松潘−甘孜地块中西部晚三叠纪花岗岩体成因及其构造意义

王鹏, 白建科, 王雁鹤, 韩昊, 宋伊圩, 周霖, 张吉廷, 肖紫珩, 陈威. 2023. 松潘−甘孜地块中西部晚三叠纪花岗岩体成因及其构造意义. 西北地质, 56(5): 223-244. doi: 10.12401/j.nwg.2023052
引用本文: 王鹏, 白建科, 王雁鹤, 韩昊, 宋伊圩, 周霖, 张吉廷, 肖紫珩, 陈威. 2023. 松潘−甘孜地块中西部晚三叠纪花岗岩体成因及其构造意义. 西北地质, 56(5): 223-244. doi: 10.12401/j.nwg.2023052
WANG Peng, BAI Jianke, WANG Yanhe, HAN Hao, SONG Yiwei, ZHOU Lin, ZHANG Jiting, XIAO Ziheng, CHEN Wei. 2023. Petrogenesis and Tectonic Implication of Late−Triassic Granitoids in the West−Central Part of Songpan−Ganze Block. Northwestern Geology, 56(5): 223-244. doi: 10.12401/j.nwg.2023052
Citation: WANG Peng, BAI Jianke, WANG Yanhe, HAN Hao, SONG Yiwei, ZHOU Lin, ZHANG Jiting, XIAO Ziheng, CHEN Wei. 2023. Petrogenesis and Tectonic Implication of Late−Triassic Granitoids in the West−Central Part of Songpan−Ganze Block. Northwestern Geology, 56(5): 223-244. doi: 10.12401/j.nwg.2023052

松潘−甘孜地块中西部晚三叠纪花岗岩体成因及其构造意义

  • 基金项目: 中国地质调查局项目“祁连成矿带金矿资源潜力动态评价”(DD20220979)和“东昆仑成矿带金矿资源潜力动态评价”(DD20220978)联合资助。
详细信息
    作者简介: 王鹏(1992−),男,硕士,工程师,矿物学、岩石学、矿床学专业。E−mail:916459881@qq.com
    通讯作者: 白建科(1983−),男,博士,正高级工程师,主要从事沉积学、盆地分析与造山带演化等领域的科研工作。E−mail:baijianke2003@163.com
  • 中图分类号: P581;P597.3

Petrogenesis and Tectonic Implication of Late−Triassic Granitoids in the West−Central Part of Songpan−Ganze Block

More Information
  • 通过岩相学、锆石U−Pb年代学、岩石地球化学和Lu−Hf同位素等多种手段,系统对比松潘−甘孜地块巴颜喀拉山南口地区和中部达日地区的花岗质岩体岩石学和地球化学特征,拟查明其岩石成因、岩浆源区和基底属性。巴颜喀拉山南口和达日地区花岗质岩石岩浆锆石U−Pb年龄为(212.0±2.2)Ma和(213.3±1.7)Ma、(217.0±1.9)Ma和(215.4±6.4)Ma。主量、微量元素研究表明,前者属于高钾钙碱性过铝质I型花岗闪长岩,而后者属于钾玄岩和高钾钙碱性、过铝质S型石英二长岩和花岗岩。巴颜喀拉山南口和达日地区花岗质岩石微量元素特征表现均为富集Rb、Th、U等大离子亲石元素,亏损Nb、Ta等高场强元素,且具有轻微的Zr、Hf负异常,但前者Nb、Ta等元素亏损程度明显高于后者,Eu异常也更为明显。巴颜喀拉山南口和达日地区花岗质岩石均为轻稀土富集型的稀土元素配分模式,但达日地区样品轻、重稀土含量均高于巴颜喀拉山样品。锆石Hf同位素数据显示,巴颜喀拉山地区花岗质岩石εHft)值为−3.62~2.92,平均值为−0.54,锆石Hf二阶段模式年龄为1.07~1.48 Ga。结合前人研究数据,推断巴颜喀拉山和达日地区花岗质岩石源区分别为下地壳镁铁质岩石和中地壳杂砂岩。松潘甘孜地块存在新元古代基底,且其基底与扬子地块基底存在亲缘性。研究区花岗质岩石为后碰撞背景下,岩石圈拆沉诱发的不同地壳岩石部分熔融的产物。

  • 加载中
  • 图 1  松潘–甘孜地块地质构造简图(a)、巴颜喀拉山地质简图(b)与达日花岗岩类分布简图(c)(据蔡宏明,2010修改)

    Figure 1. 

    图 2  手标本照片与镜下矿物鉴定图

    Figure 2. 

    图 3  锆石U–Pb谐和图及代表性锆石颗粒阴极发光图

    Figure 3. 

    图 4  研究区花岗岩TAS图解(a)(据Middlemost,1994); A/CNK–A/NK分类图解(b)(据Richwood, 1989);SiO2–K2O判别图(c)(据Peccerillo et al.,1976); Na2O–K2O判别图(d)(据Turner et al.,1993

    Figure 4. 

    图 5  巴颜喀拉山和达日地区花岗质岩石微量元素原始地幔标准化蛛网图(a)和稀土元素球粒陨石标准化图解(b)

    Figure 5. 

    图 6  研究区花岗岩哈克图

    Figure 6. 

    图 7  达日地区花岗岩成因判别图

    Figure 7. 

    图 8  巴颜喀拉山和达日地区花岗质岩石岩浆源区判别图

    Figure 8. 

    图 9  巴颜喀拉山花岗质岩石锆石εHft)值与U–Pb年龄图解

    Figure 9. 

