全吸力范围非饱和黄土土−水特征曲线的一种测试方法

江睿君, 张茂省, 张宇航, 冯立, 孙萍萍. 2023. 全吸力范围非饱和黄土土−水特征曲线的一种测试方法. 西北地质, 56(3): 214-222. doi: 10.12401/j.nwg.2023097
引用本文: 江睿君, 张茂省, 张宇航, 冯立, 孙萍萍. 2023. 全吸力范围非饱和黄土土−水特征曲线的一种测试方法. 西北地质, 56(3): 214-222. doi: 10.12401/j.nwg.2023097
JIANG Ruijun, ZHANG Maosheng, ZHANG Yuhang, FENG Li, SUN Pingping. 2023. A Test Method for Soil−Water Characteristics Curve of Unsaturated Loess in the Full Suction Range. Northwestern Geology, 56(3): 214-222. doi: 10.12401/j.nwg.2023097
Citation: JIANG Ruijun, ZHANG Maosheng, ZHANG Yuhang, FENG Li, SUN Pingping. 2023. A Test Method for Soil−Water Characteristics Curve of Unsaturated Loess in the Full Suction Range. Northwestern Geology, 56(3): 214-222. doi: 10.12401/j.nwg.2023097

全吸力范围非饱和黄土土−水特征曲线的一种测试方法

  • 基金项目: 国家自然科学基金项目“黄土水敏性的力学机制及致滑机理”(41530640),重点研发计划“黄土滑坡失稳机理、防控方法与防治示范”(2018YFC15047000)联合资助。
详细信息
    作者简介: 江睿君(1996−),女,博士研究生,主要从事非饱和黄土方面的研究。E−mail:jiangruijun96@163.com
    通讯作者: 张茂省(1962−),男,博士,研究员,长期从事地质调查、灾害防治与生态修复研究工作。E−mail:xjtzms@xjtu.edu.cn
  • 中图分类号: P69

A Test Method for Soil−Water Characteristics Curve of Unsaturated Loess in the Full Suction Range

More Information
  • 土−水特征曲线是反映非饱和土中水分运移现象以及力学行为的重要参数。笔者采用等温吸附分析法(VSA)和传统的瞬态脱湿吸湿法(TRIM)相结合,提出了一种测定黄土全吸力范围的土−水特征曲线的方法。通过VSA持续测定样品的相对湿度和重量,计算获得高吸力范围内(7.1×103 ~4.8×105 kPa)脱湿与吸湿路径下的基质势与体积含水率的系列离散数据点。依据VSA测试结果确定样品的残余含水率以限定TRIM反演过程,修正了TRIM试验结果的准确性。选用F&X数学模型光滑连接了TRIM在低吸力范围内(0~300 kPa)与VSA的实测结果。该方法具有测量的吸力范围大(1~106 kPa),测量时间短(5~8天),数据准确度高(R2=0.999)的优点。将此方法应用于甘肃董志塬剖面黄土−古土壤(L5-S5)的土−水特征曲线的测试,结果表明,预测模型得出的非饱和黄土土−水特征曲线和TRIM−VSA的实测值具有很好匹配性,证实了该方法的可靠性。该测定非饱和土土−水特征曲线的方式快速、有效,在工程实际中有重要的应用价值。

  • 加载中
  • 图 1  瞬态脱湿吸湿试验系统(TRIM)

    Figure 1. 

    图 2  等温吸附仪(VSA)

    Figure 2. 

    图 3  Van Genuchten模型缺陷

    Figure 3. 

    图 4  剖面柱状图

    Figure 4. 

    图 5  L5(a)和S5(b)粒径级配累积曲线图

    Figure 5. 

    图 6  L5(a)和S5(b)试验记录的目标函数图

    Figure 6. 

    图 7  L5(a)和S5(b)高吸力段的土–水特征曲线图(RH=0.03~0.95)

    Figure 7. 

    图 8  L5(a)和S5(b)全吸力范围内土–水特征曲线图

    Figure 8. 

