A Test Method for Soil−Water Characteristics Curve of Unsaturated Loess in the Full Suction Range
-
摘要:
土−水特征曲线是反映非饱和土中水分运移现象以及力学行为的重要参数。笔者采用等温吸附分析法(VSA)和传统的瞬态脱湿吸湿法(TRIM)相结合,提出了一种测定黄土全吸力范围的土−水特征曲线的方法。通过VSA持续测定样品的相对湿度和重量,计算获得高吸力范围内(7.1×103 ~4.8×105 kPa)脱湿与吸湿路径下的基质势与体积含水率的系列离散数据点。依据VSA测试结果确定样品的残余含水率以限定TRIM反演过程,修正了TRIM试验结果的准确性。选用F&X数学模型光滑连接了TRIM在低吸力范围内(0~300 kPa)与VSA的实测结果。该方法具有测量的吸力范围大(1~106 kPa),测量时间短(5~8天),数据准确度高(R2=0.999)的优点。将此方法应用于甘肃董志塬剖面黄土−古土壤(L5-S5)的土−水特征曲线的测试,结果表明,预测模型得出的非饱和黄土土−水特征曲线和TRIM−VSA的实测值具有很好匹配性,证实了该方法的可靠性。该测定非饱和土土−水特征曲线的方式快速、有效,在工程实际中有重要的应用价值。
Abstract:The soil−water characteristic curve is an important parameter which reflects the moisture movement characteristic and mechanical behavior in unsaturated soil. A method is proposed based on vapor sorption analyzer combined with transient water release and imbibition method to determine soil−water characteristic curve in the full suction range. First, the relative humidity and the mass of the sample are continuously measured by VSA, series of discrete data points of matrix suction and volume water content are calculated under drying and wetting paths in the high suction range (7.1×103 ~ 4.8×105 kPa). Secord, the TRIM inversion process is limited through the residual water content of VSA test results. The accuracy of inversion results of TRIM is increased. Finally, the F&X model is used to smoothly connect the test data from TRIM and VSA. The measurement of suction range of this method is wide (1~106 kPa), the measurement time of this method is short (5~8 days), and the measurement accuracy of the method is high (R2=0.999). In this paper, the method is applied to test soil−water characteristic curve of the loess (L5) and paleosol (S5) in Dongzhiyuan, Gansu Province. The results show that the predicted results of this method are consistent with the measured results in the full suction range. The method of determining soil-water characteristic curve of unsaturated soil is fast and effective, and important value in engineering application.
-
表 1 基本物理参数与饱和渗透系数表
Table 1. Basic physical parameters and saturated permeability coefficient
土层 土样基本物理参数 深度
(m)含水率
(%)密度
ρ(g/cm3)干密度
ρd(g/cm3)比重
(Gs)孔隙比
(e)饱和渗透系数
ks(10−5 m/s)塑限
PL(%)液限
LL(%)塑性指数
IP(%)L5 39.2 18.8 1.727 1.454 2.71 0.689 0.652 22.9 30.1 11.4 S5 42.1 19.60 1.975 1.651 2.73 0.653 0.218 16.7 31.8 15.0 表 2 碎屑矿物成分含量表
Table 2. Detrital mineral compositions
样品编号 石英 斜长石 钾长石 方解石 白云石 角闪石 赤铁矿 黄铁矿 TCCM L5 40.6 11.3 3.9 6.5 1.3 0.4 36.0 S5 43.1 12.5 1.7 5.7 0.7 1.2 35.1 表 3 黏土矿物成分含量表
Table 3. Clay mineral compositions
样品编号 黏土矿物相对含量(%) 混层比(%) 蒙脱石(S) I/S 伊利石(It) 高岭石(Kao) 绿泥石(C) C/S I/S C/S L5 47 38 6 9 55 S5 46 40 6 8 55 表 4 化学成分含量表
Table 4. Chemical compositions
样品编号 主要化学成分含量平均值 (%) SiO2 Al2O3 Fe2O3 FeO CaO MgO K2O Na2O TiO2 P2O5 MnO L5 57.35 11.91 3.59 1.01 9.05 2.16 2.39 1.52 0.64 0.14 0.08 S5 65.43 14.51 5.17 0.61 1.73 2.1 2.87 1.21 0.74 0.11 0.11 表 5 脱湿与吸湿路径下的模型参数表
