.21%), but high values of alkali (3.56%~3.66%), and the Rittman index and Alkalinity ratios are 11~33 and 1.33~1.44, respectively. The lines of evidence indicate that the gabbro is classified as the alkaline gabbro series. In addition, the alkaline gabbro samples in the southern Altyn orogeny are enriched in REE and LILE (Sr and Sc), but depleted in HFSE (Hf and Zr), and varied contents of Nb and Th elements. Based on the plotting results of tectonic discrimination, regional geological survey and published data, it is proposed that the mantle source of the alkaline gabbro metasomatized by the fluid of the oceanic subducted slab, and contaminated by the continental crust during ascending process. Therefore, occurrence of the alkaline gabbro not only confirms that the Altyn orogeny was under the framework of the post−collision tectonic setting during early Paleozoic era, but also enriches the mafic magmatism of the orogeny.
-
Key words:
- Altyn orogenic belt /
- Late Ordovician /
- alkaline gabbro /
- post–collision tectonic setting /
- metasomatism
-
图 1 阿尔金造山带地质构造图(a)(据Liu et al.,2002修改)和研究区地质简图(b)(据原西安地质矿产研究所,2003修改)
Figure 1.
图 5 阿尔金造山带南缘晚奥陶纪辉长岩TAS图解(a)(Middlemost,1994)和SiO2−AR图解(b)
Figure 5.
图 8 南阿尔金造山带奥陶纪碱性辉长岩构造判别图解(Agrawal et al.,2008)
Figure 8.
表 1 阿尔金造山带南缘晚奥陶纪碱性辉长岩样品锆石LA−ICP−MS U−Pb同位素分析结果表
Table 1. LA−ICP−MS zircon U−Pb analytical results of the late Ordovician alkaline gabbro in the South Altyn orogenic belt
点号 Th/U U−Th−Pb同位素比值 T(Ma) 207Pb/206Pb 207Pb/235U 206Pb/238U 208Pb/232Th 207Pb/206U 207Pb/235U 206Pb/238Th 208Pb/232Th 比率 1σ 比率 1σ 比率 1σ 比率 1σ 年龄 1σ 年龄 1σ 年龄 1σ 年龄 1σ 01 0.16 0.05669 0.00197 0.63749 0.01513 0.08154 0.00138 0.03734 0.00084 479 76 501 9 505 8 741 16 02 0.85 0.05644 0.00173 0.55733 0.00979 0.0716 0.00117 0.02256 0.00032 469 67 450 6 446 7 451 6 03 0.50 0.05885 0.00187 0.58902 0.01145 0.07257 0.0012 0.02722 0.00041 562 68 470 7 452 7 543 8 04 0.37 0.05718 0.00176 0.56604 0.01001 0.07178 0.00118 0.02294 0.00033 498 67 456 6 447 7 458 7 05 1.57 0.05606 0.00174 0.55658 0.01017 0.07199 0.00118 0.02329 0.00033 454 68 449 7 448 7 465 6 06 1.52 0.05819 0.00176 0.57425 0.00983 0.07155 0.00117 0.0227 0.00031 536 66 461 6 446 7 454 6 07 0.68 0.05627 0.00173 0.55923 0.00996 0.07206 0.00119 0.02648 0.00038 462 67 451 6 449 7 528 7 08 0.61 0.05614 0.00181 0.5583 0.01133 0.07211 0.0012 0.02572 0.00038 458 70 450 7 449 7 513 8 09 2.08 0.05578 0.00167 0.55579 0.00928 0.07224 0.00118 0.0219 0.0003 444 65 449 6 450 7 438 6 10 0.27 0.05808 0.00188 0.57686 0.01185 0.07201 0.0012 0.02544 0.00042 532 70 462 8 448 7 508 8 11 1.11 0.05623 