塔里木盆地东北缘绿洲区土壤养分特征及主控因素分析

刘靖宇, 蒋磊, 尹立河, 胡宏利, 王龙龙, 孙吉干. 2023. 塔里木盆地东北缘绿洲区土壤养分特征及主控因素分析. 西北地质, 56(3): 141-152. doi: 10.12401/j.nwg.2023088
引用本文: 刘靖宇, 蒋磊, 尹立河, 胡宏利, 王龙龙, 孙吉干. 2023. 塔里木盆地东北缘绿洲区土壤养分特征及主控因素分析. 西北地质, 56(3): 141-152. doi: 10.12401/j.nwg.2023088
LIU Jingyu, JIANG Lei, YIN Lihe, HU Hongli, WANG Longlong, SUN Jigan. 2023. Soil Nutrient Characteristics and Main Controlling Factors in the Oasis Zone of the Northeastern Margin of Tarim Basin. Northwestern Geology, 56(3): 141-152. doi: 10.12401/j.nwg.2023088
Citation: LIU Jingyu, JIANG Lei, YIN Lihe, HU Hongli, WANG Longlong, SUN Jigan. 2023. Soil Nutrient Characteristics and Main Controlling Factors in the Oasis Zone of the Northeastern Margin of Tarim Basin. Northwestern Geology, 56(3): 141-152. doi: 10.12401/j.nwg.2023088

塔里木盆地东北缘绿洲区土壤养分特征及主控因素分析

  • 基金项目: 中国地质调查局项目“环塔里木盆地绿洲区土壤盐渍化现状调查评价”(DD20220872),“南疆地区盐渍化区(巴州)生态地质调查”(DD20191026)和陕西省创新能力支撑计划(2019TD-040)联合资助。
详细信息
    作者简介: 刘靖宇(1992−),男,硕士研究生,工程师,从事资源与环境研究。E−mail:liujingyu@mail.cgs.gov.cn
    通讯作者: 蒋磊(1987−),男,硕士,高级工程师,从事生态地质研究。E−mail:394465421@qq.com
  • 中图分类号: P595;X142

Soil Nutrient Characteristics and Main Controlling Factors in the Oasis Zone of the Northeastern Margin of Tarim Basin

More Information
  • 土壤健康关系人民生产生活水平,关乎国家粮食安全,是重要的战略资源。为摸清塔里木盆地东北缘典型绿洲区土壤养分特征,采集研究区土壤表层样品140件,测定主要养分元素含量,分析其生态化学计量特征、空间分布规律及影响养分富集的主控因素。结果表明:① 研究区Fe、Mn含量高值分布面积最广,Mg含量高值分布范围最小;分析土壤生态化学计量特征,发现缺氮少磷是限制区内植物正常生长的主控因素。②从数量上来看,研究区贫瘠、极贫瘠级别的土地面积占总面积的99.14%,仅0.86%的土地处于中等级别水平。从空间分布上来看,中等肥力的土地分布在区内东南部,呈孤岛状;极贫瘠的土地主要分布在绿洲–荒漠的过渡带上。③研究区4种土地利用方式中,耕地的土壤养分含量较高;土壤养分元素的含量与坡向、地表粗糙度呈正相关关系,与海拔呈负相关关系。同时,土壤养分的丰缺与长期连作、作物施肥、灌溉技术等人为影响也有着密切的关系。

  • 加载中
  • 图 1  研究区与采样点位置图

    Figure 1. 

    图 2  土壤养分元素的空间分布图

    Figure 2. 

    图 3  土壤养分肥力空间分布图

    Figure 3. 

    图 4  不同土地利用类型的土壤养分元素分布特征

    Figure 4. 

    图 5  养分元素与地形因子冗余分析图

    Figure 5. 

    图 6  养分元素与地形因子相关性分析图

    Figure 6. 