    表 1  巴颜喀拉山花岗闪长岩体(359)LA–ICP–MS锆石U–Pb年龄测试结果表

    Table 1.  LA–ICP–MS zircon U–Pb dating results of sample 359

    测点207Pb/235U206Pb/238U207Pb/235U206Pb/238U
    同位素比值同位素比值年龄(Ma)年龄(Ma)
    359N=25(有效点19个)
    GE010.2380.01280.032080.00049216.810.5216.810.4
    GE020.26430.01620.035270.00057238.112.9238.112.9
    GE030.22890.01240.032120.00049209.310.2209.310.2
    GE040.23270.0110.032160.00047212.49.0212.49.1
    GE050.22410.01920.034160.00061205.315.9205.315.9
    GE060.22480.01240.032510.0005205.910.2205.910.2
    GE070.22010.01340.031330.000520211.120211.2
    GE080.25530.0170.034190.00058230.913.7230.913.7
    GE090.23210.00950.033280.00046211.97.8211.97.8
    GE100.32450.01390.033540.0005285.310.6285.310.6
    GE110.22830.01560.032660.00055208.812.9208.812.9
    GE120.23210.01710.032570.0005821214.121214.1
    GE130.2280.01380.033080.00053208.611.4208.611.4
    GE140.22750.01210.033030.0005208.19.9208.19.9
    GE150.23590.01370.032850.0005221511.221511.3
    GE160.23570.01440.033530.00055214.911.8214.911.9
    GE170.23450.01770.033930.00059213.914.5213.914.5
    GE180.46620.03010.043980.00082388.620.8388.620.8
    GE190.23920.01460.033150.00054217.711.9217.711.9
    GE200.25520.02110.033090.00063230.817.0230.817.1
    GE210.22480.02110.032870.00063205.917.4205.917.5
    GE220.26020.01620.033850.00057234.913.0234.913.0
    GE230.23730.01280.033160.00051216.210.5216.210.5
    GE240.41560.01750.055830.0008352.912.5352.912.5
    GE250.2720.0170.035050.00059244.313.5244.313.5
    下载: 导出CSV

    表 2  查雀嘎玛石英二长岩体(D2409)、波不弄公玛石英二长岩体(D2615)和日查花岗岩体(D1710)LA–ICP–MS锆石U–Pb年龄测试结果表

    Table 2.  LA–ICP–MS zircon U–Pb dating results of sample D2409, D2615 and D1710

    测点207Pb/235U206Pb/238U207Pb/235U206Pb/238U
    同位素比值同位素比值年龄(Ma)年龄(Ma)
    D2409N=25(有效点16个)
    GB010.23120.01050.03270.0005211.28.7207.23.0
    GB020.22130.01260.03300.0005203.010.5209.13.1
    GB030.23660.01530.03360.0005215.612.6213.03.4
    GB040.24420.01170.03240.0005221.99.6205.33.0
    GB050.22870.01850.03300.0006209.115.3209.13.4
    GB060.22930.01370.03340.0005209.611.3212.03.3
    GB070.24050.01130.03390.0005218.89.2215.03.2
    GB080.21650.01410.03270.0005199.011.8207.13.2
    GB090.22950.01560.03410.0006209.812.9216.43.5
    GB100.24700.01810.03420.0006224.214.7216.73.6
    GB110.22810.02210.03510.0006208.618.3222.34.0
    GB120.26190.02010.03540.0006236.216.2224.23.9
    GB130.23130.03440.03550.0008211.328.3225.14.8
    GB140.28610.02520.03470.0007255.519.9219.94.3
    GB150.29210.03130.03220.0007260.224.6204.14.4
    GB160.21230.01640.03490.0006195.513.7221.03.5
    GB170.24760.02120.03530.0006224.617.2223.74.0
    GB180.26590.02830.03420.0007239.422.7217.04.5
    GB190.20330.02640.03380.0007187.922.3214.54.1
    GB200.27170.02320.03310.0007244.018.5210.14.2
    GB210.26730.02190.03340.0006240.517.6212.03.9
    GB220.10760.02820.03410.0006103.825.8216.14.0
    GB230.26600.01570.03450.0005239.512.6218.83.4
    GB240.23700.01760.03600.0006216.014.4227.83.6
    GB250.24130.01330.03350.0005219.410.9212.13.3
    D2615N=25(有效点17个)
    GC010.25920.01620.03380.0005234.113.0214.63.3
    GC020.20180.01210.03290.0005186.610.2208.93.0
    GC030.21010.01350.03250.0005193.611.3205.93.1
    GC040.28770.01640.03280.0005256.712.9207.83.3
    GC050.23000.01230.03390.0005210.210.2215.13.2
    GC060.29520.01730.03300.0005262.713.6209.13.4
    GC070.22250.02120.03370.0006204.017.6213.44.0
    GC080.26570.02680.03530.0007239.221.5223.64.3
    GC090.17770.02360.03420.0006166.120.4216.73.9
    GC100.22050.01790.03410.0006202.314.9216.03.7
    下载: 导出CSV
    续表2
    测点207Pb/235U206Pb/238U207Pb/235U206Pb/238U
    同位素比值同位素比值年龄(Ma)年龄(Ma)
    GC110.28800.02240.03310.0007257.017.7209.64.3
    GC120.06450.03410.03620.000763.532.5229.14.3
    GC130.37170.04120.03370.0009320.930.5213.35.5
    GC140.31550.02540.03540.0007278.519.6224.54.1
    GC150.32910.03280.03510.0008288.925.1222.34.9
    GC160.22510.01810.03440.0006206.215.0217.73.6
    GC170.21050.01730.03350.0006194.014.5212.53.6
    GC180.32040.02880.03560.0007282.222.1225.54.5
    GC190.24370.02080.03350.0006221.417.0212.33.6
    GC200.24910.02840.03280.0007225.923.1208.24.3
    GC210.30010.02250.03300.0006266.517.6209.23.9
    GC220.10110.02860.03370.000697.826.4213.93.9
    GC230.22720.01410.03400.0005207.911.7215.43.2
    GC240.22810.01870.03290.0005208.715.5208.43.4
    GC250.23780.01120.03330.0005216.69.2211.13.1
    D1710N=25(有效点19个)
    GD010.71070.022910.03500.00057545.113.6222.23.5
    GD020.28870.020590.03370.00058257.616.2213.83.6
    GD030.24820.015280.03390.00054225.112.4215.33.3
    GD040.23230.016680.03320.00055212.113.7210.63.4
    GD050.27600.015740.03430.00055247.412.5217.83.4
    GD060.23560.016220.03390.00056214.813.3215.53.5
    GD070.27850.023840.03290.00071249.518.9208.74.4
    GD080.27940.019280.03390.00060250.215.3215.13.7
    GD090.34400.024230.03400.00065300.218.3215.54.0
    GD100.94480.029600.03650.00060675.415.4231.53.8
    GD110.20610.028700.03510.00071190.324.1222.44.4
    GD120.27810.021800.03470.00068249.117.3220.44.2
    GD130.25650.019180.03490.00064231.815.5221.23.9
    GD140.23930.021950.03460.00066217.817.9219.54.1
    GD150.21750.017690.03330.00059199.814.7211.73.7
    GD160.26980.029210.03390.00067242.623.3215.34.2
    GD170.25090.015610.03370.00056227.312.6213.73.5
    GD180.31580.017610.03480.00059278.713.5220.83.7
    GD190.53700.027100.03730.00065436.417.9236.64.1
    GD200.21940.017170.03510.00057201.414.3222.53.6
    GD210.25540.009640.03430.00048230.97.8217.73.0
    GD220.28130.023270.03470.00070251.718.42204.3
    GD230.14340.023780.03480.00056136.121.1220.83.5
    GD240.27470.011800.03460.00050246.49.4219.43.2
    GD250.24520.012620.03510.00052222.710.3222.73.2
    下载: 导出CSV

