Petrogenesis and Tectonic Implication of Late−Triassic Granitoids in the West−Central Part of Songpan−Ganze Block
-
摘要:
通过岩相学、锆石U−Pb年代学、岩石地球化学和Lu−Hf同位素等多种手段,系统对比松潘−甘孜地块巴颜喀拉山南口地区和中部达日地区的花岗质岩体岩石学和地球化学特征,拟查明其岩石成因、岩浆源区和基底属性。巴颜喀拉山南口和达日地区花岗质岩石岩浆锆石U−Pb年龄为(212.0±2.2)Ma和(213.3±1.7)Ma、(217.0±1.9)Ma和(215.4±6.4)Ma。主量、微量元素研究表明,前者属于高钾钙碱性过铝质I型花岗闪长岩,而后者属于钾玄岩和高钾钙碱性、过铝质S型石英二长岩和花岗岩。巴颜喀拉山南口和达日地区花岗质岩石微量元素特征表现均为富集Rb、Th、U等大离子亲石元素,亏损Nb、Ta等高场强元素,且具有轻微的Zr、Hf负异常,但前者Nb、Ta等元素亏损程度明显高于后者,Eu异常也更为明显。巴颜喀拉山南口和达日地区花岗质岩石均为轻稀土富集型的稀土元素配分模式,但达日地区样品轻、重稀土含量均高于巴颜喀拉山样品。锆石Hf同位素数据显示,巴颜喀拉山地区花岗质岩石εHf(t)值为−3.62~2.92,平均值为−0.54,锆石Hf二阶段模式年龄为1.07~1.48 Ga。结合前人研究数据,推断巴颜喀拉山和达日地区花岗质岩石源区分别为下地壳镁铁质岩石和中地壳杂砂岩。松潘−甘孜地块存在新元古代基底,且其基底与扬子地块基底存在亲缘性。研究区花岗质岩石为后碰撞背景下,岩石圈拆沉诱发的不同地壳岩石部分熔融的产物。
Abstract:Through various methods such as petrography, zircon U−Pb geochronology, petrogeochemistry and Lu−Hf isotopes, the petrological and geochemical characteristics of the granitic rocks from the south entrace of Bayan Har Mountain and Dari area have been systematically compared, in order to find out its petrogenesis, magma source area and basement attributes. The magmatic zircon U−Pb ages of the granitic rocks from the south entrace of Bayan Har Mountain and Dari area are (212.0±2.2) Ma, (213.3±1.7) Ma, (217.0±1.9) Ma and (215.4±6.4) Ma. Studies on major and trace elements show that the former belongs to high−potassium calcium−alkaline peraluminous I−type granodiorite, while the latter belongs to potash basalt and high−potassium calc−alkaline, peraluminous S−type quartz monzonite and granite. The characteristics of the trace elements of the granitic rocks from the south entrace of Bayan Har Mountain and Dari area are: enrichment of large ion lithophile elements such as Rb, Th, U, depletion of high field strength elements such as Nb and Ta, and slight Zr. Hf negative anomaly, but the former Nb, Ta and other elements are significantly more depleted than the latter. Eu anomaly is also more obvious. The granitic rocks from the south entrace of Bayan Har Mountain area are both light rare earth−enriched rare earth element distribution models, but the content of light and heavy rare earths in the samples from the Dari area are higher than those of the Bayan Har Mountain samples. The zircon Hf isotopic data of granitic rocks from the Bayan Har Mountains area show that εHf(t)=−3.62~2.92, the average is −0.54, and the age of the zircon Hf two−stage model is between 1.07 and 1.48 Ga. Combining previous research data and the composition of major, trace and Hf isotopes in this paper, it is inferred that the source areas of the granitic rocks from the south entrace of Bayan Har Mountain and Dari area are lower crust mafic rocks and middle crust sandstones, respectively. The Songpan−Garze block has a Neoproterozoic basement, and its basement is related to the basement of the Yangtze block. It is speculated that the granitic rocks in the study area are the products of partial melting of different crustal rocks induced by lithospheric delamination under the background of post−collision. The granitic rocks in the study area are the products of partial melting of different crustal rocks induced by lithospheric delamination under the background of post−collision.
-
Key words:
- U−Pb Zircon age /
- geochemistry /
- Hf isotopes /
- granitic rocks /
- petrogenesis /
- Songpan−Ganze block
-
-
图 1 松潘–甘孜地块地质构造简图(a)、巴颜喀拉山地质简图(b)与达日花岗岩类分布简图(c)(据蔡宏明,2010修改)
Figure 1.
图 4 研究区花岗岩TAS图解(a)(据Middlemost,1994); A/CNK–A/NK分类图解(b)(据Richwood, 1989);SiO2–K2O判别图(c)(据Peccerillo et al.,1976); Na2O–K2O判别图(d)(据Turner et al.,1993)
Figure 4.
表 1 巴颜喀拉山花岗闪长岩体(359)LA–ICP–MS锆石U–Pb年龄测试结果表
Table 1. LA–ICP–MS zircon U–Pb dating results of sample 359