Table 5. The model parameters of the wetting and drying paths
土 层 脱湿路径 吸湿路径
(k/Pa)
(cm/sec)
(k/Pa)
(cm/sec)L5 0.0099 1.134 0.063 0.408 1.73E-5 0.0208 1.149 0.06 0.322 4.37E-6 S5 0.0083 1.074 0.083 0.395 1.63E-5 0.0135 1.085 0.08 0.373 9.43E-7 表 6 高吸力段土–水特征曲线脱/吸湿起始与结束点表
Table 6. The start and end points of wetting/ drying path of high suction range soil–water characteristic curve
土层 试验用时(Min) 吸湿起始点 吸湿结束点(脱湿起始点) 脱湿结束点 RH (%) (kPa) RH (%) (kPa) RH (%) (kPa) L5 2384 0.0283 0.97 490929 0.9496 5.37 7122 0.0280 0.74 492397 S5 2238 0.0315 0.76 476177 0.9464 6.34 7587 0.0289 0.62 488040 表 7 脱湿与吸湿路径下的拟合参数表
Table 7. The fitting parameters of the wetting and drying paths
土 层 脱湿路径 吸湿路径 (kPa) L5 0.408 228.078 18247 0.662 1.425 0.322 101.914 14923 0.571 1.295 S5 0.395 370.008 22381 0.836 1.075 0.373 275.134 17542 0.716 1.148 -
[1] 陈锐, 刘坚, 吴宏伟, 等. 一种装配式新型张力计的研制[J]. 岩土力学, 2013, 34(10): 3028-3032
CHEN Rui, LIU Jian, NG CWW, et al. Development of a new fabricated tensometer [J]. Rock and Soil Mechanics, 2013, 34(10): 3028-3032.
[2] 陈辉, 韦昌富, 陈盼, 等. 一种测定非饱和土-水力学参数的方法[J]. 岩土力学, 2010, 31(10): 3348-3353
CHEN Hui, WEI Changfu, CHEN Pan, et al. A method for determining hydraulic parameters of unsaturated soils. Rock and Soil Mechanics, 2010, 31(10): 3348-3353.
[3] 谌文武, 贾全全, 童艳梅. 莫高窟壁画地仗土-水特征曲线的测定与拟合[J]. 岩土力学, 2020, 41(5): 1483-1491
CHEN Wenwu, JIA Quanquan, TONG Yanmei. Measurement and curve fitting for soil-waterer characteristic curve of mural plaster at Mogao Grottoes [J]. Rock and Soil Mechanics, 2020, 41(5): 1483-1491.
[4] 郭龙, 刘清秉, 王菁莪, 等. 以瞬态方法测试马兰黄土土-水特征曲线试验研究[J]. 长江科学院院报, 2013(11): 67-71 doi: 10.3969/j.issn.1001-5485.2013.11.013
GUO Long, LIU Qingbing, WANG Jinge, et al. Soil-Water Characteristic Curve of Malan Loess by Transient Water Release and Imbibitions Method [J]. Journal of Yangtze River Scientific Research Institute, 2013(11): 67-71. doi: 10.3969/j.issn.1001-5485.2013.11.013
[5] 马田田, 韦昌富, 陈盼等. NaCl溶液对土体持水特性影响的试验研究[J]. 岩土力学, 2015, 36(10): 2831-2836
MA Tiantian, WEI Changfu, CHEN Pan, et al. An experimental study of effect of NaCl solution on soil water characteristics [J]. Rock and Soil Mechanics, 2015, 36(10): 2831-2836.
[6] 牛庚, 孙德安, 韦昌富, 等. 全风化泥岩持水特性研究及其预测[J]. 岩土工程学报, 2016, 38(S2): 216-221 doi: 10.11779/CJGE2016S2035
NIU Geng, SUN Dean, WEI Changfu, et al. Water retention behaviour of complete-intense weathering mudstone and its prediction [J]. Journal of Geotechnical Engineering, 2016, 38(S2): 216-221. doi: 10.11779/CJGE2016S2035
[7] 孙德安, 张俊然, 吕海波. 全吸力范围南阳膨胀土的土-水特征曲线[J]. 岩土力学, 2013, 34(7): 1839-1846
SUN De an, ZHANG Junran, LÜ Haibo. Soil-water characteristic curve of Nanyang expansive soil in full suction range [J]. Rock and Soil Mechanics, 2013, 34(7): 1839-1846.