0.0017 0.55928 0.00959 0.07212 0.00119 0.02032 0.00028 461 66 451 6 449 7 407 6 12 0.19 0.05565 0.00186 0.55194 0.0122 0.07191 0.00121 0.02473 0.00049 438 73 446 8 448 7 494 10 13 0.11 0.05525 0.00175 0.55171 0.01094 0.0724 0.00121 0.02824 0.00057 422 69 446 7 451 7 563 11 14 0.25 0.05618 0.002 0.5615 0.01423 0.07247 0.00125 0.02198 0.00043 459 77 453 9 451 7 439 9 15 0.64 0.05505 0.00171 0.54608 0.01021 0.07193 0.0012 0.02253 0.00033 414 67 442 7 448 7 450 7 16 0.30 0.07232 0.00224 0.61865 0.01148 0.06203 0.00103 0.0205 0.00033 995 61 489 7 388 6 410 6 17 0.61 0.06174 0.00192 0.60486 0.01139 0.07104 0.00119 0.02151 0.00032 665 65 480 7 442 7 430 6 18 0.97 0.05556 0.00167 0.55195 0.00945 0.07204 0.00119 0.02317 0.00032 435 65 446 6 448 7 463 6 19 0.29 0.05498 0.00172 0.54429 0.01057 0.0718 0.0012 0.02221 0.00036 411 68 441 7 447 7 444 7 20 0.69 0.05734 0.00185 0.56985 0.01184 0.07207 0.00122 0.02352 0.00036 504 70 458 8 449 7 470 7 表 2 阿尔金造山带南缘晚奥陶纪碱性辉长岩样品主量元素(%)和微量元素(10−6) 地球化学分析结果表
Table 2. Major (%) and trace (10−6) elements geochemical data of the late Ordovician alkaline gabbro in the South Altyn orogenic belt
样品号 D6060 D6061 D6062 D6063 样品号 D6060 D6061 D6062 D6063 SiO2 44.04 42.4 43.4 44.21 Ho 1.13 1.02 1.06 1.07 TiO2 2.75 2.88 2.69 2.84 Er 2.57 2.34 2.4 2.47 Al2O3 15.81 15.72 15.88 15.8 Tm 0.45 0.39 0.41 0.42 Fe2O3 5.3 5.53 5.6 5.46 Yb 2.14 2.06 2.08 2.09 FeO 7.95 8.23 8.05 7.99 Lu 0.35 0.27 0.31 0.32 MnO 0.12 0.12 0.12 0.12 Y 27.3 26.8 27.88 27.63 MgO 7.7 8.28 8.09 7.9 Sr 714.2 683.1 696.34 700.02 CaO 9.04 9.81 9.78 9.46 Ba 394.7 428.7 400.3 400.2 Na2O 2.18 2.02 2.23 2.16 Rb 40.2 36.7 38.9 38.4 K2O 1.38 1.57 1.43 1.49 Th 5.89 2.95 3.33 4.27 P2O5 0.22 0.22 0.22 0.22 Pb 19.9 17.6 18.04 19.03 烧失量 1.88 1.33 1.44 1.39 U 1.07 0.78 0.9 0.92 总量 98.37 98.11 98.93 99.04 Zr 89.8 82.7 88.6 85.2 La 19.7 21.8 20.4 21.5 Nb 49.9 11.3 22.59 36.78 Ce 47.3 48.1 48.2 47.9 Ta 2.17 2.19 2.19 2.18 Pr 7.17 6.35 6.65 6.92 Hf 2.3 2.22 2.3 2.29 Nd 32 30.6 31.3 31.7 δEu 0.92 0.94 0.92 0.93 Sm 7.81 7.22 7.65 7.48 δCe 0.96 0.97 0.99 0.94 Eu 2.19 2.14 2.16 2.17 ∑REE 162.77 161.27 162.77 164.31 Gd 6.48 6.45 6.45 6.47 (La/Yb)N 6.21 7.13 6.62 6.93 Tb 0.99 1.02 1 1.01 (La/Sm)N 1.59 1.9 1.68 1.81 Dy 5.19 4.71 4.8 5.21 (Gd/Yb)N 2.44 2.53 2.5 2.5 -
[1] 毕政家, 曾忠诚, 张昆昆, 等. 阿尔金南缘帕夏拉依档沟斜长角闪岩年代学、地球化学及其构造意义[J]. 中国地质, 2016, 43(4): 1149−1164
BI Zhengjia, ZENG Zhongcheng, ZHANG Kunkun, et al. Geochronology, geochemical characteristics and tectonic implications of the amphibolite from Paxialayidang area on the southern margin of Altun terrain[J]. Geology in China, 2016, 43(4): 1149−1164.