测点 207Pb/235U 206Pb/238U 207Pb/235U 206Pb/238U 同位素比值 1σ 同位素比值 1σ 年龄(Ma) 1σ 年龄(Ma) 1σ 359 N=25(有效点19个) GE01 0.238 0.0128 0.03208 0.00049 216.8 10.5 216.8 10.4 GE02 0.2643 0.0162 0.03527 0.00057 238.1 12.9 238.1 12.9 GE03 0.2289 0.0124 0.03212 0.00049 209.3 10.2 209.3 10.2 GE04 0.2327 0.011 0.03216 0.00047 212.4 9.0 212.4 9.1 GE05 0.2241 0.0192 0.03416 0.00061 205.3 15.9 205.3 15.9 GE06 0.2248 0.0124 0.03251 0.0005 205.9 10.2 205.9 10.2 GE07 0.2201 0.0134 0.03133 0.0005 202 11.1 202 11.2 GE08 0.2553 0.017 0.03419 0.00058 230.9 13.7 230.9 13.7 GE09 0.2321 0.0095 0.03328 0.00046 211.9 7.8 211.9 7.8 GE10 0.3245 0.0139 0.03354 0.0005 285.3 10.6 285.3 10.6 GE11 0.2283 0.0156 0.03266 0.00055 208.8 12.9 208.8 12.9 GE12 0.2321 0.0171 0.03257 0.00058 212 14.1 212 14.1 GE13 0.228 0.0138 0.03308 0.00053 208.6 11.4 208.6 11.4 GE14 0.2275 0.0121 0.03303 0.0005 208.1 9.9 208.1 9.9 GE15 0.2359 0.0137 0.03285 0.00052 215 11.2 215 11.3 GE16 0.2357 0.0144 0.03353 0.00055 214.9 11.8 214.9 11.9 GE17 0.2345 0.0177 0.03393 0.00059 213.9 14.5 213.9 14.5 GE18 0.4662 0.0301 0.04398 0.00082 388.6 20.8 388.6 20.8 GE19 0.2392 0.0146 0.03315 0.00054 217.7 11.9 217.7 11.9 GE20 0.2552 0.0211 0.03309 0.00063 230.8 17.0 230.8 17.1 GE21 0.2248 0.0211 0.03287 0.00063 205.9 17.4 205.9 17.5 GE22 0.2602 0.0162 0.03385 0.00057 234.9 13.0 234.9 13.0 GE23 0.2373 0.0128 0.03316 0.00051 216.2 10.5 216.2 10.5 GE24 0.4156 0.0175 0.05583 0.0008 352.9 12.5 352.9 12.5 GE25 0.272 0.017 0.03505 0.00059 244.3 13.5 244.3 13.5 表 2 查雀嘎玛石英二长岩体(D2409)、波不弄公玛石英二长岩体(D2615)和日查花岗岩体(D1710)LA–ICP–MS锆石U–Pb年龄测试结果表
Table 2. LA–ICP–MS zircon U–Pb dating results of sample D2409, D2615 and D1710
测点 207Pb/235U 206Pb/238U 207Pb/235U 206Pb/238U 同位素比值 1σ 同位素比值 1σ 年龄(Ma) 1σ 年龄(Ma) 1σ D2409 N=25(有效点16个) GB01 0.2312 0.0105 0.0327 0.0005 211.2 8.7 207.2 3.0 GB02 0.2213 0.0126 0.0330 0.0005 203.0 10.5 209.1 3.1 GB03 0.2366 0.0153 0.0336 0.0005 215.6 12.6 213.0 3.4 GB04 0.2442 0.0117 0.0324 0.0005 221.9 9.6 205.3 3.0 GB05 0.2287 0.0185 0.0330 0.0006 209.1 15.3 209.1 3.4 GB06 0.2293 0.0137 0.0334 0.0005 209.6 11.3 212.0 3.3 GB07 0.2405 0.0113 0.0339 0.0005 218.8 9.2 215.0 3.2 GB08 0.2165 0.0141 0.0327 0.0005 199.0 11.8 207.1 3.2 GB09 0.2295 0.0156 0.0341 0.0006 209.8 12.9 216.4 3.5 GB10 0.2470 0.0181 0.0342 0.0006 224.2 14.7 216.7 3.6 GB11 0.2281 0.0221 0.0351 0.0006 208.6 18.3 222.3 4.0 GB12 0.2619 0.0201 0.0354 0.0006 236.2 16.2 224.2 3.9 GB13 0.2313 0.0344 0.0355 0.0008 211.3 28.3 225.1 4.8 GB14 0.2861 0.0252 0.0347 0.0007 255.5 19.9 219.9 4.3 GB15 0.2921 0.0313 0.0322 0.0007 260.2 24.6 204.1 4.4 GB16 0.2123 0.0164 0.0349 0.0006 195.5 13.7 221.0 3.5 GB17 0.2476 0.0212 0.0353 0.0006 224.6 17.2 223.7 4.0 GB18 0.2659 0.0283 0.0342 0.0007 239.4 22.7 217.0 4.5 GB19 0.2033 0.0264 0.0338 0.0007 187.9 22.3 214.5 4.1 GB20 0.2717 0.0232 0.0331 0.0007 244.0 18.5 210.1 4.2 GB21 0.2673 0.0219 0.0334 0.0006 240.5 17.6 212.0 3.9 GB22 0.1076 0.0282 0.0341 0.0006 103.8 25.8 216.1 4.0 GB23 0.2660 0.0157 0.0345 0.0005 239.5 12.6 218.8 3.4 GB24 0.2370 0.0176 0.0360 0.0006 216.0 14.4 227.8 3.6 GB25 0.2413 0.0133 0.0335 0.0005 219.4 10.9 212.1 3.3 D2615 N=25(有效点17个) GC01 0.2592 0.0162 0.0338 0.0005 234.1 13.0 214.6 3.3 GC02 0.2018 0.0121 0.0329 0.0005 186.6 10.2 208.9 3.0 GC03 0.2101 0.0135 0.0325 0.0005 193.6 11.3 205.9 3.1 GC04 0.2877 0.0164 0.0328 0.0005 256.7 12.9 207.8 3.3 GC05 0.2300 0.0123 0.0339 0.0005 210.2 10.2 215.1 3.2 GC06 0.2952 0.0173 0.0330 0.0005 262.7 13.6 209.1 3.4 GC07 0.2225 0.0212 0.0337 0.0006 204.0 17.6 213.4 4.0 GC08 0.2657 0.0268 0.0353 0.0007 239.2 21.5 223.6 4.3 GC09 0.1777 0.0236 0.0342 0.0006 166.1 20.4 216.7 3.9 GC10 0.2205 0.0179 0.0341 0.0006 202.3 14.9 216.0 3.7 续表2 测点 207Pb/235U 206Pb/238U 207Pb/235U 206Pb/238U 同位素比值 1σ 同位素比值 1σ 年龄(Ma) 1σ 年龄(Ma) 1σ GC11 0.2880 0.0224 0.0331 0.0007 257.0 17.7 209.6 4.3 GC12 0.0645 0.0341 0.0362 0.0007 63.5 32.5 229.1 4.3 GC13 0.3717 0.0412 0.0337 0.0009 320.9 30.5 213.3 5.5 GC14 0.3155 0.0254 0.0354 0.0007 278.5 19.6 224.5 4.1 GC15 0.3291 0.0328 0.0351 0.0008 288.9 25.1 222.3 4.9 GC16 0.2251 0.0181 0.0344 0.0006 206.2 15.0 217.7 3.6 GC17 0.2105 0.0173 0.0335 0.0006 194.0 14.5 212.5 3.6 GC18 0.3204 0.0288 0.0356 0.0007 282.2 22.1 225.5 4.5 GC19 0.2437 0.0208 0.0335 0.0006 221.4 17.0 212.3 3.6 GC20 0.2491 0.0284 0.0328 0.0007 225.9 23.1 208.2 4.3 GC21 0.3001 0.0225 0.0330 0.0006 266.5 17.6 209.2 3.9 GC22 0.1011 0.0286 0.0337 0.0006 97.8 26.4 213.9 3.9 GC23 0.2272 0.0141 0.0340 0.0005 207.9 11.7 215.4 3.2 GC24 