    表 1  基本物理参数与饱和渗透系数表

    Table 1.  Basic physical parameters and saturated permeability coefficient

    土层土样基本物理参数
    深度
    (m)
    含水率
    (%)
    密度
    ρ(g/cm3
    干密度
    ρd(g/cm3
    比重
    Gs
    孔隙比
    e
    饱和渗透系数
    ks(10−5 m/s)
    塑限
    PL(%)
    液限
    LL(%)
    塑性指数
    IP(%)
    L539.218.81.7271.4542.710.6890.65222.930.111.4
    S542.119.601.9751.6512.730.6530.21816.731.815.0
    下载: 导出CSV

    表 2  碎屑矿物成分含量表

    Table 2.  Detrital mineral compositions

    样品编号石英斜长石钾长石方解石白云石角闪石赤铁矿黄铁矿TCCM
    L540.611.33.96.51.30.436.0
    S543.112.51.75.70.71.235.1
    下载: 导出CSV

    表 3  黏土矿物成分含量表

    Table 3.  Clay mineral compositions

    样品编号黏土矿物相对含量(%)混层比(%)
    蒙脱石(S)I/S伊利石(It)高岭石(Kao)绿泥石(C)C/SI/SC/S
    L547386955
    S546406855
    下载: 导出CSV

    表 4  化学成分含量表

    Table 4.  Chemical compositions

    样品编号主要化学成分含量平均值 (%)
    SiO2Al2O3Fe2O3FeOCaOMgOK2ONa2OTiO2P2O5MnO
    L557.3511.913.591.019.052.162.391.520.640.140.08
    S565.4314.515.170.611.732.12.871.210.740.110.11
    下载: 导出CSV

    表 5  脱湿与吸湿路径下的模型参数表

    Table 5.  The model parameters of the wetting and drying paths

    土 层脱湿路径吸湿路径

    (k/Pa)


    (cm/sec)

    (k/Pa)

    (cm/sec)
    L50.00991.1340.0630.4081.73E-50.02081.1490.060.3224.37E-6
    S50.00831.0740.0830.3951.63E-50.01351.0850.080.3739.43E-7
    下载: 导出CSV

    表 6  高吸力段土–水特征曲线脱/吸湿起始与结束点表

    Table 6.  The start and end points of wetting/ drying path of high suction range soil–water characteristic curve

    土层试验用时(Min)吸湿起始点吸湿结束点(脱湿起始点)脱湿结束点
    RH(%)(kPa)RH(%)(kPa)RH(%)(kPa)
    L523840.02830.974909290.94965.3771220.02800.74492397
    S522380.03150.764761770.94646.3475870.02890.62488040
    下载: 导出CSV

    表 7  脱湿与吸湿路径下的拟合参数表

    Table 7.  The fitting parameters of the wetting and drying paths

    土 层脱湿路径吸湿路径
    kPa
    L50.408228.078182470.6621.4250.322101.914149230.5711.295
    S50.395370.008223810.8361.0750.373275.134175420.7161.148
    下载: 导出CSV
  • [1]

    陈锐, 刘坚, 吴宏伟, 等. 一种装配式新型张力计的研制[J]. 岩土力学, 2013, 34(10): 3028-3032

    CHEN Rui, LIU Jian, NG CWW, et al. Development of a new fabricated tensometer [J]. Rock and Soil Mechanics, 2013, 34(10): 3028-3032.

    [2]

    陈辉, 韦昌富, 陈盼, 等. 一种测定非饱和土-水力学参数的方法[J]. 岩土力学, 2010, 31(10): 3348-3353

    CHEN Hui, WEI Changfu, CHEN Pan, et al. A method for determining hydraulic parameters of unsaturated soils. Rock and Soil Mechanics, 2010, 31(10): 3348-3353.

    [3]

    谌文武, 贾全全, 童艳梅. 莫高窟壁画地仗土-水特征曲线的测定与拟合[J]. 岩土力学, 2020, 41(5): 1483-1491

    CHEN Wenwu, JIA Quanquan, TONG Yanmei. Measurement and curve fitting for soil-waterer characteristic curve of mural plaster at Mogao Grottoes [J]. Rock and Soil Mechanics, 2020, 41(5): 1483-1491.

    [4]

    郭龙, 刘清秉, 王菁莪, 等. 以瞬态方法测试马兰黄土土-水特征曲线试验研究[J]. 长江科学院院报, 2013(11): 67-71 doi: 10.3969/j.issn.1001-5485.2013.11.013

    GUO Long, LIU Qingbing, WANG Jinge, et al. Soil-Water Characteristic Curve of Malan Loess by Transient Water Release and Imbibitions Method [J]. Journal of Yangtze River Scientific Research Institute, 2013(11): 67-71. doi: 10.3969/j.issn.1001-5485.2013.11.013

    [5]

    马田田, 韦昌富, 陈盼等. NaCl溶液对土体持水特性影响的试验研究[J]. 岩土力学, 2015, 36(10): 2831-2836

    MA Tiantian, WEI Changfu, CHEN Pan, et al. An experimental study of effect of NaCl solution on soil water characteristics [J]. Rock and Soil Mechanics, 2015, 36(10): 2831-2836.