[2] 曹玉亭, 刘良, 王超, 等. 阿尔金南缘塔特勒克布拉克花岗岩的地球化学特征、锆石U−Pb定年及Hf同位素组成[J]. 岩石学报, 2010, 26(11): 3259−3271
CAO Yuting, LIU Liang, WANG Chao, et al. Geochemical, zircon U−Pb dating and Hf isotope compositions studies for Tatelekebulake granite in South Altyn Tagh[J]. Acta Petrologica Sinica, 2010, 26(11): 3259−3271.
[3] 董洪凯, 郭金城, 陈海燕, 等. 新疆阿尔金地区长沙沟一带奥陶纪侵入岩及其演化特征[J]. 西北地质, 2014, 47(4): : 73−87
DONG Hongkai, GUO Jincheng, CHEN Hhaiyan, et al. Evolution characteristics of Ordovician intrusive rock in Changshagou of Altun Region[J]. Northwestern Geology, 2014, 47(4): 73−87.
[4] 何国琦, 李茂松, 刘德权, 等. 中国新疆古生代地壳演化及成矿[M]. 乌鲁木齐: 新疆人民出版社, 1994: 43−47.
HE Guoqi, LI Maosong, LIU Dequan, et al. Paleozoic crustal evolution and mineralization in Xinjiang, China[M]. Urumqi: Xinjiang People's Publishing House, 1994: 43−47.
[5] 计文化, 李荣社, 陈奋宁, 等. 中国西北地区南华纪—古生代构造重建及关键问题讨论[J]. 地质力学学报, 2020, 26(5): 634−655
JI Wenhua, LI Rongshe, CHEN Fengning, et al. Tectonic reconstruction of northwest China in the Nanhua−Paleozoic and discussions on key issues[J]. Journal of Geomechanics, 2020, 26(5): 634−655.
[6] 蒋幸福, 彭松柏, 韩庆森. 扬子克拉通黄陵背斜南部~860Ma岩墙的成因及地质意义[J]. 地球科学, 2021, 46(6): 2117−2132
JIANG Xingfu, PENG Songbai, HAN Qinsen. Petrogenesis and geological significance of ca. 860 Ma dikes in southern Huangling anticline, Yangtze craton[J]. Earth Science, 2021, 46(6): 2117−2132.
[7] 康磊, 刘良, 曹玉亭, 等. 阿尔金南缘塔特勒克布拉克复式花岗质岩体东段片麻状花岗岩的地球化学特征、锆石U−Pb定年及其地质意义[J]. 岩石学报, 2013, 29(9): 3039−3048
KANG Lei, LIU Liang, CAO Yuting, et al. Geochemistry, zircon U−Pb age and its geological significance of the gneissic granite from the eastern segment of the Tatelekebulake composite granite in the south Altyn Tagh[J]. Acta Petrologica Sinica, 2013, 29(9): 3039−3048.
[8] 康磊, 校培喜, 高晓峰. 阿尔金南缘早古生代岩浆作用及碰撞造山过程[J]. 地质论评, 2015, 61(S1): 661−662.
KANG Lei, XIAO Peixi, GAO Xiaofeng. Early Paleozoic magmatism and collisional orogenesis of the southern margin of Altun orogen[J]. Geological Review, 2015, 61(S1): 661−662.
[9] 李琦, 曾忠诚, 陈宁, 等. 阿尔金南缘新元古代盖里克片麻岩年代学、地球化学特征及其构造意义[J]. 现代地质, 2015, 29(6): 1271−1283
LI Qi, ZENG Zhongcheng, CHEN Ning, et al. Zircon U−Pb ages, geochemical characteristics and tectonic implications of neoproterozoic gailike gneiss in the South Altyn Tagh[J]. Geoscience, 2015, 29(6): 1271−1283.
[10] 李琦, 曾忠诚, 陈宁, 等. 阿尔金造山带青白口纪亚干布阳片麻岩年龄、地球化学特征及其地质意义[J]. 地质通报, 2018, 37(4): 642−654
LI Qi, ZENG Zhongcheng, CHEN Ning, et al. Zircon U−Pb ages, geochemical characteristics and geological significance of Yaganbuyang gneiss in Qingbaikou period along the Altun orogenic belt[J]. Geological Bulletin of China, 2018, 37(4): 642−654.
[11] 刘良, 车自成, 王焰, 等. 阿尔金茫崖地区早古生代蛇绿岩的Sm−Nd等时线年龄证据[J]. 科学通报, 1998, 43(8): 880−883.