0.2281 0.0187 0.0329 0.0005 208.7 15.5 208.4 3.4 GC25 0.2378 0.0112 0.0333 0.0005 216.6 9.2 211.1 3.1 D1710 N=25(有效点19个) GD01 0.7107 0.02291 0.0350 0.00057 545.1 13.6 222.2 3.5 GD02 0.2887 0.02059 0.0337 0.00058 257.6 16.2 213.8 3.6 GD03 0.2482 0.01528 0.0339 0.00054 225.1 12.4 215.3 3.3 GD04 0.2323 0.01668 0.0332 0.00055 212.1 13.7 210.6 3.4 GD05 0.2760 0.01574 0.0343 0.00055 247.4 12.5 217.8 3.4 GD06 0.2356 0.01622 0.0339 0.00056 214.8 13.3 215.5 3.5 GD07 0.2785 0.02384 0.0329 0.00071 249.5 18.9 208.7 4.4 GD08 0.2794 0.01928 0.0339 0.00060 250.2 15.3 215.1 3.7 GD09 0.3440 0.02423 0.0340 0.00065 300.2 18.3 215.5 4.0 GD10 0.9448 0.02960 0.0365 0.00060 675.4 15.4 231.5 3.8 GD11 0.2061 0.02870 0.0351 0.00071 190.3 24.1 222.4 4.4 GD12 0.2781 0.02180 0.0347 0.00068 249.1 17.3 220.4 4.2 GD13 0.2565 0.01918 0.0349 0.00064 231.8 15.5 221.2 3.9 GD14 0.2393 0.02195 0.0346 0.00066 217.8 17.9 219.5 4.1 GD15 0.2175 0.01769 0.0333 0.00059 199.8 14.7 211.7 3.7 GD16 0.2698 0.02921 0.0339 0.00067 242.6 23.3 215.3 4.2 GD17 0.2509 0.01561 0.0337 0.00056 227.3 12.6 213.7 3.5 GD18 0.3158 0.01761 0.0348 0.00059 278.7 13.5 220.8 3.7 GD19 0.5370 0.02710 0.0373 0.00065 436.4 17.9 236.6 4.1 GD20 0.2194 0.01717 0.0351 0.00057 201.4 14.3 222.5 3.6 GD21 0.2554 0.00964 0.0343 0.00048 230.9 7.8 217.7 3.0 GD22 0.2813 0.02327 0.0347 0.00070 251.7 18.4 220 4.3 GD23 0.1434 0.02378 0.0348 0.00056 136.1 21.1 220.8 3.5 GD24 0.2747 0.01180 0.0346 0.00050 246.4 9.4 219.4 3.2 GD25 0.2452 0.01262 0.0351 0.00052 222.7 10.3 222.7 3.2 表 3 巴颜喀拉山和达日地区花岗质岩石主量元素(%)和微量元素数据(10 −6)结果表
Table 3. Major (%) and trace element contents (10−6) of granitoids in Bayankala and Dari area
样品号 巴颜喀拉山样品 达日地区样品 357 358 359 363 D2902 D2610 D2615 D2409 D2410 D1710 岩性 花岗闪长岩 闪长岩 花岗闪长岩 花岗闪长岩 二长岩 石英二长岩 石英二长岩 石英二长岩 石英二长岩 花岗岩 SiO2 65.09 59.05 65.59 63.34 58.58 65.45 67.70 66.37 65.28 73.77 TiO2 0.60 0.82 0.69 0.73 1.04 0.73 0.54 0.54 0.65 0.17 Al2O3 15.95 14.68 14.26 14.11 16.90 15.04 15.56 14.74 15.64 13.69 Fe2O3 0.92 1.58 0.85 2.61 1.49 0.91 0.72 0.49 0.80 1.93 FeO 3.37 4.83 3.79 4.12 4.24 3.08 2.18 2.88 3.10 0.28 MnO 0.11 0.14 0.10 0.098 0.099 0.064 0.048 0.059 0.073 0.065 MgO 1.69 4.40 2.86 2.87 3.14 1.79 1.24 1.19 1.45 0.11 CaO 3.36 5.35 4.11 4.54 4.92 3.01 2.60 2.33 3.03 0.28 Na2O 3.10 3.86 3.43 2.93 3.05 2.87 2.99 3.11 3.07 3.24 K2O 2.95 2.05 2.46 2.61 4.53 4.72 5.44 5.27 5.01 5.42 P2O5 0.15 0.18 0.14 0.18 0.31 0.16 0.14 0.15 0.19 0.041 LOI 4.24 4.83 1.95 2.74 2.94 2.70 1.18 4.29 2.58 1.44 Total 101.53 101.77 100.23 100.88 101.24 100.52 100.34 101.42 100.87 100.44 K2O+Na2O 6.05 5.91 5.89 5.54 7.58 7.59 8.43 8.38 8.08 8.66 CaO/Na2O 1.08 2.61 1.67 1.74 1.61 1.05 0.87 0.75 0.99 0.09 K2O/Na2O 0.95 1.88 1.39 1.12 1.49 1.64 1.82 1.69 1.63 1.67 A/CNK 1.41 1.0 1.18 1.20 1.17 1.20 1.18 1.14 1.18 1.20 A/NK 1.92 1.71 1.72 1.85 1.70 1.53 1.44 1.36 1.49 1.22 Rb 94.3 225 129 120 220 262 297 306 262 263 Ba 880 397 696 695 901 647 538 635 747 229 Th 12.8 21.1 18.4 29.8 18.7 28.7 43.7 32.2 31.9 28.8 U 2.95 5.82 3.07 1.94 2.9 2.63 3.37 4.47 5.32 4.91 Nb 15.7 15.6 18.7 50.5 30.2 30.5 26.0 23.9 27.7 42.3 Ta 1.53 1.43 1.76 1.4 2.31 2.08 2.18 2.16 2.05 4.14 La 29.90 32.00 34.90 89.30 47.80 50.80 84.70 46.80 59.60 76.00 Ce 62.50 75.80 75.80 272.00 103.00 114.00 156.00 100.00 126.00 142.00 Pr 7.38 8.67 8.08 45.40 11.90 12.30 16.30 10.80 13.60 15.60 Sr 274 252 280 311 389 250 202 163 243 54.5 Nd 26.40 32.80 29.80 204.00 43.20 42.50 54.30 38.10 47.00 56.00 Zr 175 172 168 170 251 283 278 226 244 236 Hf 4.91 6.75 4.99 6.68 8.34 6.79 4.74 5.01 5.42 5.08 Sm 4.91 6.33 5.46 18.00 7.78 7.41 8.81 7.18 8.05 10.20 Eu 1.36 1.37 1.32 2.83 1.82 1.33 1.29 1.12 1.35 0.69 Gd 4.15 5.37 4.88 12.20 6.94 6.67 8.15 6.75 7.28 9.25 Tb 0.55 0.86 0.73 1.35 1.00 0.95 1.09 1.06 1.04 1.46 Dy 2.47 4.54 3.79 4.18 5.13 4.86 5.41 5.80 5.22 7.77 Ho 0.43 0.95 0.78 0.80 1.03 0.97 1.08 1.23 1.07 1.57 Y 13.70 24.50 20.80 21.80 26.00 25.70 27.80 32.30 27.50 39.60 Er 1.17 2.71 2.22 2.90 2.85 2.75 3.08 3.55 3.02 4.47 Tm 0.17 0.44 0.35 0.34 0.46 0.43 0.48 0.61 0.50 0.73 Yb 1.09 2.94 2.34 2.19 2.93 2.72 3.09 4.12 3.15 4.97 Lu 