    表 3  巴颜喀拉山和达日地区花岗质岩石主量元素(%)和微量元素数据(10 −6)结果表

    Table 3.  Major (%) and trace element contents (10−6) of granitoids in Bayankala and Dari area

    样品号巴颜喀拉山样品达日地区样品
    357358359363D2902D2610D2615D2409D2410D1710
    岩性花岗闪长岩闪长岩花岗闪长岩花岗闪长岩二长岩石英二长岩石英二长岩石英二长岩石英二长岩花岗岩
    SiO265.0959.0565.5963.3458.5865.4567.7066.3765.2873.77
    TiO20.600.820.690.731.040.730.540.540.650.17
    Al2O315.9514.6814.2614.1116.9015.0415.5614.7415.6413.69
    Fe2O30.921.580.852.611.490.910.720.490.801.93
    FeO3.374.833.794.124.243.082.182.883.100.28
    MnO0.110.140.100.0980.0990.0640.0480.0590.0730.065
    MgO1.694.402.862.873.141.791.241.191.450.11
    CaO3.365.354.114.544.923.012.602.333.030.28
    Na2O3.103.863.432.933.052.872.993.113.073.24
    K2O2.952.052.462.614.534.725.445.275.015.42
    P2O50.150.180.140.180.310.160.140.150.190.041
    LOI4.244.831.952.742.942.701.184.292.581.44
    Total101.53101.77100.23100.88101.24100.52100.34101.42100.87100.44
    K2O+Na2O6.055.915.895.547.587.598.438.388.088.66
    CaO/Na2O1.082.611.671.741.611.050.870.750.990.09
    K2O/Na2O0.951.881.391.121.491.641.821.691.631.67
    A/CNK1.411.01.181.201.171.201.181.141.181.20
    A/NK1.921.711.721.851.701.531.441.361.491.22
    Rb94.3225129120220262297306262263
    Ba880397696695901647538635747229
    Th12.821.118.429.818.728.743.732.231.928.8
    U2.955.823.071.942.92.633.374.475.324.91
    Nb15.715.618.750.530.230.526.023.927.742.3
    Ta1.531.431.761.42.312.082.182.162.054.14
    La29.9032.0034.9089.3047.8050.8084.7046.8059.6076.00
    Ce62.5075.8075.80272.00103.00114.00156.00100.00126.00142.00
    Pr7.388.678.0845.4011.9012.3016.3010.8013.6015.60
    Sr27425228031138925020216324354.5
    Nd26.4032.8029.80204.0043.2042.5054.3038.1047.0056.00
    Zr175172168170251283278226244236
    Hf4.916.754.996.688.346.794.745.015.425.08
    Sm4.916.335.4618.007.787.418.817.188.0510.20
    Eu1.361.371.322.831.821.331.291.121.350.69
    Gd4.155.374.8812.206.946.678.156.757.289.25
    Tb0.550.860.731.351.000.951.091.061.041.46
    Dy2.474.543.794.185.134.865.415.805.227.77
    Ho0.430.950.780.801.030.971.081.231.071.57
    Y13.7024.5020.8021.8026.0025.7027.8032.3027.5039.60
    Er1.172.712.222.902.852.753.083.553.024.47
    Tm0.170.440.350.340.460.430.480.610.500.73
    Yb1.092.942.342.192.932.723.094.123.154.97
    Lu0.160.460.360.330.450.400.460.630.480.76
    ∑REE56.5683.2772.83270.9299.5996.69115.04102.45105.66137.47
    (La/Sm) N6.095.066.394.966.146.869.616.527.407.45
    (La/Yb) N19.687.8110.7029.2511.7013.4019.668.1513.5710.97
    Eu/Eu0.300.230.260.190.250.190.150.160.180.07
    下载: 导出CSV
    续表3
    达日地区样品
    样品号D1604D1608D1610D1611D0114D0114360361362D2313
    岩性花岗岩花岗闪长岩花岗闪长岩二长岩花岗岩花岗岩花岗岩花岗岩石英二长岩石英二长岩
    SiO267.6865.5066.8460.8171.7971.0870.5969.0265.8965.81
    TiO20.510.760.710.940.240.280.280.330.660.66
    Al2O314.8415.8215.5716.7714.2514.5614.7415.5915.6215.34
    Fe2O30.800.991.181.410.640.510.500.560.850.71
    FeO2.093.422.934.071.641.801.831.922.983.17
    MnO0.0570.0860.0780.100.0420.0480.0490.0520.0610.070
    MgO1.121.681.592.640.540.910.921.151.391.58
    CaO2.493.162.233.431.812.302.152.572.762.81
    Na2O2.633.072.903.073.493.613.684.033.043.01
    K2O3.984.264.124.704.533.653.722.945.315.18
    P2O50.120.170.160.220.0830.0970.0950.110.190.19
    LOI5.171.542.862.741.351.742.082.651.791.91
    Total101.49100.46101.17100.90100.41100.59100.63100.92100.54100.44
    K2O+Na2O6.617.337.027.778.027.267.406.978.358.19
    CaO/Na2O0.951.030.771.120.520.640.580.640.910.93
    K2O/Na2O1.511.391.421.531.301.011.010.731.751.72
    A/CNK1.361.261.381.271.161.221.221.281.181.17
    A/NK1.721.641.691.651.341.471.461.591.451.45
    Rb187200210237187155161147301286
    Ba554663526653432572610792687634
    Th22.0019.9021.3024.4024.6013.7014.0012.435.338.7
    U3.873.343.633.052.764.282.663.205.155.57
    Nb21.227.523.732.227.821.423.221.827.930.5
    Ta2.132.432.082.922.962.022.762.272.212.79
    La36.2039.2041.5048.6037.1030.2029.2027.5071.3072.40
    Ce78.8089.6094.20106.0084.4057.7054.8047.50134.00137.00
    Pr8.569.8810.0011.909.567.196.945.8614.7015.20
    Sr131254200301171305301470219208
    Nd30.9034.8036.0042.9035.6026.0025.9020.9052.3051.90
    Zr185232225292190177173198290268
    Hf3.445.925.338.324.353.643.985.016.705.78
    Sm5.686.716.878.437.375.305.373.938.828.85
    Eu1.171.391.201.430.921.001.001.121.381.30
    Gd5.476.516.337.496.824.784.893.657.968.36
    Tb0.891.030.981.191.070.750.800.561.141.19
    Dy4.945.695.376.265.733.934.292.935.816.10
    Ho1.001.171.151.261.110.770.820.571.171.25
    Y27.6030.1029.1032.4029.2021.1022.3017.2032.2031.50
    Er2.963.243.313.623.022.082.281.523.313.50
    Tm0.490.530.540.590.470.320.350.250.530.56
    Yb3.353.433.523.773.042.062.281.693.453.65
    Lu0.510.520.550.560.460.310.340.260.530.57
    ∑REE84.9695.1294.92109.9094.8168.4070.6254.58125.30118.73
    ( La/Sm) N6.375.846.045.775.035.705.447.008.088.18
    ( La/Yb) N7.758.208.469.258.7510.529.1911.6714.8214.23
    Eu/Eu0.210.210.180.180.130.200.190.300.160.15
     注:Eu/Eu= 2×EuN/(SmN+ GdN);A/CNK= (2×Al2O3/101.96)/(CaO/56.08+2×Na2O/61.98+2×K2O/94.2)。
    下载: 导出CSV