    表 1  描述统计相关参数表(n=140)

    Table 1.  Describes the statistically related parameters (n=140)

    元素最小值最大值均值标准偏差偏度峰度变异系数(%)正态分布
    TN0.010.130.040.021.122.180.47平方差
    Corg0.061.830.430.291.503.650.68平方差
    TC1.153.452.450.470.00−0.660.19平方差
    Mo0.372.040.820.301.292.370.37对数
    Fe1.705.063.100.670.48−0.440.22平方差
    TK1.232.792.200.22−0.372.880.10平方差
    Mg1.384.492.770.620.34−0.280.22平方差
    Mn261.63732.43480.4993.390.42−0.320.19对数
    TP336.08869.40557.23109.320.560.260.20对数
     注:TN、Corg、TC、TK、Fe、Mg含量为%;Mo、Mn、TP含量为10–6
    下载: 导出CSV

    表 2  第二次全国土壤普查土壤养分分级标准表

    Table 2.  Soil nutrient classification standards for the second national soil survey

    一级二级三级四级五级六级
    TN>401.5~21~1.50.75~10.5~0.75<0.5
    TP>10.8~10.6~0.80.4~0.60.2~0.4<0.2
    TK>2520~2515~2010~155~10<5
    有机质>4030~4020~3010~206~10<6
     注:元素含量均为‰。
    下载: 导出CSV

    表 3  半方差函数相关参数表

    Table 3.  Related parameters of the half-variance function

    元素块金值
    C0
    基台值
    C0+C
    块金比
    C0/C0+C
    变程
    R
    决定系数
    R2
    残差
    RSS
    模型
    TN1.21E-042.04E-030.9414170.000.742.49E-09指数模型
    Corg0.00250.04450.9444770.000.701.07E-04指数模型
    TC0.00160.02370.9334800.000.211.43E-05球状模型
    Mo0.00790.11080.9293420.000.271.72E-04指数模型
    Fe0.00520.0340.8482390.230.498.81E-06高斯模型
    TK7.80E-045.72E-030.8644710.000.797.61E-08指数模型
    Mg0.00430.03540.8802760.000.216.25E-05指数模型
    Mn0.00080.03680.9782720.000.546.57E-06球状模型
    TP0.00220.03820.9422810.000.352.86E-05球状模型
    下载: 导出CSV

    表 4  土壤养分元素的权重表

    Table 4.  Weights of soil nutrient elements

    元素TNCorgTCMoFeTKMgMnTP
    权重0.19950.22540.05370.16220.08850.02190.07990.07150.0974
    下载: 导出CSV

    表 5  肥力等级及面积占比表

    Table 5.  Fertility grade and area ratio

    土壤肥力等级肥沃F1较肥沃F2中等F3贫瘠F4极贫瘠F5
    IFI≥0.80.6~0.80.4~0.60.2~0.4≤0.2
    面积占比000.86%89.64%9.50%
    下载: 导出CSV

    表 6  不同土地利用方式间土壤生态化学计量特征表

    Table 6.  Soil ecological stoichiometry of different land use methods

    生态化学计量比耕地园地林地荒地
    wC∶wN69.20±15.20ab65.17±10.85a74.31±12.32b68.73±10.32a
    wC∶wP42.99±5.70a45.20±7.09ab46.06±7.22b44.32±5.90a
    wN∶wP0.71±0.11a0.73±0.11b0.72±0.08ab0.71±0.11a
     注:表中数据为平均值±标准差,不同小写字母表示不同土地利用方式土壤生态化学计量特征差异显著。
    下载: 导出CSV
  • [1]

    鲍士旦. 土壤农化分析(第三版)[M]. 北京: 中国农业出版社, 2008

    BAO Shidan. Soil agrochemical analysis (3rd ed. ) [M]. Beijing: China Agricultural Press, 2008.

    [2]

    陈金萍, 李奕, 李祥余, 等. 不同农业土地利用方式对土壤养分含量分布影响及养分等级评价[J]. 萍乡学院学报, 2022, 39(3): 111-116

    CHEN Jinping, LI Yi, LI Xiangyu, et al. Effects of different agricultural land use practices on soil nutrient content distribution and evaluation of nutrient classes[J]. Journal of Pingxiang College, 2022, 39(3): 111-116.

    [3]

    陈彦. 绿洲农田土壤养分时空变异及精确分区管理研究[D]. 石河子: 石河子大学, 2008

    CHEN Yan. Research on spatial and temporal variability of soil nutrients in oasis farmland and precise zoning management[D]. Shihezi: Shihezi University, 2008.