0.16 0.46 0.36 0.33 0.45 0.40 0.46 0.63 0.48 0.76 ∑REE 56.56 83.27 72.83 270.92 99.59 96.69 115.04 102.45 105.66 137.47 (La/Sm) N 6.09 5.06 6.39 4.96 6.14 6.86 9.61 6.52 7.40 7.45 (La/Yb) N 19.68 7.81 10.70 29.25 11.70 13.40 19.66 8.15 13.57 10.97 Eu/Eu* 0.30 0.23 0.26 0.19 0.25 0.19 0.15 0.16 0.18 0.07 续表3 达日地区样品 样品号 D1604 D1608 D1610 D1611 D0114 D0114 360 361 362 D2313 岩性 花岗岩 花岗闪长岩 花岗闪长岩 二长岩 花岗岩 花岗岩 花岗岩 花岗岩 石英二长岩 石英二长岩 SiO2 67.68 65.50 66.84 60.81 71.79 71.08 70.59 69.02 65.89 65.81 TiO2 0.51 0.76 0.71 0.94 0.24 0.28 0.28 0.33 0.66 0.66 Al2O3 14.84 15.82 15.57 16.77 14.25 14.56 14.74 15.59 15.62 15.34 Fe2O3 0.80 0.99 1.18 1.41 0.64 0.51 0.50 0.56 0.85 0.71 FeO 2.09 3.42 2.93 4.07 1.64 1.80 1.83 1.92 2.98 3.17 MnO 0.057 0.086 0.078 0.10 0.042 0.048 0.049 0.052 0.061 0.070 MgO 1.12 1.68 1.59 2.64 0.54 0.91 0.92 1.15 1.39 1.58 CaO 2.49 3.16 2.23 3.43 1.81 2.30 2.15 2.57 2.76 2.81 Na2O 2.63 3.07 2.90 3.07 3.49 3.61 3.68 4.03 3.04 3.01 K2O 3.98 4.26 4.12 4.70 4.53 3.65 3.72 2.94 5.31 5.18 P2O5 0.12 0.17 0.16 0.22 0.083 0.097 0.095 0.11 0.19 0.19 LOI 5.17 1.54 2.86 2.74 1.35 1.74 2.08 2.65 1.79 1.91 Total 101.49 100.46 101.17 100.90 100.41 100.59 100.63 100.92 100.54 100.44 K2O+Na2O 6.61 7.33 7.02 7.77 8.02 7.26 7.40 6.97 8.35 8.19 CaO/Na2O 0.95 1.03 0.77 1.12 0.52 0.64 0.58 0.64 0.91 0.93 K2O/Na2O 1.51 1.39 1.42 1.53 1.30 1.01 1.01 0.73 1.75 1.72 A/CNK 1.36 1.26 1.38 1.27 1.16 1.22 1.22 1.28 1.18 1.17 A/NK 1.72 1.64 1.69 1.65 1.34 1.47 1.46 1.59 1.45 1.45 Rb 187 200 210 237 187 155 161 147 301 286 Ba 554 663 526 653 432 572 610 792 687 634 Th 22.00 19.90 21.30 24.40 24.60 13.70 14.00 12.4 35.3 38.7 U 3.87 3.34 3.63 3.05 2.76 4.28 2.66 3.20 5.15 5.57 Nb 21.2 27.5 23.7 32.2 27.8 21.4 23.2 21.8 27.9 30.5 Ta 2.13 2.43 2.08 2.92 2.96 2.02 2.76 2.27 2.21 2.79 La 36.20 39.20 41.50 48.60 37.10 30.20 29.20 27.50 71.30 72.40 Ce 78.80 89.60 94.20 106.00 84.40 57.70 54.80 47.50 134.00 137.00 Pr 8.56 9.88 10.00 11.90 9.56 7.19 6.94 5.86 14.70 15.20 Sr 131 254 200 301 171 305 301 470 219 208 Nd 30.90 34.80 36.00 42.90 35.60 26.00 25.90 20.90 52.30 51.90 Zr 185 232 225 292 190 177 173 198 290 268 Hf 3.44 5.92 5.33 8.32 4.35 3.64 3.98 5.01 6.70 5.78 Sm 5.68 6.71 6.87 8.43 7.37 5.30 5.37 3.93 8.82 8.85 Eu 1.17 1.39 1.20 1.43 0.92 1.00 1.00 1.12 1.38 1.30 Gd 5.47 6.51 6.33 7.49 6.82 4.78 4.89 3.65 7.96 8.36 Tb 0.89 1.03 0.98 1.19 1.07 0.75 0.80 0.56 1.14 1.19 Dy 4.94 5.69 5.37 6.26 5.73 3.93 4.29 2.93 5.81 6.10 Ho 1.00 1.17 1.15 1.26 1.11 0.77 0.82 0.57 1.17 1.25 Y 27.60 30.10 29.10 32.40 29.20 21.10 22.30 17.20 32.20 31.50 Er 2.96 3.24 3.31 3.62 3.02 2.08 2.28 1.52 3.31 3.50 Tm 0.49 0.53 0.54 0.59 0.47 0.32 0.35 0.25 0.53 0.56 Yb 3.35 3.43 3.52 3.77 3.04 2.06 2.28 1.69 3.45 3.65 Lu 0.51 0.52 0.55 0.56 0.46 0.31 0.34 0.26 0.53 0.57 ∑REE 84.96 95.12 94.92 109.90 94.81 68.40 70.62 54.58 125.30 118.73 ( La/Sm) N 6.37 5.84 6.04 5.77 5.03 5.70 5.44 7.00 8.08 8.18 ( La/Yb) N 7.75 8.20 8.46 9.25 8.75 10.52 9.19 11.67 14.82 14.23 Eu/Eu* 0.21 0.21 0.18 0.18 0.13 0.20 0.19 0.30 0.16 0.15 注:Eu/Eu*= 2×EuN/(SmN+ GdN);A/CNK= (2×Al2O3/101.96)/(CaO/56.08+2×Na2O/61.98+2×K2O/94.2)。 表 4 巴颜喀拉山地区花岗质岩石锆石Hf同位素统计表
Table 4. Zircon Hf isotopic data of granitoids in Bayankala
点号 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf ±2σ εHf(t) ±1σ tDM1(Ma) tDM2(Ma) 样号 359(N=25)t=215 Ma 1 0.035093 0.000992 0.282663 0.000025 0.75 0.868695 832 1207 2 0.031825 0.001307 0.282684 0.000025 1.50 0.888408 801 1159 3 0.035319 0.0006 0.282671 0.000027 1.02 0.950426 823 1190 4 0.044779 0.000796 0.282674 0.000025 1.06 0.873399 827 1187 5 0.021961 0.00069 0.282639 0.000029 −0.08 1.013665 860 1260 6 0.026709 0.000692 0.282554 0.000028 −3.10 0.989864 983 1451 7 0.024828 0.001208 0.282622 0.000026 −0.68 0.926611 885 1298 8 0.023507 0.001435 0.282624 0.000037 −0.61 1.300428 883 1293 9 0.039356 0.000669 0.282621 0.000031 −0.78 1.09609 899 1304 10 0.051967 0.000821 0.282727 0.000028 2.92 0.980483 753 1069 11 0.023206 0.000527 0.282652 0.000026 0.38 0.912193 843 1230 12 0.029154 0.001115 0.282602 0.000032 −1.41 1.130727 917 1344 13 0.017674 0.000973 0.282646 0.000026 