LIU Liang, CHE Zicheng, WANG Yan, et al. The evidence of Sm−Nd isochron age for the early Paleozoic ophiolite in Mangya area, Altun Mountains[J]. Chinese Science Bulletin, 1998, 43(9): 754−756.
[12] 刘良, 康磊, 曹玉亭, 等. 南阿尔金早古生代俯冲碰撞过程中的花岗质岩浆作用[J]. 中国科学: 地球科学, 2015, 45(8): 1126−1137
LIU Liang, KANG Lei, CAO Yuting, et al. Early Paleozoic granitic magmatism related to the processes from subduction to collision in South Altyn, NW China[J]. Science China: Earth Sciences, 2015, 45(8): 1126−1137.
[13] 马中平, 李向民, 孙吉明, 等. 阿尔金山南缘长沙沟镁铁−超镁铁质层状杂岩体的发现与地质意义—岩石学和地球化学初步研究[J]. 岩石学报, 2009, 25(4): 793−804
MA Zhongping, LI Xiangmin, SUN Jiming, et al. Discovery of layered mafic−ultramafic intrusion in Changshagou, Altyn Tagh, and its geological implication: A pilot study on its petrological and geochemical characteristics[J]. Acta Petrologica Sinica, 2009, 25(4): 793−804.
[14] 马中平, 李向民, 徐学义, 等. 南阿尔金山清水泉镁铁−超镁铁质侵入体LA−ICP−MS锆石U−Pb同位素定年及其意义[J]. 中国地质, 2011, 38(4): 1071−1078
MA Zhongping, LI Xiangmin, XU Xueyi, et al. Zircon LA−ICP−MS U−Pb isotopic dating for Qingshuiquan layered mafic−ultramafic intrusion southern Altun orogen, in northwestern China and its implication[J]. Geology in China, 2011, 38(4): 1071−1078.
[15] 孙吉明, 马中平, 唐卓, 等. 阿尔金南缘鱼目泉岩浆混合花岗岩 LA−ICP−MS 测年与构造意义[J]. 地质学报, 2012, 86(2): 247−257
SUN Jiming, MA Zhongping, TANG Zhuo, et al. LA−ICP−MS zircon dating of the Yumuquan magma mixing granite in the southern Altyn Tagh and its tectonic significance[J]. Acta Geologica Sinica, 2012, 86(2): 247−257.
[16] 王联魁, 夏斌, 张玉泉, 等. 研究“钾质和钠质两个地幔富碱岩浆体系”的刍议[J]. 高校地质学报, 2003, 9(4): 545−555.
WANG Liankui, XIA Bin, ZHANG Yuquan, et al. A humble opinion on the “potassic and sodic two mantle alkali-rich magma systems” [J]. Geological Journal of China Universities, 2003, 9(4): 545-555.
[17] 王焰, 刘良, 车自成, 等. 阿尔金茫崖地区早古生代蛇绿岩的地球化学特征[J]. 地质论评, 1999, 45(增刊): 1010−1014
WANG Yan, LIU Liang, CHE Zicheng, et al. Geochemical characteristics of early Paleozoic ophiolite in Mangnai area, Altun mountains[J]. Geological Review, 1999, 45(Sup. ): 1010−1014.
[18] 吴才来, 杨经绥, 姚尚志, 等. 北阿尔金巴什考供盆地南缘花岗杂岩体特征及锆石SHRIMP定年[J]. 岩石学报, 2005, 21(3): 846−858
WU Cailai, YANG Jingsui, YAO Shangzhi, et al. Characteristics of the granitoid complex and its zircon SHRIMP dating at the south margin of the Bashikaogong basin, north Altun, NW China[J]. Acta Petrologica Sinica, 2005, 21(3): 846−858.
[19] 吴元保, 郑永飞. 锆石成因矿物学研究及其对U−Pb年龄解释的制约[J]. 科学通报, 2004, 49(16): 1589−1604
WU Yuanbao, ZHENG Yongfei. Genesis of zircon and its constraints on interpretation of U–Pb age[J]. China Science Bull. 2004, 49(16): 1589−1604.
[20] 原西安地质矿产研究所. 新疆1: 25万苏吾什杰幅区域地质调查报告[R]. 原西安地质矿产研究所, 2003.