    表 4  巴颜喀拉山地区花岗质岩石锆石Hf同位素统计表

    Table 4.  Zircon Hf isotopic data of granitoids in Bayankala

    点号176Yb/177Hf176Lu/177Hf176Hf/177Hf±2σεHf(t)±1σtDM1(Ma)tDM2(Ma)
    样号359(N=25)t=215 Ma
    10.0350930.0009920.2826630.0000250.750.8686958321207
    20.0318250.0013070.2826840.0000251.500.8884088011159
    30.0353190.00060.2826710.0000271.020.9504268231190
    40.0447790.0007960.2826740.0000251.060.8733998271187
    50.0219610.000690.2826390.000029−0.081.0136658601260
    60.0267090.0006920.2825540.000028−3.100.9898649831451
    70.0248280.0012080.2826220.000026−0.680.9266118851298
    80.0235070.0014350.2826240.000037−0.611.3004288831293
    90.0393560.0006690.2826210.000031−0.781.096098991304
    100.0519670.0008210.2827270.0000282.920.9804837531069
    110.0232060.0005270.2826520.0000260.380.9121938431230
    120.0291540.0011150.2826020.000032−1.411.1307279171344
    130.0176740.0009730.2826460.0000260.190.9005528481243
    140.0372240.0005610.2827050.0000262.200.9116387781114
    150.0326880.0005730.2826250.000027−0.610.9589718871293
    160.0193920.0003770.2825410.000024−3.520.8350799951478
    170.0190880.000690.2825850.000025−1.980.8864569341380
    180.0133010.0007050.2825580.000027−2.900.9476279671438
    190.0236230.0005920.2825620.000027−2.800.9546759691432
    200.0246320.0006260.2826190.000025−0.800.8584468901305
    210.020760.0006250.282640.000027−0.030.9564518581257
    220.0216550.0006440.2825960.000026−1.600.9194859211356
    230.0211390.0006160.2826280.000025−0.450.878358751283
    240.0246040.0014350.2826830.0000231.470.8192538001161
    250.0222380.0003770.2825390.000025−3.620.87545610001484
     注:εHft)的计算采用球粒陨石现今的176Hf/177Hf =0.282772和176Lu/177Hf=0.0332(据Blichert et al.,1997);Hf同位素二阶段模式年龄(tDM2 )分别采用平均下地壳176Lu/177Hf =0.022(据Altherr et al.,2000)和平均大陆壳176Lu/177Hf =0.015(据Griffin et al.,2002)。
    下载: 导出CSV
  • [1]

    白国典, 王坤, 陈泳霖, 等. 青海卡巴纽尔多地区上三叠统巴颜喀拉山群牙形石的发现及其意义[J]. 西北地质, 2018, 51(4): 24-32 doi: 10.3969/j.issn.1009-6248.2018.04.004

    BAI Guodian, WANG Kun, CHENG Yonglin. Discovery of the Conodonts in Upper Triassic Bayankalashan Group, Cabanualdo Region, Qinghai Province and Its Significance[J]. Northwestern Geology, 2018, 51(4): 24-32. doi: 10.3969/j.issn.1009-6248.2018.04.004

    [2]

    蔡宏明. 松潘-甘孜褶皱带印支期花岗岩类和火山岩类成因及深部作用[D]. 武汉: 中国地质大学, 2010

    CAI Hongming. Genesis and deep action of Indosinian granitoids and volcanic rocks in Songpan-Garze fold belt[D]. Wuhan: China University of Geosciences, 2010.

    [3]

    李艳广, 靳梦琪, 汪双双, 等. LA–ICP–MS U–Pb定年技术相关问题探讨[J]. 西北地质, 2023, 56(4): 274−282.

    LI Yanguang, JIN Mengqi, WANG Shuangshuang, et al. Exploration of Issues Related to the LA–ICP–MS U–Pb Dating Technique[J]. Northwestern Geology, 2023, 56(4): 274−282.