0.19 0.900552 848 1243 14 0.037224 0.000561 0.282705 0.000026 2.20 0.911638 778 1114 15 0.032688 0.000573 0.282625 0.000027 −0.61 0.958971 887 1293 16 0.019392 0.000377 0.282541 0.000024 −3.52 0.835079 995 1478 17 0.019088 0.00069 0.282585 0.000025 −1.98 0.886456 934 1380 18 0.013301 0.000705 0.282558 0.000027 −2.90 0.947627 967 1438 19 0.023623 0.000592 0.282562 0.000027 −2.80 0.954675 969 1432 20 0.024632 0.000626 0.282619 0.000025 −0.80 0.858446 890 1305 21 0.02076 0.000625 0.28264 0.000027 −0.03 0.956451 858 1257 22 0.021655 0.000644 0.282596 0.000026 −1.60 0.919485 921 1356 23 0.021139 0.000616 0.282628 0.000025 −0.45 0.87835 875 1283 24 0.024604 0.001435 0.282683 0.000023 1.47 0.819253 800 1161 25 0.022238 0.000377 0.282539 0.000025 −3.62 0.875456 1000 1484 注:εHf(t)的计算采用球粒陨石现今的176Hf/177Hf =0.282772和176Lu/177Hf=0.0332(据Blichert et al.,1997);Hf同位素二阶段模式年龄(tDM2 )分别采用平均下地壳176Lu/177Hf =0.022(据Altherr et al.,2000)和平均大陆壳176Lu/177Hf =0.015(据Griffin et al.,2002)。 -
[1] 白国典, 王坤, 陈泳霖, 等. 青海卡巴纽尔多地区上三叠统巴颜喀拉山群牙形石的发现及其意义[J]. 西北地质, 2018, 51(4): 24-32 doi: 10.3969/j.issn.1009-6248.2018.04.004
BAI Guodian, WANG Kun, CHENG Yonglin. Discovery of the Conodonts in Upper Triassic Bayankalashan Group, Cabanualdo Region, Qinghai Province and Its Significance[J]. Northwestern Geology, 2018, 51(4): 24-32. doi: 10.3969/j.issn.1009-6248.2018.04.004
[2] 蔡宏明. 松潘-甘孜褶皱带印支期花岗岩类和火山岩类成因及深部作用[D]. 武汉: 中国地质大学, 2010
CAI Hongming. Genesis and deep action of Indosinian granitoids and volcanic rocks in Songpan-Garze fold belt[D]. Wuhan: China University of Geosciences, 2010.
[3] 李艳广, 靳梦琪, 汪双双, 等. LA–ICP–MS U–Pb定年技术相关问题探讨[J]. 西北地质, 2023, 56(4): 274−282.
LI Yanguang, JIN Mengqi, WANG Shuangshuang, et al. Exploration of Issues Related to the LA–ICP–MS U–Pb Dating Technique[J]. Northwestern Geology, 2023, 56(4): 274−282.
[4] 沙淑清, 王宗秀, 郭通珍, 等. 巴颜喀拉山东段花岗岩锆石SHRIMP定年及其地球化学特征[J]. 地球学报, 2007, 28(3): 261-269 doi: 10.3321/j.issn:1006-3021.2007.03.004
SHA Shuqing, WANG Zongxiu, GUO Tongzhen, et al. Zircon SHRIMP Dating and Geochemical Characteristics of Granites in the Eastern Part of the Bayan Har Mountains[J]. Acta Geoscientica Sinica, 2007, 28(3): 261-269. doi: 10.3321/j.issn:1006-3021.2007.03.004
[5] 时章亮, 张宏飞, 蔡宏明. 松潘造山带马尔康强过铝质花岗岩的成因及其构造意义[J]. 地球科学-中国地质大学学报, 2009, 34(4): 569-584 doi: 10.3799/dqkx.2009.062
SHI Zhangliang, ZHANG Hongfei, CAI Hongming. 2009. Petrogenesis of Strongly Peraluminous Granites in Markan Area, Songpan Fold Belt and Its Tectonic Implication[J]. Earth Science-Journal of China University of Geosciences, 2009, 34(4): 569-584. doi: 10.3799/dqkx.2009.062
[6] 王晖, 阮林森, 郭建秋, 等. 四川雅江盆地三叠纪晚期沉积地球化学特征及其大地构造意义[J]. 西北地质, 2012(2): 88-98 doi: 10.3969/j.issn.1009-6248.2012.02.009
WANG Hui, RUAN Linsen, GUO Jianqiu. Late Triassic Sedimentary Geochemistry and Tectonic Significance in the Yajiang Basin, Sichuan[J]. Northwestern Geology, 2012(2): 88-98. doi: 10.3969/j.issn.1009-6248.2012.02.009
[7] 王辉, 张峰, 王冰洁, 等. 羌塘盆地晚三叠世构造属性与层序地层格架下聚煤特征[J]. 西北地质, 2009, 42(4): 92-101 doi: 10.3969/j.issn.1009-6248.2009.04.011
WANG Hui, ZHANG Feng, WANG Bingjie, et al. The Structure Characteristics and Coal-Accumulating Features Under Sequence Framework in the Late Triassic of Qiangtang Basin[J]. Northwestern Geology, 2009, 42(4): 92-101. doi: 10.3969/j.issn.1009-6248.2009.04.011
[8] 吴福元, 李献华, 郑永飞, 等. Lu-Hf同位素体系及其岩石学应用[J]. 岩石学报, 2007, 23(2): 398-433 doi: 10.3321/j.issn:1000-0569.2007.02.001
WU Fuyuan, LI Xianhua, ZHENG Yongfei, et al. Lu-Hf isotopic syste Matics and their applications in petrology[J]. Acta Petrologica Sinica, 2007, 23(2): 398-433. doi: 10.3321/j.issn:1000-0569.2007.02.001
[9] 夏林圻, 李向民, 马中平, 等. 青藏高原新生代火山作用与构造演化[J]. 西北地质, 2010, 43(01): 1-25 doi: 10.3969/j.issn.1009-6248.2010.01.001
XIA Linqi, LI Xiangmin, MA Xueyi, et al. Cenozoic Yolcanism and Tectonic Evolution on the Tibetan Plateau[J]. Northwestern Geology, 2010, 43(01): 1-25. doi: 10.3969/j.issn.1009-6248.2010.01.001
[10] 许志琴. 中国松潘-甘孜造山带的造山过程[M]. 北京: 地质出版社, 1992
XU Zhiqin. The orogenic process of the Songpan-Garze orogenic belt in China[M]. Beijing: Geological Publishing House, 1992.