    [4]

    冯博, 周皓, 徐阳, 等. 矿区农地重金属污染风险评价——基于改进的模糊综合评价法[J]. 有色金属工程, 2022, 12(2): 138-145 doi: 10.3969/j.issn.2095-1744.2022.02.019

    FENG Bo, ZHOU Hao, XU Yang, et al. Evaluation of heavy metal pollution risk in agricultural land in mining areas--based on improved fuzzy integrated evaluation method[J]. Nonferrous Metals, 2022, 12(2): 138-145. doi: 10.3969/j.issn.2095-1744.2022.02.019

    [5]

    郭雯雯, 毕淑琪, 李冰, 等. 不同土地利用参数下CALPUFF模型的敏感性分析[J]. 环境污染与防治, 2022, 44(6): 705-709

    GUO Wenwen, BI Shuqi, LI Bing, et al. Sensitivity analysis of CALPUFF model under different land use parameters[J]. Environmental Pollution & Control, 2022, 44(6): 705-709.

    [6]

    贺思楠, 吕刚, 王锋柏, 等. 辽西北风沙地土壤养分空间变异性与土地利用的关系[J]. 沈阳农业大学学报, 2022, 53(2): 213-220. doi: 10.3969/j.issn.1000-1700.2022.02.010

    HE Sinan, LV Gang, WANG Fengbai, et al. Relationship between spatial variability of soil nutrients and land use in a wind-sand landscape in northwest Liaoning Province[J]. Journal of Shenyang Agricultural University, 2022, 53(2): 213-220. doi: 10.3969/j.issn.1000-1700.2022.02.010

    [7]

    黄彩变, 严军, 鞠景枫, 等. 塔里木盆地南缘新垦农田土壤性状变化及其与小麦产量的关系[J]. 水土保持学报, 2020, 34(2): 245-252 doi: 10.13870/j.cnki.stbcxb.2020.02.035

    HANG Caibian, YAN Jun, JU Jingfeng, et al. Changes in soil properties and their relationship with wheat yield in newly reclaimed farmland on the southern edge of the Tarim Basin[J]. Journal of Soil and Water Conservation, 2020, 34(2): 245-252. doi: 10.13870/j.cnki.stbcxb.2020.02.035

    [8]

    黄锦学, 熊德成, 刘小飞, 等. 增温对土壤有机碳矿化的影响研究综述[J]. 生态学报, 2017, 37(1): 12-24

    HUANG Jinxue, XIONG Decheng, LIU Xiaofei, et al. Effects of warming on soil organic carbon mineralization: A review[J]. Acta Ecologica Sinica, 2017, 37(1): 12-24.

    [9]

    贾佳瑜, 刘小芳, 赵勇钢, 等. 汾河流域下游农田土壤重金属空间分布特征与污染评价[J]. 干旱区资源与环境, 2021, 35(8): 132-137 doi: 10.13448/j.cnki.jalre.2021.224

    JIA Jiayu, LIU Xiaofang, ZHAO Yonggang, et al. Spatial distribution characteristics and pollution evaluation of heavy metals in agricultural soils in the downstream of Fen River Basin[J]. Journal of Arid Land Resources and Environment, 2021, 35(8): 132-137. doi: 10.13448/j.cnki.jalre.2021.224

    [10]

    贾鲁净, 杨联安, 封涌涛, 等. 宝鸡市农耕区土壤养分空间变异及其影响因素分析[J]. 干旱区资源与环境, 2022, 36(12): 135-143

    JIA Lujing, YANG Lianan, FENG Yongtao, et al. Spatial variability of soil nutrients and its influencing factors in the farming area of Baoji[J]. Journal of Arid Land Resources and Environment, 2022, 36(12): 135-143.