    [4]

    沙淑清, 王宗秀, 郭通珍, 等. 巴颜喀拉山东段花岗岩锆石SHRIMP定年及其地球化学特征[J]. 地球学报, 2007, 28(3): 261-269 doi: 10.3321/j.issn:1006-3021.2007.03.004

    SHA Shuqing, WANG Zongxiu, GUO Tongzhen, et al. Zircon SHRIMP Dating and Geochemical Characteristics of Granites in the Eastern Part of the Bayan Har Mountains[J]. Acta Geoscientica Sinica, 2007, 28(3): 261-269. doi: 10.3321/j.issn:1006-3021.2007.03.004

    [5]

    时章亮, 张宏飞, 蔡宏明. 松潘造山带马尔康强过铝质花岗岩的成因及其构造意义[J]. 地球科学-中国地质大学学报, 2009, 34(4): 569-584 doi: 10.3799/dqkx.2009.062

    SHI Zhangliang, ZHANG Hongfei, CAI Hongming. 2009. Petrogenesis of Strongly Peraluminous Granites in Markan Area, Songpan Fold Belt and Its Tectonic Implication[J]. Earth Science-Journal of China University of Geosciences, 2009, 34(4): 569-584. doi: 10.3799/dqkx.2009.062

    [6]

    王晖, 阮林森, 郭建秋, 等. 四川雅江盆地三叠纪晚期沉积地球化学特征及其大地构造意义[J]. 西北地质, 2012(2): 88-98 doi: 10.3969/j.issn.1009-6248.2012.02.009

    WANG Hui, RUAN Linsen, GUO Jianqiu. Late Triassic Sedimentary Geochemistry and Tectonic Significance in the Yajiang Basin, Sichuan[J]. Northwestern Geology, 2012(2): 88-98. doi: 10.3969/j.issn.1009-6248.2012.02.009

    [7]

    王辉, 张峰, 王冰洁, 等. 羌塘盆地晚三叠世构造属性与层序地层格架下聚煤特征[J]. 西北地质, 2009, 42(4): 92-101 doi: 10.3969/j.issn.1009-6248.2009.04.011

    WANG Hui, ZHANG Feng, WANG Bingjie, et al. The Structure Characteristics and Coal-Accumulating Features Under Sequence Framework in the Late Triassic of Qiangtang Basin[J]. Northwestern Geology, 2009, 42(4): 92-101. doi: 10.3969/j.issn.1009-6248.2009.04.011

    [8]

    吴福元, 李献华, 郑永飞, 等. Lu-Hf同位素体系及其岩石学应用[J]. 岩石学报, 2007, 23(2): 398-433 doi: 10.3321/j.issn:1000-0569.2007.02.001

    WU Fuyuan, LI Xianhua, ZHENG Yongfei, et al. Lu-Hf isotopic syste Matics and their applications in petrology[J]. Acta Petrologica Sinica, 2007, 23(2): 398-433. doi: 10.3321/j.issn:1000-0569.2007.02.001

    [9]

    夏林圻, 李向民, 马中平, 等. 青藏高原新生代火山作用与构造演化[J]. 西北地质, 2010, 43(01): 1-25 doi: 10.3969/j.issn.1009-6248.2010.01.001

    XIA Linqi, LI Xiangmin, MA Xueyi, et al. Cenozoic Yolcanism and Tectonic Evolution on the Tibetan Plateau[J]. Northwestern Geology, 2010, 43(01): 1-25. doi: 10.3969/j.issn.1009-6248.2010.01.001

    [10]

    许志琴. 中国松潘-甘孜造山带的造山过程[M]. 北京: 地质出版社, 1992

    XU Zhiqin. The orogenic process of the Songpan-Garze orogenic belt in China[M]. Beijing: Geological Publishing House, 1992.

    [11]

    于浦生, 李荣社, 计文化, 等. 青藏高原北部成矿带划分[J]. 西北地质, 2007, 40(4): 7-16 doi: 10.3969/j.issn.1009-6248.2007.04.002

    YU Pusheng, LI Rongshe, JI Wenhua. Division of Metallogenic Belts in the Northern Qinghai-Tibet Plateau[J]. Northwestern Geology, 2007, 40(4): 7-16. doi: 10.3969/j.issn.1009-6248.2007.04.002

    [12]

    Altherr R, Holl A, Hegner E, et al. High-potassium, calc-alkaline I-type plutonism in the European Variscides: Northern Vosges (France) and northern Schwarzwald (Germany) [J]. Lithos, 2000, 50(1): 51-73.

    [13]

    Beard J S, Lofgren G E. Partial melting of basaltic and andesite greenstones and amphibolites under dehydration and water-saturated conditions at 1, 3 and 6.9 kilobars[J]. Journal of Petrology, 1991, 32(2): 365-401. doi: 10.1093/petrology/32.2.365

    [14]

    Blichert T J, Francis A. The Lu-Hf isotope geochemistry of chondrites and the evolution of the Mantle-crust system[J]. Earth and Planetary Science Letters, 1997, 148(1-2): 0-258.

    [15]

    Bonin B. A-type granites and related rocks: Evolution of a concept, problems and prospects[J]. Lithos, 2007, 97(1-2): 1-29. doi: 10.1016/j.lithos.2006.12.007

    [16]

    Bruguier O, Lancelot J R, Malavieille J. U-Pb dating on single detrital zircon grains from the Triassic Songpan-Ganze flysch (Central China): provenance and tectonic correlations[J]. Earth and Planetary Science Letters, 1997, 152(1-4): 0-231.

    [17]

    Cai Hongming, Zhang Hongfei, Xu Wangchun, et al. Petrogenesis of Indosinian volcanic rocks in Songpan-Garze fold belt of the northeastern Tibetan Plateau: New evidence for lithospheric delamination[J]. Science China Earth Sciences, 2010a, 53(9), 1316-1328. doi: 10.1007/s11430-010-4033-9

    [18]

    Cai Hongming, Zhang Hongfei, Xu Wangchun. U-Pb zircon ages, geochemical and Sr-Nd-Hf isotopic compositions of granitoids in western Songpan-Garze block: Petrogenesis and implication for tectonic evolution[J]. Journal of Earth Science, 2009, 20(4): 681-698. doi: 10.1007/s12583-009-0054-8

    [19]

    Chappell B W and White A J R. Two contrasting granite types[J]. Pacific Geology, 1974, 8: 173-174.

    [20]

    Chappell B W, Bryant C J and Wyborn D. Peraluminous I-type granites[J]. Lithos, 2012, 153(8): 142-153.