[11] 于浦生, 李荣社, 计文化, 等. 青藏高原北部成矿带划分[J]. 西北地质, 2007, 40(4): 7-16 doi: 10.3969/j.issn.1009-6248.2007.04.002
YU Pusheng, LI Rongshe, JI Wenhua. Division of Metallogenic Belts in the Northern Qinghai-Tibet Plateau[J]. Northwestern Geology, 2007, 40(4): 7-16. doi: 10.3969/j.issn.1009-6248.2007.04.002
[12] Altherr R, Holl A, Hegner E, et al. High-potassium, calc-alkaline I-type plutonism in the European Variscides: Northern Vosges (France) and northern Schwarzwald (Germany) [J]. Lithos, 2000, 50(1): 51-73.
[13] Beard J S, Lofgren G E. Partial melting of basaltic and andesite greenstones and amphibolites under dehydration and water-saturated conditions at 1, 3 and 6.9 kilobars[J]. Journal of Petrology, 1991, 32(2): 365-401. doi: 10.1093/petrology/32.2.365
[14] Blichert T J, Francis A. The Lu-Hf isotope geochemistry of chondrites and the evolution of the Mantle-crust system[J]. Earth and Planetary Science Letters, 1997, 148(1-2): 0-258.
[15] Bonin B. A-type granites and related rocks: Evolution of a concept, problems and prospects[J]. Lithos, 2007, 97(1-2): 1-29. doi: 10.1016/j.lithos.2006.12.007
[16] Bruguier O, Lancelot J R, Malavieille J. U-Pb dating on single detrital zircon grains from the Triassic Songpan-Ganze flysch (Central China): provenance and tectonic correlations[J]. Earth and Planetary Science Letters, 1997, 152(1-4): 0-231.
[17] Cai Hongming, Zhang Hongfei, Xu Wangchun, et al. Petrogenesis of Indosinian volcanic rocks in Songpan-Garze fold belt of the northeastern Tibetan Plateau: New evidence for lithospheric delamination[J]. Science China Earth Sciences, 2010a, 53(9), 1316-1328. doi: 10.1007/s11430-010-4033-9
[18] Cai Hongming, Zhang Hongfei, Xu Wangchun. U-Pb zircon ages, geochemical and Sr-Nd-Hf isotopic compositions of granitoids in western Songpan-Garze block: Petrogenesis and implication for tectonic evolution[J]. Journal of Earth Science, 2009, 20(4): 681-698. doi: 10.1007/s12583-009-0054-8
[19] Chappell B W and White A J R. Two contrasting granite types[J]. Pacific Geology, 1974, 8: 173-174.
[20] Chappell B W, Bryant C J and Wyborn D. Peraluminous I-type granites[J]. Lithos, 2012, 153(8): 142-153.
[21] Chappell B W, White A J R. I- and S-type granites in the Lachlan Block[J]. Transactions of the Royal Society of Edinburgh: Earth Sciences, 1992, 83(1-2): 1-26. doi: 10.1017/S0263593300007720
[22] Chappell B W. Aluminium saturation in I-and S-type granites and the characterization of fractionated haplogranites[J]. Lithos, 1999, 46(3): 535-551. doi: 10.1016/S0024-4937(98)00086-3
[23] Chen Shefa, Wilson C J L, Worley B A. Tectonic transition from the Songpan-Garze Fold Belt to the Sichuan Basin, south-western China[J]. Basin Research, 1995, 7(3): 235-253. doi: 10.1111/j.1365-2117.1995.tb00108.x
[24] Chen Shefa, Wilson C J L. Emplacement of the Longmen Shan Thrust-Nappe Belt along the eastern Margin of the Tibetan Plateau[J]. Journal of Structural Geology, 1996, 18(4): 413-430.
[25] Chung Sunlin, Chu Meifa, Zhang Yuquan, et al. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional Mag Matism[J]. Earth Science Reviews, 2005, 68(3-4): 173-196.
[26] Chung Sunlin, Liu Dunyi, Ji Jianqing, et al. Adakites from continental collision zone: melting of thickened lower crust in southern Tibet[J]. Geology, 2003, 31(11): 1021-1024. doi: 10.1130/G19796.1
[27] Clemens J D, Stevens G and Farina F. The enig Matic sources of I-type granites: The peritectic connexion[J]. Lithos, 2011, 126(3): 174-181.
[28] Collins W J, Beams S D, White A J R, et al. Nature and origin of A-type granites with particular reference to southeastern Australia[J]. Contributions to Mineralogy and Petrology, 1982, 80(2): 189-200. doi: 10.1007/BF00374895
[29] Eby G N. Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications[J]. Geology, 1992, 20, 641-644.
[30] Elena A K, Maurice B, Jacques M. Discovery of the Tethys-Tethys residual peridotites along the Anye Maqen-KunLun suture zone (North Tibet)[J]. Comptes Rendus-Geoscience, 2003, 335, 709−719.
[31] Griffin W L, Wang Xiang, Jackson S E, et al. Zircon chemistry and Mag Ma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes[J]. Lithos, 2002, 61(3-4): 237-269. doi: 10.1016/S0024-4937(02)00082-8
[32] Harris N, Inger S. Trace element modelling of pelite-derived granites[J]. Contributions to Mineralogy and Petrology, 1992, 110(1): 46-56. doi: 10.1007/BF00310881
[33] Healy B, Collins W J and Richards SW. A hybrid origin for Lachlan S-type granites: The Murrumbidgee batholith example[J]. Lithos, 2004, 78(1): 197-216.
[34] Hoskin P W O, Black L P. Metamorphic zircon for Mation by solid-state recrystallization of protolith igneous zircon[J]. Journal of Metamorphic Geology, 2010, 18(4): 423-439.
[35] Hou Zengqian, Gao Yongfeng, Qu Xiaoming, et al. Origin of adakitic intrusives generated during mid-Miocene east-west extension in southern Tibet[J]. Earth and Planetary Science Letters, 2004, 220(1-2): 139-155. doi: 10.1016/S0012-821X(04)00007-X
[36] Hsü K J, Pan G T, Sengör A M C. Tectonic evolution of the Tibetan Plateau: a working hypothesis based on the archipelago model of orogenesis[J]. International Geology Review, 1995, 37(6), 473-508. doi: 10.1080/00206819509465414
[37] Huang M H, Buick I S, Hou L W. Tectonometamorphic Evolution of the Eastern Tibet Plateau: Evidence from the Central Songpan-Garze Orogenic Belt, Western China[J]. Journal of Petrology, 2003, 44(2): 255-278. doi: 10.1093/petrology/44.2.255
[38] Icenhower J, London D. IExperimental partitioning of Rb, Cs, Sr, and Ba between alkali feldspar and peraluminous melt[J]. American Mineralogist, 1996, 81(5-6): 719-734. doi: 10.2138/am-1996-5-619
[39] Ilbeyli N, Pearce J A, Thirlwall M F, et al. Petrogenesis of collision-related plutonics in Central Anatolia, Turkey[J]. Lithos, 2004, 72(3-4): 163-182. doi: 10.1016/j.lithos.2003.10.001
[40] Johannes W, Holtz F. Petrogenesis and Experimental Petrology of Granitic Rocks[J]. Minerals, Rocks and Mountains, 1996.