    [11]

    李丹维, 王紫泉, 田海霞, 等. 太白山不同海拔土壤碳、氮、磷含量及生态化学计量特征[J]. 土壤学报, 2017, 54(1): 160-170 doi: 10.11766/trxb201604140096

    LI Danwei, WANG Ziquan, TIAN Haixia, et al. Carbon, nitrogen and phosphorus contents and ecological stoichiometry of soils at different altitudes in the Taibai Mountains[J]. Acta Pedologica Sinica, 2017, 54(1): 160-170. doi: 10.11766/trxb201604140096

    [12]

    李红林, 贡璐, 朱美玲, 等. 塔里木盆地北缘绿洲土壤化学计量特征[J]. 土壤学报, 2015, 52(6): 1345-1355 doi: 10.11766/trxb201411220585

    LI Honglin, GONG Lu, ZHU Meiling, et al. Soil chemometric characteristics of oases on the northern edge of the Tarim Basin[J]. Acta Pedologica Sinica, 2015, 52(6): 1345-1355. doi: 10.11766/trxb201411220585

    [13]

    李美娟, 陈国宏, 陈衍泰. 综合评价中指标标准化方法研究[C]. 2004年中国管理科学学术会议, 2004

    LI Meijuan, CHEN Guohong, CHEN Yantai. Research on standardization methods of indicators in comprehensive evaluation[C]. 2004 Chinese Management Science Conference, 2004.

    [14]

    廖启林, 华明, 张为, 等. 人为活动对江苏土壤元素含量分布的影响[J]. 地质学刊, 2012, 36(2): 147-156 doi: 10.3969/j.issn.1674-3636.2012.02.147

    LIAO Qilin, HUA Ming, ZHANG Wei, et al. Influence of anthropogenic activities on the distribution of soil elemental content in Jiangsu[J]. Acta Geologica Sinica, 2012, 36(2): 147-156. doi: 10.3969/j.issn.1674-3636.2012.02.147

    [15]

    刘寒双, 崔纪菡, 刘猛, 等. 有机肥替代部分化肥对谷子产量、土壤养分及酶活性的影响[J]. 中国土壤与肥料, 2022(7): 71-81 doi: 10.11838/sfsc.1673-6257.21183

    LIU Hanshang, CUI Jihan, LIU Meng, et al. Effects of organic fertilizers on grain yield, soil nutrients and enzyme activities by replacing some chemical fertilizers[J]. Soil and Fertilizer Sciences in China, 2022(7): 71-81. doi: 10.11838/sfsc.1673-6257.21183

    [16]

    刘庆, 王静, 史衍玺, 等. 基于GIS的农田土壤重金属空间分布研究[J]. 安全与环境学报, 2007(2): 109-113 doi: 10.3969/j.issn.1009-6094.2007.02.029

    LIU Qing, WANG Jing, SHI Yanxi, et al. Spatial distribution of heavy metals in agricultural soils based on GIS[J]. Journal of Safety and Environment, 2007(2): 109-113. doi: 10.3969/j.issn.1009-6094.2007.02.029

    [17]

    鲁泽让, 夏梓泰, 芦美, 等. 周年轮作休耕对土壤AMF群落和团聚体稳定性的影响[J]. 环境科学, 2023: 1-14

    LU Zerang, XIA Zitai, LU Mei, et al. Effects of annual crop rotation fallow on the stability of soil AMF communities and aggregates[J]. Environmental Science, 2023: 1-14.

    [18]

    李青, 薛珍. 塔里木河流域居民生态认知与支付行为空间异质性研究——基于上中下游2133个居民调查数据[J]. 干旱区资源与环境, 2018, 32(1): 14-21 doi: 10.13448/j.cnki.jalre.2018.003

    LI Qing, XUE Zhen. Spatial heterogeneity of ecological cognition and payment decision behavior in the Tarim River Basin-Based on the survey data of 2133 residents[J]. Journal of Arid Land Resources and Environment, 2018, 32(1): 14-21. doi: 10.13448/j.cnki.jalre.2018.003

    [19]

    马倩倩, 董博, 许旺旺, 等. 干旱区耕地质量等级评价及土壤养分与盐渍化的分析研究——以民勤绿洲为例[J]. 干旱区地理, 2021, 44(2): 514-524 doi: 10.12118/j.issn.10006060.2021.02.22

    MA Qianqian, DONG Bo, XU Wangwang, et al. Evaluation of arable land quality rating and analysis of soil nutrients and salinization in arid areas: the case of Minqin Oasis[J]. Arid Land Geography, 2021, 44(2): 514-524. doi: 10.12118/j.issn.10006060.2021.02.22

    [20]

    能子礼超, 勾琴, 刘盛余, 等. 模糊数学法综合评价土壤重金属污染程度研究[J]. 能源与环保, 2020, 42(7): 39-43

    NENG ZI Lichao, GOU Qin, LIU Shengyu, et al. Fuzzy mathematical method for comprehensive evaluation of soil heavy metal pollution[J]. China Energy and Environmental Protection, 2020, 42(7): 39-43.