    [21]

    Chappell B W, White A J R. I- and S-type granites in the Lachlan Block[J]. Transactions of the Royal Society of Edinburgh: Earth Sciences, 1992, 83(1-2): 1-26. doi: 10.1017/S0263593300007720

    [22]

    Chappell B W. Aluminium saturation in I-and S-type granites and the characterization of fractionated haplogranites[J]. Lithos, 1999, 46(3): 535-551. doi: 10.1016/S0024-4937(98)00086-3

    [23]

    Chen Shefa, Wilson C J L, Worley B A. Tectonic transition from the Songpan-Garze Fold Belt to the Sichuan Basin, south-western China[J]. Basin Research, 1995, 7(3): 235-253. doi: 10.1111/j.1365-2117.1995.tb00108.x

    [24]

    Chen Shefa, Wilson C J L. Emplacement of the Longmen Shan Thrust-Nappe Belt along the eastern Margin of the Tibetan Plateau[J]. Journal of Structural Geology, 1996, 18(4): 413-430.

    [25]

    Chung Sunlin, Chu Meifa, Zhang Yuquan, et al. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional Mag Matism[J]. Earth Science Reviews, 2005, 68(3-4): 173-196.

    [26]

    Chung Sunlin, Liu Dunyi, Ji Jianqing, et al. Adakites from continental collision zone: melting of thickened lower crust in southern Tibet[J]. Geology, 2003, 31(11): 1021-1024. doi: 10.1130/G19796.1

    [27]

    Clemens J D, Stevens G and Farina F. The enig Matic sources of I-type granites: The peritectic connexion[J]. Lithos, 2011, 126(3): 174-181.

    [28]

    Collins W J, Beams S D, White A J R, et al. Nature and origin of A-type granites with particular reference to southeastern Australia[J]. Contributions to Mineralogy and Petrology, 1982, 80(2): 189-200. doi: 10.1007/BF00374895

    [29]

    Eby G N. Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications[J]. Geology, 1992, 20, 641-644.

    [30]

    Elena A K, Maurice B, Jacques M. Discovery of the Tethys-Tethys residual peridotites along the Anye Maqen-KunLun suture zone (North Tibet)[J]. Comptes Rendus-Geoscience, 2003, 335, 709−719.

    [31]

    Griffin W L, Wang Xiang, Jackson S E, et al. Zircon chemistry and Mag Ma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes[J]. Lithos, 2002, 61(3-4): 237-269. doi: 10.1016/S0024-4937(02)00082-8

    [32]

    Harris N, Inger S. Trace element modelling of pelite-derived granites[J]. Contributions to Mineralogy and Petrology, 1992, 110(1): 46-56. doi: 10.1007/BF00310881

    [33]

    Healy B, Collins W J and Richards SW. A hybrid origin for Lachlan S-type granites: The Murrumbidgee batholith example[J]. Lithos, 2004, 78(1): 197-216.

    [34]

    Hoskin P W O, Black L P. Metamorphic zircon for Mation by solid-state recrystallization of protolith igneous zircon[J]. Journal of Metamorphic Geology, 2010, 18(4): 423-439.

    [35]

    Hou Zengqian, Gao Yongfeng, Qu Xiaoming, et al. Origin of adakitic intrusives generated during mid-Miocene east-west extension in southern Tibet[J]. Earth and Planetary Science Letters, 2004, 220(1-2): 139-155. doi: 10.1016/S0012-821X(04)00007-X

    [36]

    Hsü K J, Pan G T, Sengör A M C. Tectonic evolution of the Tibetan Plateau: a working hypothesis based on the archipelago model of orogenesis[J]. International Geology Review, 1995, 37(6), 473-508. doi: 10.1080/00206819509465414

    [37]

    Huang M H, Buick I S, Hou L W. Tectonometamorphic Evolution of the Eastern Tibet Plateau: Evidence from the Central Songpan-Garze Orogenic Belt, Western China[J]. Journal of Petrology, 2003, 44(2): 255-278. doi: 10.1093/petrology/44.2.255

    [38]

    Icenhower J, London D. IExperimental partitioning of Rb, Cs, Sr, and Ba between alkali feldspar and peraluminous melt[J]. American Mineralogist, 1996, 81(5-6): 719-734. doi: 10.2138/am-1996-5-619

    [39]

    Ilbeyli N, Pearce J A, Thirlwall M F, et al. Petrogenesis of collision-related plutonics in Central Anatolia, Turkey[J]. Lithos, 2004, 72(3-4): 163-182. doi: 10.1016/j.lithos.2003.10.001

    [40]

    Johannes W, Holtz F. Petrogenesis and Experimental Petrology of Granitic Rocks[J]. Minerals, Rocks and Mountains, 1996.

    [41]

    Jung S, Mezger K, Hoernes S. Petrology and geochemistry of syn- to post-collisional metaluminous A-type granites - a Major and trace element and Nd-Sr-Pb-O isotope study from the Proterozoic Da Mara Belt, Namibia[J]. Lithos, 1998, 45(1-4): 147-175. doi: 10.1016/S0024-4937(98)00030-9

    [42]

    Li Xiaohua, Li Zhengxiang, Li Wuxian, et al. U-Pb zircon, geochemical and Sr-Nd-Hf isotopic constraints on age and origin of Jurassic I-and A-type granites from central Guangdong, SE China: A Major igneous event in response to foundering of a subducted flat-slab[J]. Lithos, 2007, 96(1-2): 186-204. doi: 10.1016/j.lithos.2006.09.018

    [43]

    Liu Yin, Xiao Wenjiao, Windley B F, et al. Late Triassic ridge subduction of Paleotethys: Insights from high-Mg granitoids in the Songpan-Ganzi area of northern Tibet[J]. Lithos, 2019, 334-335: 254-272. doi: 10.1016/j.lithos.2019.03.012

    [44]

    Liu Yongsheng, Gao Shan, Hu Zhaochu, et al. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from Mantle xenoliths[J]. Journal of Petrology, 2010a, 51(1-2): 537-571. doi: 10.1093/petrology/egp082

    [45]

    Liu Yongsheng, Hu Zhanchu, Gao Shan, et al. Insituanalysis of Major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1-2): 34-43. doi: 10.1016/j.chemgeo.2008.08.004

    [46]

    Liu Yongsheng, Hu Zhanchu, Zong Keqing, et al. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 2010b, 55(15): 1535-1546. doi: 10.1007/s11434-010-3052-4

    [47]

    Ludwig K R. User’s Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel[J]. Berkeley: Berkeley Geochronlogical Center Special Publication, 2003, 4: 25-32.