[41] Jung S, Mezger K, Hoernes S. Petrology and geochemistry of syn- to post-collisional metaluminous A-type granites - a Major and trace element and Nd-Sr-Pb-O isotope study from the Proterozoic Da Mara Belt, Namibia[J]. Lithos, 1998, 45(1-4): 147-175. doi: 10.1016/S0024-4937(98)00030-9
[42] Li Xiaohua, Li Zhengxiang, Li Wuxian, et al. U-Pb zircon, geochemical and Sr-Nd-Hf isotopic constraints on age and origin of Jurassic I-and A-type granites from central Guangdong, SE China: A Major igneous event in response to foundering of a subducted flat-slab[J]. Lithos, 2007, 96(1-2): 186-204. doi: 10.1016/j.lithos.2006.09.018
[43] Liu Yin, Xiao Wenjiao, Windley B F, et al. Late Triassic ridge subduction of Paleotethys: Insights from high-Mg granitoids in the Songpan-Ganzi area of northern Tibet[J]. Lithos, 2019, 334-335: 254-272. doi: 10.1016/j.lithos.2019.03.012
[44] Liu Yongsheng, Gao Shan, Hu Zhaochu, et al. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from Mantle xenoliths[J]. Journal of Petrology, 2010a, 51(1-2): 537-571. doi: 10.1093/petrology/egp082
[45] Liu Yongsheng, Hu Zhanchu, Gao Shan, et al. Insituanalysis of Major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1-2): 34-43. doi: 10.1016/j.chemgeo.2008.08.004
[46] Liu Yongsheng, Hu Zhanchu, Zong Keqing, et al. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 2010b, 55(15): 1535-1546. doi: 10.1007/s11434-010-3052-4
[47] Ludwig K R. User’s Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel[J]. Berkeley: Berkeley Geochronlogical Center Special Publication, 2003, 4: 25-32.
[48] Mattauer M, Malavieille J, Calassou S, et al. La chaine triasique de Songpan-Garze (ouest Sechuan et est Tibet): Une chaine de plissement-decollement sur Marge passive. Comptes rendus de l'Académie des sciences[J]. Série 2, Mécanique, Physique, Chimie, Sciences de l'univers, Sciences de la Terre, 1992, 314.6: 619-626.
[49] Middlemost E A K. Naming Materials in the Mag Ma/igneous rock system[J]. Annual Review of Earth & Planetary Sciences, 1994, 37(3-4): 215-224.
[50] Nabelek P I, Bartlett C D. Petrologic and geochemical links between the post-collisional Proterozoic Harney Peak leucogranite, South Dakota, USA, and its source rocks[J]. Lithos, 1998, 45(1-4): 71-85. doi: 10.1016/S0024-4937(98)00026-7
[51] Nakada S, Takahashi M. Regional variation in chemistry of the Miocene intermediate to felsic Mag Mas in the Outer Zone and the Setouch province of Southwest Japan[J]. Mining Geology, 1979, 85(9): 571-582.
[52] Nash W P, Crecraft H R. Partition coefficients for trace elements in silicic Mag Mas[J]. Geochimica Et Cosmochimica Acta, 1985, 49(11): 2309-2322. doi: 10.1016/0016-7037(85)90231-5
[53] Nie Shangyou, Yin An, Rowley D B, et al. Exhu Mation of the Dabie Shan Ultra-High-Pressure Rocks and Accumulation of the Songpan-Ganzi Flysch Sequence, Central China[J]. Geology, 1994, 22: 999-1002.
[54] Patiño Douce A E, Beard J S. Dehydration-melting of Biotite Gneiss and Quartz Amphibolite from 3 to 15 kbar[J]. Journal of Petrology, 1995, 36(3): 707-738. doi: 10.1093/petrology/36.3.707
[55] Patino-Douce A E P, Harris N. Experimental Constraints on Hi Malayan Anatexis[J]. Journal of Petrology, 1998, 39(4): 689-710. doi: 10.1093/petroj/39.4.689
[56] Patino-Douce A E P, McCarthy T C. Melting of Crustal Rocks During Continental Collision and Subduction[J]. Petrology and Structural Geology, 1998b.
[57] Peccerillo A, Taylor S R. Geochemistry of Eocene Calc-alkaline volcanic rocks from the Kastamonu Area, Northern Turkey[J]. Contributions to Mineralogy and Petrology, 1976, 58(1): 63-81. doi: 10.1007/BF00384745
[58] Petford N, Atherton M. Na-rich Partial Melts from Newly Underplated Basaltic Crust: the Cordillera Blanca Batholith, Peru[J]. Journal of Petrology, 1996, 37(6): 1491-1521. doi: 10.1093/petrology/37.6.1491
[59] Qi Liang, Hu Jing and Conard D C. Determination of trace elements in granites by inductively coupled plas Ma Mass spectrometry[J]. Talanta, 2000, 51(3): 507-513. doi: 10.1016/S0039-9140(99)00318-5
[60] Rapp R P, Watson E B. Dehydration Melting of Metabasalt at 8-32 kbar: Implications for Continental Growth and Crust- Mantle Recycling[J]. Journal of Petrology, 1995, 36(4): 891-931. doi: 10.1093/petrology/36.4.891
[61] Reid A J, Wilson C J L, Liu S. Structural evidence for the Permo-Triassic tectonic evolution of the Yidun Arc, eastern Tibetan Plateau[J]. Journal of Structural Geology, 2005, 27(1): 119-137. doi: 10.1016/j.jsg.2004.06.011
[62] Richwood P C. Boundary lines within petrologic diagrams which use oxides of major and minor elements[J]. Lithos, 1989, 22(4): 247−263.
[63] Roger F, Arnaud N, Gilder S, et al. Geochronological and geochemical constraints on Mesozoic suturing in east central Tibet[J]. Tectonics, 2003, 22(4).
[64] Roger F, Malavieille J, Leloup P H, et al. Timing of granite emplacement and cooling in the Songpan-Garze Block (eastern Tibetan Plateau) with tectonic implications[J]. Journal of Asian Earth Sciences, 2004, 22(5): 465-481. doi: 10.1016/S1367-9120(03)00089-0
[65] Rudnick R L and Gao Shan. Composition of the continental crust. In: Rudnick R L ( ed. ) . Treatise on Geochemistry[J]. The Crust, 2003, 3: 1-64
[66] Rushmer T. Partial melting of two amphibolites: contrasting experimental results under fluid-absent conditions[J]. Contributions to Mineralogy and Petrology, 1991, 107(1): 41-59. doi: 10.1007/BF00311184
[67] Sengör A M C. Tectonic Subdivisions and Evolution of Asia[J]. Bull. Tech. Univ. Istanbul, 1985, 46: 355-435.