    [21]

    宋铮, 余庭龙, 朱春云, 等. 高寒丘陵区不同退耕年限人工林形质评价[J]. 西北林学院学报, 2020, 35(6): 52-59 doi: 10.3969/j.issn.1001-7461.2020.06.07

    SONG Zheng, YU Tinglong, ZHU Chunyun, et al. Evaluation of the morphological quality of plantation forests in alpine hilly areas with different years of fallowing[J]. Journal of Northwest Forestry University, 2020, 35(6): 52-59. doi: 10.3969/j.issn.1001-7461.2020.06.07

    [22]

    陶睿, 王子芳, 高明, 等. 重庆市丰都县紫色土养分空间变异及土壤肥力评价[J]. 土壤, 2017, 49(1): 155-161 doi: 10.13758/j.cnki.tr.2017.01.023

    TAO Rui, WANG Zifang, GAO Ming, et al. Spatial variation of nutrients and evaluation of soil fertility in purple soils of Fengdu County, Chongqing[J]. Soils, 2017, 49(1): 155-161. doi: 10.13758/j.cnki.tr.2017.01.023

    [23]

    陶于祥, 许凯丰, 易宗旺, 等. 基于半变异函数的城市热岛空间异质性分析[J]. 西南大学学报(自然科学版), 2018, 40(10): 145-152 doi: 10.13718/j.cnki.xdzk.2018.10.023

    TAO Yuxiang, XU Kaifeng, YI Zongwang, et al. Spatial heterogeneity analysis of urban heat island based on semi-variance function[J]. Journal of Southwest University(Natural Science Edition), 2018, 40(10): 145-152. doi: 10.13718/j.cnki.xdzk.2018.10.023

    [24]

    田鸽. 秦岭火地塘土壤养分空间分布特征及其影响因素[D]. 西安: 长安大学, 2021

    TIAN Ge. Spatial distribution characteristics of soil nutrients in Tierra del Fuego in the Qinling Mountains and its influencing factors[D]. Xi’an: Chang’an University, 2021.

    [25]

    田立文, 祁永春, 戴路, 等. 新疆南疆耕地土壤养分含量及其分布特征评价——以阿克苏地区为例[J]. 核农学报, 2020, 34(1): 214-223 doi: 10.11869/j.issn.100-8551.2020.01.0214

    TIAN Liwen, QI Yongchun, DAI Lu, et al. Evaluation of soil nutrient content and its distribution characteristics in arable land in South Xinjiang - an example from Aksu region[J]. Acta Agriculturae Nucleatae Sinica, 2020, 34(1): 214-223. doi: 10.11869/j.issn.100-8551.2020.01.0214

    [26]

    王宇超, 李倩, 黎斌, 等. 秦岭南坡中段植物群落物种多样性与环境相关性分析[J]. 基因组学与应用生物学, 2016, 35(10): 2859-2866 doi: 10.13417/j.gab.035.002859

    WANG Yuchao, LI Qian, LI Bin, et al. Analysis of species diversity and environmental relevance of plant communities on the southern slopes of the Qinling Mountains[J]. Genomics and Applied Biology, 2016, 35(10): 2859-2866. doi: 10.13417/j.gab.035.002859

    [27]

    魏新, 郑小锋, 张硕新. 秦岭火地塘不同海拔梯度森林土壤理化性质研究[J]. 西北林学院学报, 2014, 29(3): 9-14 doi: 10.3969/j.issn.1001-7461.2014.03.02