    [48]

    Mattauer M, Malavieille J, Calassou S, et al. La chaine triasique de Songpan-Garze (ouest Sechuan et est Tibet): Une chaine de plissement-decollement sur Marge passive. Comptes rendus de l'Académie des sciences[J]. Série 2, Mécanique, Physique, Chimie, Sciences de l'univers, Sciences de la Terre, 1992, 314.6: 619-626.

    [49]

    Middlemost E A K. Naming Materials in the Mag Ma/igneous rock system[J]. Annual Review of Earth & Planetary Sciences, 1994, 37(3-4): 215-224.

    [50]

    Nabelek P I, Bartlett C D. Petrologic and geochemical links between the post-collisional Proterozoic Harney Peak leucogranite, South Dakota, USA, and its source rocks[J]. Lithos, 1998, 45(1-4): 71-85. doi: 10.1016/S0024-4937(98)00026-7

    [51]

    Nakada S, Takahashi M. Regional variation in chemistry of the Miocene intermediate to felsic Mag Mas in the Outer Zone and the Setouch province of Southwest Japan[J]. Mining Geology, 1979, 85(9): 571-582.

    [52]

    Nash W P, Crecraft H R. Partition coefficients for trace elements in silicic Mag Mas[J]. Geochimica Et Cosmochimica Acta, 1985, 49(11): 2309-2322. doi: 10.1016/0016-7037(85)90231-5

    [53]

    Nie Shangyou, Yin An, Rowley D B, et al. Exhu Mation of the Dabie Shan Ultra-High-Pressure Rocks and Accumulation of the Songpan-Ganzi Flysch Sequence, Central China[J]. Geology, 1994, 22: 999-1002.

    [54]

    Patiño Douce A E, Beard J S. Dehydration-melting of Biotite Gneiss and Quartz Amphibolite from 3 to 15 kbar[J]. Journal of Petrology, 1995, 36(3): 707-738. doi: 10.1093/petrology/36.3.707

    [55]

    Patino-Douce A E P, Harris N. Experimental Constraints on Hi Malayan Anatexis[J]. Journal of Petrology, 1998, 39(4): 689-710. doi: 10.1093/petroj/39.4.689

    [56]

    Patino-Douce A E P, McCarthy T C. Melting of Crustal Rocks During Continental Collision and Subduction[J]. Petrology and Structural Geology, 1998b.

    [57]

    Peccerillo A, Taylor S R. Geochemistry of Eocene Calc-alkaline volcanic rocks from the Kastamonu Area, Northern Turkey[J]. Contributions to Mineralogy and Petrology, 1976, 58(1): 63-81. doi: 10.1007/BF00384745

    [58]

    Petford N, Atherton M. Na-rich Partial Melts from Newly Underplated Basaltic Crust: the Cordillera Blanca Batholith, Peru[J]. Journal of Petrology, 1996, 37(6): 1491-1521. doi: 10.1093/petrology/37.6.1491

    [59]

    Qi Liang, Hu Jing and Conard D C. Determination of trace elements in granites by inductively coupled plas Ma Mass spectrometry[J]. Talanta, 2000, 51(3): 507-513. doi: 10.1016/S0039-9140(99)00318-5

    [60]

    Rapp R P, Watson E B. Dehydration Melting of Metabasalt at 8-32 kbar: Implications for Continental Growth and Crust- Mantle Recycling[J]. Journal of Petrology, 1995, 36(4): 891-931. doi: 10.1093/petrology/36.4.891

    [61]

    Reid A J, Wilson C J L, Liu S. Structural evidence for the Permo-Triassic tectonic evolution of the Yidun Arc, eastern Tibetan Plateau[J]. Journal of Structural Geology, 2005, 27(1): 119-137. doi: 10.1016/j.jsg.2004.06.011

    [62]

    Richwood P C. Boundary lines within petrologic diagrams which use oxides of major and minor elements[J]. Lithos, 1989, 22(4): 247−263.

    [63]

    Roger F, Arnaud N, Gilder S, et al. Geochronological and geochemical constraints on Mesozoic suturing in east central Tibet[J]. Tectonics, 2003, 22(4).

    [64]

    Roger F, Malavieille J, Leloup P H, et al. Timing of granite emplacement and cooling in the Songpan-Garze Block (eastern Tibetan Plateau) with tectonic implications[J]. Journal of Asian Earth Sciences, 2004, 22(5): 465-481. doi: 10.1016/S1367-9120(03)00089-0

    [65]

    Rudnick R L and Gao Shan. Composition of the continental crust. In: Rudnick R L ( ed. ) . Treatise on Geochemistry[J]. The Crust, 2003, 3: 1-64

    [66]

    Rushmer T. Partial melting of two amphibolites: contrasting experimental results under fluid-absent conditions[J]. Contributions to Mineralogy and Petrology, 1991, 107(1): 41-59. doi: 10.1007/BF00311184

    [67]

    Sengör A M C. Tectonic Subdivisions and Evolution of Asia[J]. Bull. Tech. Univ. Istanbul, 1985, 46: 355-435.

    [68]

    Sisson T W, Ratajeski K, Hankins W B, et al. Voluminous granitic Mag Mas from common basaltic sources[J]. Contributions to Mineralogy & Petrology, 2005, 148(6): 635-661.

    [69]

    Skjerlie K P, Johnston A D. Vapor-absent melting at 10 kbar of a biotite- and amphibole-bearing tonalitic gneiss: Implications for the generation of A-type granites[J]. Geology, 1992, 20(3): 263. doi: 10.1130/0091-7613(1992)020<0263:VAMAKO>2.3.CO;2

    [70]

    Sun S S, McDonough W F. Chemical and isotopic syste Matics of oceanic basalts: Implications for Mantle composition and processes[J]. Geological Society London Special Publications, 1989, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    [71]

    Sun Yong, Chen Liang, Feng Tao, et al. A dynamic model of Paleo-Tethyan evolution: evidences from Paleo-Tethyan ophiolite in China. Northwest University, 2002, 32, 1−6.