[68] Sisson T W, Ratajeski K, Hankins W B, et al. Voluminous granitic Mag Mas from common basaltic sources[J]. Contributions to Mineralogy & Petrology, 2005, 148(6): 635-661.
[69] Skjerlie K P, Johnston A D. Vapor-absent melting at 10 kbar of a biotite- and amphibole-bearing tonalitic gneiss: Implications for the generation of A-type granites[J]. Geology, 1992, 20(3): 263. doi: 10.1130/0091-7613(1992)020<0263:VAMAKO>2.3.CO;2
[70] Sun S S, McDonough W F. Chemical and isotopic syste Matics of oceanic basalts: Implications for Mantle composition and processes[J]. Geological Society London Special Publications, 1989, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19
[71] Sun Yong, Chen Liang, Feng Tao, et al. A dynamic model of Paleo-Tethyan evolution: evidences from Paleo-Tethyan ophiolite in China. Northwest University, 2002, 32, 1−6.
[72] Sylvester P J, Liegeois J P. Post-collisional strongly peraluminous granites[J]. Lithos, 1998, 45(1-4): 29-44. doi: 10.1016/S0024-4937(98)00024-3
[73] Tepper J H, Nelson B K, Bergantz G W. Petrology of the Chilliwack batholith, North Cascades, Washington: generation of calc-alkaline granitoids by melting of Mafic lower crust with variable water fugacity[J]. Contributions to Mineralogy & Petrology, 1993, 113(3): 333-351.
[74] Turner S, Hawkesworth C, Liu J Q, et al. Timing of Tibetan uplift constrained by analysis of volcanic rocks[J]. Nature, 1993, 364(6432): 50-54. doi: 10.1038/364050a0
[75] Wang Xiaofeng, Metcalfe I, Jian Ping, et al. The Jinshajiang-Ailaoshan Suture Zone, China: Tectonostratigraphy, age and evolution[J]. Journal of Asian Earth Sciences, 2000, 18(6): 675-690. doi: 10.1016/S1367-9120(00)00039-0
[76] Weislogel A L. Tectonostratigraphic and geochronologic constraints on evolution of the northeast Paleotethys from the Songpan-Ganzi complex, central China[J]. Tectonophysics, 2008, 451(1-4): 0-345.
[77] Whalen J B, Currie K L and Chappell B W. A-type granites: Geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 1987, 95(4): 407-419. doi: 10.1007/BF00402202
[78] Wolf M B, Wyllie P J. The For Mation of Tonalitic Liquids during the Vapor-Absent Partial Melting of Amphibolite at 10 kbar[J]. EOS, 1992, 70: 506-518.
[79] Wu Fuyuan, Jahn B M, Wilde S A, et al. Highly fractionated I-type granites in NE China (I): geochronology and petrogenesis[J]. Lithos, 2003, 66: 241-273. doi: 10.1016/S0024-4937(02)00222-0
[80] Wu Fuyuan, Lin Jingqian, Wilde S A, et al. Nature and significance of the Early Cretaceous giant igneous event in eastern China[J]. Earth and Planetary Science Letters, 2005, 233(1-2): 0-119.
[81] Wu Fuyuan, Sun Deyou, Li Huimin, et al. A-type granites in Northeastern China: Age and geochemical constraints on their petrogenesis[J]. Chemical Geology, 2002, 187(1-2): 143-173. doi: 10.1016/S0009-2541(02)00018-9
[82] Xiao Long, Zhang Hongfei, Clemens J D, et al. Late Triassic granitoids of the eastern Margin of the Tibetan Plateau: Geochronology, petrogenesis and implications for tectonic evolution[J]. Lithos, 2007, 96(3-4): 436-452. doi: 10.1016/j.lithos.2006.11.011
[83] Yin An, Harrison T M. Geologic Evolution of the Hi Malayan-Tibetan Orogen[J]. Annual Review of Earth and Planetary Sciences, 2000, 28(1): 211-280. doi: 10.1146/annurev.earth.28.1.211
[84] Yin An, Nie Shangyou. An indentation model for the North and South China collision and the development of the Tan-Lu and Honam Fault Systems, eastern Asia[J]. Tectonics, 1993, 12(4): 801-813. doi: 10.1029/93TC00313
[85] Yuan Chao, Zhou Meifu, Sun Min, et al. Triassic granitoids in the eastern Songpan-Ganzi Fold Belt, SW China: Mag Matic response to geodynamics of the deep lithosphere[J]. Earth and Planetary Science Letters, 2010, 290(3-4): 0-492.
[86] Yuan Honglin, Gao Shan, Liu Xiaoming, et al. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plas Ma- Mass spectrometry[J]. Geostandards and Geoanalytical Research, 2004, 28(3): 353-370. doi: 10.1111/j.1751-908X.2004.tb00755.x
[87] Zhang Hongfei, Parrish R, Zhang Li, et al. A-type granite and adakitic Mag Matism association in Songpan–Garze block, eastern Tibetan Plateau: Implication for lithospheric delamination[J]. Lithos, 2007, 97(3-4): 323-335. doi: 10.1016/j.lithos.2007.01.002
[88] Zhang Hongfei, Zhang Li, Harris N, et al. U-Pb Zircon Ages, Geochemical and Isotopic Compositions of Granitoids in Songpan-Garze Block, Eastern Tibetan Plateau: Constraints on Petrogenesis, Nature of Basement and Tectonic Evolution[J]. Contributions to Mineralogy and Petrology, 2006, 152: 75-88. doi: 10.1007/s00410-006-0095-2
[89] Zhang Liyun, Ding Lin, Pullen A, et al. Age and geochemistry of western Hoh-Xil-Songpan-Ganzi granitoids, northern Tibet: Implications for the Mesozoic closure of the Paleo-Tethys ocean[J]. Lithos, 2014, 190-191: 328-348. doi: 10.1016/j.lithos.2013.12.019
[90] Zheng Yongfei, Zhang Shaobing, Zhao Zifu, et al. Contrasting Zircon Hf and O Isotopes in the Two Episodes of Neoproterozoic Granitoids in South China: Implications for Growth and Reworking of Continental Crust[J]. Lithos, 2007, 96: 127-150. doi: 10.1016/j.lithos.2006.10.003
[91] Zhong Hong, Zhu Weiguang, Hu Ruizhong, et al. Zircon U-Pb age and Sr-Nd-Hf isotope geochemistry of the Panzhihua A-type syenitic intrusion in the Emeishan large igneous province, southwest China and implications for growth of juvenile crust[J]. Lithos, 2009, 110: 109-128. doi: 10.1016/j.lithos.2008.12.006
-