[8] 叶为民, 白云, 金麒, 等. 上海软土土水特征的室内试验研究[J]. 岩土工程学报, 2006, 28(2): 260-263 doi: 10.3321/j.issn:1000-4548.2006.02.022
YE Weimin, BAI Yun, JIN Qi, et al. Lab experimental study on soil-water characteristics of Shanghai soft clay[J]. Journal of Geotechnical Engineering, 2006, 28(2): 260-263. doi: 10.3321/j.issn:1000-4548.2006.02.022
[9] 伊盼盼, 韦昌富, 魏厚振, 等. 两种快速测定非饱和土水力学参数方法的对比分析[J]. 岩土力学, 2012, 33(7): 2007-2012+2020.
YI Panpan, WEI Changfu, WEI Houzhen, et al. Comparison between two methods for quickly determining hydraulic parameters of unsaturated soils [J]. Rock and Soil Mechanics, 2012, 33(07): 2007-2012+2020.
[10] ASTM International. D5298-10. Standard test method for measurement of soil potential (suction) using filter paper [S]. West Conshohocken, United States: ASTM International, 2013.
[11] Arthur E, Tuller M, Moldrup P, et al. Rapid and Fully Automated Measurement of Water Vapor Sorption Isotherms: New Opportunities for Vadose Zone Research[J]. Educational Technology & Society, 2013, 7(4): 193-200.
[12] Fredlund D G, Rahardjo H, Fredlund M D. Unsaturated soil mechanics in Engineering practice[M]. John Wiley & Sons, INC, Hoboken, New Jersey, 2012.
[13] Fredlund D G, and Xing A. Equation for the soil-water characteristic curve [J]. Canadian Geotechnical Journal, 1994, 31(4): 521-532. doi: 10.1139/t94-061
[14] Gardner W R. Some steady-state solutions of the unsaturated moisture flow equation with application to evaporation from a water table [J]. Soil science, 1958, 85(4): 228-232. doi: 10.1097/00010694-195804000-00006
[15] Genuchten V, Th. M. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils [J]. Soil Science Society of America Journal, 1980, 44(5): 892-898. doi: 10.2136/sssaj1980.03615995004400050002x
[16] Haghighi A, Medero G M, Marinho A M, et al.Temperature effects on suction measurement using the filter paper technique [J]. Geotechnical Testing Journal, 2012,35( 1) : 103575
[17] Knodel P C, Stannard D I. Tensiometers—Theory, Construction, and Use[J]. Geotechnical Testing Journal, 1992, 15(1): 48–58.
[18] Lu N, Likos WJ. Unsaturated soil Mechanics[m]. John Wiley & Sons, INC, 2004.
[19] Likos WJ, Lu N. Automated Humidity System for Measuring Total Suction Characteristics of Clay[J]. Geotechnical Testing Journal, 2003, 26(2): 179-190.
[20] Mcqueen I S, Miller R F. Approximating soil moisture characteristics from limited data: Empirical evidence and tentative model [J]. Water Resources Research, 1974, 10(3).
[21] Nam S, Gutierrez M, Diplas P, et al. Comparison of testing techniques and models for establishing the SWCC of riverbank soils [J]. Engineering Geology, 2010, 110(1-2): 1-10. doi: 10.1016/j.enggeo.2009.09.003
[22] Ryel R, Caldwell M, Yoder C, et al. Hydraulic redistribution in a stand of Artemisia tridentata: evaluation of benefits to transpiration assessed with a simulation model [J]. Oecologia, 2002, 130(2): 173-184. doi: 10.1007/s004420100794
[23] Sillers W S, Fredlund D G, Zakerzadeh N. Mathematical attributes of some soil—water characteristic curve models [M]. Unsaturated soil concepts and their application in geotechnical practice. Springer, Dordrecht, 2001: 243−283.
[24] Wayllace A, Lu N. A Transient Water Release and Imbibitions Method for Rapidly Measuring Wetting and Drying Soil Water Retention and Hydraulic Conductivity Functions [J]. Geotechnical Testing Journal, 2012.