    WEI Xin, ZHENG Xiaofeng, ZHANG Shuoxin. Physicochemical properties of forest soils at different elevation gradients in Tierra del Fuego in the Qinling Mountains[J]. Journal of Northwest Forestry University, 2014, 29(3): 9-14. doi: 10.3969/j.issn.1001-7461.2014.03.02

    [28]

    信会男, 赖宁, 耿庆龙, 等. 基于GIS的塔额盆地农田土壤养分空间变异特征分析[J]. 新疆农业科学, 2022, 59(7): 1776-1785 doi: 10.6048/j.issn.1001-4330.2022.07.025

    XIN Huinan, LAI Ning, GENG Qinglong, et al. Analysis of spatial variability of soil nutrients in agricultural fields of the Ta'er Basin based on GIS[J]. Xinjiang Agricultural Sciences, 2022, 59(07): 1776-1785. doi: 10.6048/j.issn.1001-4330.2022.07.025

    [29]

    闫金凤, 陈曦, 罗格平, 等. 干旱区绿洲地下水水位时空变异性对土地覆被变化的响应[J]. 科学通报, 2006(S1): 42-48 doi: 10.3321/j.issn:0023-074X.2006.z1.007

    YAN Jinfeng, CHEN Xi, LUO Geping, et al. Response of spatial and temporal variability of groundwater levels to land cover change in an arid oasis[J]. Chinese Science Bulletin, 2006(S1): 42-48. doi: 10.3321/j.issn:0023-074X.2006.z1.007

    [30]

    杨阳, 李飒, 孙立强, 等. 半变异函数计算波动范围的方法研究[J]. 武汉大学学报(工学版), 2021, 54(7): 618-626 doi: 10.14188/j.1671-8844.2021-07-006

    YANG Yang, LI Sa, SUN Liqiang, et al. Research on the method of calculating the fluctuation range by semi-variance function[J]. Engineering Journal of Wuhan University, 2021, 54(7): 618-626. doi: 10.14188/j.1671-8844.2021-07-006

    [31]

    张慧文, 马剑英, 张自文, 等. 地统计学在土壤科学中的应用[J]. 兰州大学学报(自然科学版), 2009, 45(6): 14-20 doi: 10.13885/j.issn.0455-2059.2009.06.013

    ZHANG Huiwen, MA Jianying, ZHANG Ziwen, et al. Application of geostatistics in soil science[J]. Journal of Lanzhou University(Natural Sciences), 2009, 45(6): 14-20. doi: 10.13885/j.issn.0455-2059.2009.06.013

    [32]

    张子璐, 左昕弘, 刘峰, 等. 渝西丘陵区土壤速效钾空间异质性及影响因素[J]. 土壤学报, 2020, 57(2): 307-315 doi: 10.11766/trxb201902250030

    ZHANG Zilu, ZUO Xinhong, LIU Feng, et al. Spatial heterogeneity and influencing factors of soil fast-acting potassium in the hilly areas of western Chongqing[J]. Acta Pedologica Sinica, 2020, 57(02): 307-315 doi: 10.11766/trxb201902250030

    [33]

    赵敬坤, 陈松柏, 李忠意, 等. 模糊综合评价法判断重庆花椒种植区土壤肥力水平[J]. 中国农机化学报, 2021, 42(10): 206-212 doi: 10.13733/j.jcam.issn.2095-5553.2021.10.29

    ZHAO Jingkun, CHEN Songbai, LI Zhongyi, et al. Fuzzy integrated evaluation method to determine soil fertility level in pepper growing areas of Chongqing[J]. Journal of Chinese Agricultural Mechanization, 2021, 42(10): 206-212. doi: 10.13733/j.jcam.issn.2095-5553.2021.10.29

    [34]

    朱平宗, 张光辉, 杨文利, 等. 红壤区林地浅沟不同植被类型土壤生态化学计量特征[J]. 水土保持研究, 2020, 27(6): 60-65 doi: 10.13869/j.cnki.rswc.2020.06.008

    ZHU Pingzong, ZHANG Guanghui, YANG Wenli, et al. Soil ecological stoichiometry of different vegetation types in shallow furrows in red soil areas[J]. Research of Soil and Water Conservation, 2020, 27(06): 60-65. doi: 10.13869/j.cnki.rswc.2020.06.008

    [35]

    赵雯, 黄来明. 高寒山区不同土地利用类型土壤养分化学计量特征及影响因素[J]. 生态学报, 2022, 42(11): 4415-4427

    ZHAO Wen, HUANG Laiming. Stoichiometric characteristics and influencing factors of soil nutrients under different land use types in an alpine mountain region[J]. Acta Ecologica Sinica, 2022, 42(11): 4415-4427.