[21] 夏林圻, 李向民, 余吉远, 等. 祁连山新元古代中—晚期至早古生代火山作用与构造演化[J]. 中国地质, 2016, 43(4): 1087−1138
XIA Linqi, LI Xiangmin, YU Jiyuan, et al. Mid−Late Neoproterozoic to Early Paleozoic volcanism and tectonic evolution of the Qilian Mountain[J]. Geology in China, 2016, 43(4): 1087−1138.
[22] 校培喜, 高晓峰, 康磊, 等. 阿尔金−东昆仑西段成矿带地质背景研究[M]. 北京: 地质出版社, 2014
XIAO Peixi, GAO Xiaofeng, KANG Lei, et al. Study on Geological Background of Altyn Tagh—Eastern Kunlun Metallogenic Belt[M]. Beijing: Geological Publishing House, 2014.
[23] 杨文强, 刘良, 丁海波, 等. 南阿尔金迪木那里克花岗岩地球化学、锆石U−Pb年代学与Hf同位素特征及其构造地质意义[J]. 岩石学报, 2012, 28(12): 4139−4150
YANG Wenqiang, LIU Liang, DING Haibo, et al. Geochemistry, geochronology and zircon Hf isotopes of the Dimunalike granite in South Altyn Tagn and its geological significance[J]. Acta Petrologica Sinica, 2012, 28(12): 4139−4150.
[24] 曾忠诚, 洪增林, 边小卫, 等. 阿尔金造山带南缘晚奥陶世赞岐质闪长岩的发现及其地质意义[J]. 地学前缘, 2022, 29(4): 345−357
ZENG Zhongcheng, HONG Zenglin, BIAN Xiaowei, et al. The discovery of the late Ordovician sanukitoid−like diorite in south Altyn orogeny and its geological significance[J]. Earth Science Frontiers, 2022, 29(4): 345−357.
[25] 张学诚. 昆阳裂谷带火山活动及其碱性(钠质)火山岩系特征[J]. 有色金属矿产与勘查, 1995, 4(6): 326−333
ZHANG Xuecheng. Volcanic activity and characteristics of (sodic) alkalic volcanic rocks series in the Kunyang rift zone [J]. Geological Exploration for Non−Ferrous Metals, 1995, 4(6): 326−333.
[26] 赵江林, 曾忠诚, 陈宁, 等. 阿尔金南缘玉苏普阿勒克塔格北侧冰沟南组变质火山岩地球化学特征及其地质意义[J]. 地质通报, 2018, 37(4): 655−668
ZHAO Jianglin, ZENG Zhongcheng, CHEN Ning, et al. Geochemical characteristics and geological significance of Binggounan Formation meta−volcanic rocks on the northern side of Yusupualeketage at the southern edge of the Altun Mountains[J]. Geological Bulletin of China, 2018, 37(4): 655−668.
[27] 张海迪, 陈博, 吕鹏瑞, 等. 东天山黄山西角闪辉长岩成因及其地质意义: 来自锆石U−Pb年代学及地球化学的证据[J]. 西北地质, 2021, 54(3): 51−65
ZHANG Haidi, CHEN Bo, LV Pengrui, et al. The petrogenesis and geological significance of the hornblende gabbro in western Huangshan of east Tianshan: Evidence from Zircon U−Pb chronology and geochemistry[J]. Northwestern Geology, 2021, 54(3): 51−65.
[28] 郑海飞, 谢鸿森, 徐有生, 等. 钠质与钾质中酸性岩浆的成因: 玄武质岩的高压熔融实验研究[J]. 矿物学报, 1996, 16(2): 109−117
ZHANG Haifei, XIE Hongsen, XU Yousheng, et al. Origin of the sodic and potassic intermediate−acid magmas: melting experiments on basaltic rocks at high pressures [J]. Acta Mineralogica Sinica, 1996, 16(2): 109−117.
[29] 赵甫峰, 刘显凡, 楚亚婷, 等. 滇西富碱斑岩中特殊包体岩石的流体包裹体幔源不混溶特征[J]. 地球化学, 2011, 40(4): 305−323.
ZHAO Fufeng, LIU Xianfan, CHU Yating, et al. Immiscible characteristics of mantle-derived fluid inclusions in special xenoliths from Cenozoic alkalic-rich porphyry in west Yunnan[J]. Geochimica, 2011, 40(4): 305−323.