    [72]

    Sylvester P J, Liegeois J P. Post-collisional strongly peraluminous granites[J]. Lithos, 1998, 45(1-4): 29-44. doi: 10.1016/S0024-4937(98)00024-3

    [73]

    Tepper J H, Nelson B K, Bergantz G W. Petrology of the Chilliwack batholith, North Cascades, Washington: generation of calc-alkaline granitoids by melting of Mafic lower crust with variable water fugacity[J]. Contributions to Mineralogy & Petrology, 1993, 113(3): 333-351.

    [74]

    Turner S, Hawkesworth C, Liu J Q, et al. Timing of Tibetan uplift constrained by analysis of volcanic rocks[J]. Nature, 1993, 364(6432): 50-54. doi: 10.1038/364050a0

    [75]

    Wang Xiaofeng, Metcalfe I, Jian Ping, et al. The Jinshajiang-Ailaoshan Suture Zone, China: Tectonostratigraphy, age and evolution[J]. Journal of Asian Earth Sciences, 2000, 18(6): 675-690. doi: 10.1016/S1367-9120(00)00039-0

    [76]

    Weislogel A L. Tectonostratigraphic and geochronologic constraints on evolution of the northeast Paleotethys from the Songpan-Ganzi complex, central China[J]. Tectonophysics, 2008, 451(1-4): 0-345.

    [77]

    Whalen J B, Currie K L and Chappell B W. A-type granites: Geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 1987, 95(4): 407-419. doi: 10.1007/BF00402202

    [78]

    Wolf M B, Wyllie P J. The For Mation of Tonalitic Liquids during the Vapor-Absent Partial Melting of Amphibolite at 10 kbar[J]. EOS, 1992, 70: 506-518.

    [79]

    Wu Fuyuan, Jahn B M, Wilde S A, et al. Highly fractionated I-type granites in NE China (I): geochronology and petrogenesis[J]. Lithos, 2003, 66: 241-273. doi: 10.1016/S0024-4937(02)00222-0

    [80]

    Wu Fuyuan, Lin Jingqian, Wilde S A, et al. Nature and significance of the Early Cretaceous giant igneous event in eastern China[J]. Earth and Planetary Science Letters, 2005, 233(1-2): 0-119.

    [81]

    Wu Fuyuan, Sun Deyou, Li Huimin, et al. A-type granites in Northeastern China: Age and geochemical constraints on their petrogenesis[J]. Chemical Geology, 2002, 187(1-2): 143-173. doi: 10.1016/S0009-2541(02)00018-9

    [82]

    Xiao Long, Zhang Hongfei, Clemens J D, et al. Late Triassic granitoids of the eastern Margin of the Tibetan Plateau: Geochronology, petrogenesis and implications for tectonic evolution[J]. Lithos, 2007, 96(3-4): 436-452. doi: 10.1016/j.lithos.2006.11.011

    [83]

    Yin An, Harrison T M. Geologic Evolution of the Hi Malayan-Tibetan Orogen[J]. Annual Review of Earth and Planetary Sciences, 2000, 28(1): 211-280. doi: 10.1146/annurev.earth.28.1.211

    [84]

    Yin An, Nie Shangyou. An indentation model for the North and South China collision and the development of the Tan-Lu and Honam Fault Systems, eastern Asia[J]. Tectonics, 1993, 12(4): 801-813. doi: 10.1029/93TC00313

    [85]

    Yuan Chao, Zhou Meifu, Sun Min, et al. Triassic granitoids in the eastern Songpan-Ganzi Fold Belt, SW China: Mag Matic response to geodynamics of the deep lithosphere[J]. Earth and Planetary Science Letters, 2010, 290(3-4): 0-492.

    [86]

    Yuan Honglin, Gao Shan, Liu Xiaoming, et al. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plas Ma- Mass spectrometry[J]. Geostandards and Geoanalytical Research, 2004, 28(3): 353-370. doi: 10.1111/j.1751-908X.2004.tb00755.x

    [87]

    Zhang Hongfei, Parrish R, Zhang Li, et al. A-type granite and adakitic Mag Matism association in Songpan–Garze block, eastern Tibetan Plateau: Implication for lithospheric delamination[J]. Lithos, 2007, 97(3-4): 323-335. doi: 10.1016/j.lithos.2007.01.002

    [88]

    Zhang Hongfei, Zhang Li, Harris N, et al. U-Pb Zircon Ages, Geochemical and Isotopic Compositions of Granitoids in Songpan-Garze Block, Eastern Tibetan Plateau: Constraints on Petrogenesis, Nature of Basement and Tectonic Evolution[J]. Contributions to Mineralogy and Petrology, 2006, 152: 75-88. doi: 10.1007/s00410-006-0095-2

    [89]

    Zhang Liyun, Ding Lin, Pullen A, et al. Age and geochemistry of western Hoh-Xil-Songpan-Ganzi granitoids, northern Tibet: Implications for the Mesozoic closure of the Paleo-Tethys ocean[J]. Lithos, 2014, 190-191: 328-348. doi: 10.1016/j.lithos.2013.12.019

    [90]

    Zheng Yongfei, Zhang Shaobing, Zhao Zifu, et al. Contrasting Zircon Hf and O Isotopes in the Two Episodes of Neoproterozoic Granitoids in South China: Implications for Growth and Reworking of Continental Crust[J]. Lithos, 2007, 96: 127-150. doi: 10.1016/j.lithos.2006.10.003

    [91]

    Zhong Hong, Zhu Weiguang, Hu Ruizhong, et al. Zircon U-Pb age and Sr-Nd-Hf isotope geochemistry of the Panzhihua A-type syenitic intrusion in the Emeishan large igneous province, southwest China and implications for growth of juvenile crust[J]. Lithos, 2009, 110: 109-128. doi: 10.1016/j.lithos.2008.12.006

  • 加载中

(9)

(6)

计量
  • 文章访问数:  690
  • PDF下载数:  97
  • 施引文献:  0
出版历程
收稿日期:  2021-10-20
修回日期:  2022-01-24
刊出日期:  2023-10-20

目录