    [36]

    Ali E N, Sang S L, Yasser M A, et al. Influence of soil properties and feedstocks on biochar potential for carbon mineralization and improvement of infertile soils[J]. Geoderma, 2018, 332: 100-108. doi: 10.1016/j.geoderma.2018.06.017

    [37]

    Ayoubi, Mehnatkesh, Jalalian, et al. Relationships between grain protein, Zn, Cu, Fe and Mn contents in wheat and soil and topographic attributes[J]. Archives of Agronomy and Soil Science, 2014, 60(5): 625-638. doi: 10.1080/03650340.2013.825899

    [38]

    Cory C C, Daniel L. C: N: P Stoichiometry in Soil: Is There a "Redfield Ratio" for the Microbial Biomass? [J]. Biogeochemistry, 2007, 85(3): 235-252. doi: 10.1007/s10533-007-9132-0

    [39]

    Cheng W J, Xi H Y, Sindikubwabo C, et al. Ecosystem health assessment of desert nature reserve with entropy weight and fuzzy mathematics methods: A case study of Badain Jaran Desert[J]. Ecological Indicators, 2020, 119.

    [40]

    Dai W, Li Y H, FU W J, et al. Spatial variability of soil nutrients in forest areas: A case study from subtropical China[J]. Journal of Plant Nutrition and Soil Science, 2018, 181(6): 827-835. doi: 10.1002/jpln.201800134

    [41]

    Khormali F, Ajami M, Ayoubi S, et al. Role of deforestation and hillslope position on soil quality attributes of loess-derived soils in Golestan province, Iran[J]. Agriculture, Ecosystems and Environment, 2009, 134(3): 178-189.

    [42]

    Li D X, Li Y N, Xie Y L, et al. Effects of ecological restoration on soil biogenic elements and their ecological stoichiometry in the Yellow River Delta, China[J]. Frontiers in Marine Science, 2022.

    [43]

    Li Q, Yang J Y, Guan W H, et al. Soil fertility evaluation and spatial distribution of grasslands in Qilian Mountains Nature Reserve of eastern Qinghai-Tibetan Plateau[J]. Peerj, 2021, 9.

    [44]

    Razan M, Shankar S, Dinesh K, et al. Soil Fertility Mapping and Assessment of the Spatial Distribution of Sarlahi District, Nepal[J]. American Journal of Agricultural Science, 2020, 7(1): 8-16.

    [45]

    Sharma R, Sood K. Characterization of Spatial Variability of Soil Parameters in Apple Orchards of Himalayan Region Using Geostatistical Analysis[J]. Communications in Soil Science and Plant Analysis, 2020, 51(8): 1065-1077. doi: 10.1080/00103624.2020.1744637

    [46]

    Tian H Q, Chen G S, Zhang C, et al. Pattern and variation of C: N: P ratios in China's soils: a synthesis of observational data[J]. Biogeochemistry, 2010, 98(1/3): 139-151.

    [47]

    Xiao J J, Ma H X, Lu C T. Study on Spatial Distribution of Soil Nutrients and Comprehensive Evaluation of Nutrients in Low Mountain-Hilly Region of Sichuan Province, China[J]. Applied Mechanics and Materials, 2013, 2301(295-298): 2544-2548.

    [48]

    Zhang X X, Xu K, Zhang D J. Risk assessment of water resources utilization in Songliao Basin of Northeast China[J]. Environmental Earth Sciences, 2012, 67(5): 1319-1329. doi: 10.1007/s12665-012-1575-5

  • 加载中

(6)

(6)

计量
  • 文章访问数:  908
  • PDF下载数:  80
  • 施引文献:  0
出版历程
收稿日期:  2023-02-09
修回日期:  2023-04-18
刊出日期:  2023-06-20

目录