[30] 庄玉军, 彭璇, 周艳龙, 等. 柴北缘赛什腾山滩间山群晚奥陶世富铌玄武岩成因及其地质意义[J]. 西北地质, 2023, 56(1): 63−80.
ZHUANG Yujun, PENG Xuan, ZHOU Yanlong, et al. Genesis and Geological Significance of Late Ordovician Nb-rich Basalts from Tanjianshan Group in Saishitengshan Mountain, Northern Margin of Qaidam Tectonic belt[J]. Northwestern Geology, 2023, 56(1): 63−80.
[31] Agrawal S, Guevara M, Verma S P. Tectonic discrimination of basic and ultrabasic volcanic rocks through log−transformed ratios of immobile trace elements[J]. International Geology Review, 2008, 50(12): 1057–1079. doi: 10.2747/0020-6814.50.12.1057
[32] Hoek J D, Seitz H M. Continental mafic dyke swarms as tectonic indicators: an example from the Vestfold Hills, East Antarctica[J]. Precambrian Research, 1995, 75 (3−4): 121−139.
[33] Jiang X F, PENG S B, KUSKY T M, et al. Petrogenesis and Geotectonic Significance of Early−Neoproterzoic Olivine−Gabbro within the Yangtze Craton: Constrains from the Mineral Composition, U−Pb Age and Hf Isotopes of Zircons[J]. Journal of Earth Science, 2018, 29(1): 93−102. doi: 10.1007/s12583-018-0821-5
[34] Li Y S, Zhang J X, Yu S Y, et al. Origin of Early Paleozoic garnet peridotite and associated garnet pyroxenite in the south Altyn Tagh, NW China: Constraints from geochemistry, SHRIMP U–Pb zircon dating and Hf isotopes[J]. Journal of Asian Earth Sciences, 2015, 100: 60−77. doi: 10.1016/j.jseaes.2015.01.004
[35] Liu L, Sun Y, Chen Z C, et al. Discovery of ultrahigh−pressure magnesite−bearing garnet iherzolite (>3.8 GPa) in the Altyn Tagh, Northwest China[J]. Chinese Science Bulletin, 2002, 47(11): 881−886. doi: 10.1360/02tb9197
[36] Liu L, Zhang J F, Cao Y T, et al. Evidence of former stishovite in UHP eclogite from the South Altyn Tagh, western China. Earth and Planetary Science Letters[J], 2018, 484: 353–362.
[37] Marty B, Dauphas N. The nitrogen record of crust–mantle interaction and mantle convection from Archean to Present[J]. Earth & Planetary Science Letters, 2003, 206(3−4): 397−410.
[38] Middlemost E. Naming Materials in the Magma/Igneous Rock System[J]. Earth−Science Reviews, 1994, 37(3−4): 215−224.
[39] Sun S S, Mcdonough W F. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes [J]. Geological Society, London, Special Publications, 1989, 42(1): 313−345. doi: 10.1144/GSL.SP.1989.042.01.19
[40] Taylor S R, McLennan S M. The Continental Crust: Its Composition and Evolution[M]. Blackwell Scientific Publications, Oxford, 1985.
[41] Wang C, Liu L, Xiao P X, et al. Geochemical and geochronologic constraints for Paleozoic magmatism related to the orogenic collapse in the qimantagh−South Altyn region northwestern China[J]. Lithos, 2014, 202−203: 1−20.
[42] Wittlinger G, Tapponnier P, Poupinet G, et al. Tomographic evidence for localized lithospheric shear along the Altyn Tagh fault[J]. Science, 1998, 282: 74−76.
[43] Wu C L, Yang J S, Robinson P T, et al. Geochemistry, age and tectonic significance of granitic rocks in north Altun, northwest China[J]. Lithos, 2009, 113(3−4): 423−436.
[44] Yu S Y, Zhang J X, Li S Z, et al. Continuity of the North Qilian and North Altun orogenic belts of NW China: Evidence from newly discovered Palaeozoic low−Mg and high−Mg adakitic rocks[J]. Geological Magazine, 2018, 155(8): 1684−1704. doi: 10.1017/S0016756817000565
[45] Yuan H L, Wu F Y, Gao S, et al. Determination of U−Pb age and Rare Earth Element Concentrations of Zircons from Cenozoic Intrusions in Northeastern China by Laser Ablation ICP−MS[J]. Chinese Science Bulletin, 2003, 48(22): 2411−2421.