    [6]

    牛庚, 孙德安, 韦昌富, 等. 全风化泥岩持水特性研究及其预测[J]. 岩土工程学报, 2016, 38(S2): 216-221 doi: 10.11779/CJGE2016S2035

    NIU Geng, SUN Dean, WEI Changfu, et al. Water retention behaviour of complete-intense weathering mudstone and its prediction [J]. Journal of Geotechnical Engineering, 2016, 38(S2): 216-221. doi: 10.11779/CJGE2016S2035

    [7]

    孙德安, 张俊然, 吕海波. 全吸力范围南阳膨胀土的土-水特征曲线[J]. 岩土力学, 2013, 34(7): 1839-1846

    SUN De an, ZHANG Junran, LÜ Haibo. Soil-water characteristic curve of Nanyang expansive soil in full suction range [J]. Rock and Soil Mechanics, 2013, 34(7): 1839-1846.

    [8]

    叶为民, 白云, 金麒, 等. 上海软土土水特征的室内试验研究[J]. 岩土工程学报, 2006, 28(2): 260-263 doi: 10.3321/j.issn:1000-4548.2006.02.022

    YE Weimin, BAI Yun, JIN Qi, et al. Lab experimental study on soil-water characteristics of Shanghai soft clay[J]. Journal of Geotechnical Engineering, 2006, 28(2): 260-263. doi: 10.3321/j.issn:1000-4548.2006.02.022

    [9]

    伊盼盼, 韦昌富, 魏厚振, 等. 两种快速测定非饱和土水力学参数方法的对比分析[J]. 岩土力学, 2012, 33(7): 2007-2012+2020.

    YI Panpan, WEI Changfu, WEI Houzhen, et al. Comparison between two methods for quickly determining hydraulic parameters of unsaturated soils [J]. Rock and Soil Mechanics, 2012, 33(07): 2007-2012+2020.

    [10]

    ASTM International. D5298-10. Standard test method for measurement of soil potential (suction) using filter paper [S]. West Conshohocken, United States: ASTM International, 2013.

    [11]

    Arthur E, Tuller M, Moldrup P, et al. Rapid and Fully Automated Measurement of Water Vapor Sorption Isotherms: New Opportunities for Vadose Zone Research[J]. Educational Technology & Society, 2013, 7(4): 193-200.

    [12]

    Fredlund D G, Rahardjo H, Fredlund M D. Unsaturated soil mechanics in Engineering practice[M]. John Wiley & Sons, INC, Hoboken, New Jersey, 2012.

    [13]

    Fredlund D G, and Xing A. Equation for the soil-water characteristic curve [J]. Canadian Geotechnical Journal, 1994, 31(4): 521-532. doi: 10.1139/t94-061

    [14]

    Gardner W R. Some steady-state solutions of the unsaturated moisture flow equation with application to evaporation from a water table [J]. Soil science, 1958, 85(4): 228-232. doi: 10.1097/00010694-195804000-00006

    [15]

    Genuchten V, Th. M. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils [J]. Soil Science Society of America Journal, 1980, 44(5): 892-898. doi: 10.2136/sssaj1980.03615995004400050002x

    [16]

    Haghighi A, Medero G M, Marinho A M, et al.Temperature effects on suction measurement using the filter paper technique [J]. Geotechnical Testing Journal, 2012,35( 1) : 103575

    [17]

    Knodel P C, Stannard D I. Tensiometers—Theory, Construction, and Use[J]. Geotechnical Testing Journal, 1992, 15(1): 48–58.

    [18]

    Lu N, Likos WJ. Unsaturated soil Mechanics[m]. John Wiley & Sons, INC, 2004.

    [19]

    Likos WJ, Lu N. Automated Humidity System for Measuring Total Suction Characteristics of Clay[J]. Geotechnical Testing Journal, 2003, 26(2): 179-190.

    [20]

    Mcqueen I S, Miller R F. Approximating soil moisture characteristics from limited data: Empirical evidence and tentative model [J]. Water Resources Research, 1974, 10(3).

    [21]

    Nam S, Gutierrez M, Diplas P, et al. Comparison of testing techniques and models for establishing the SWCC of riverbank soils [J]. Engineering Geology, 2010, 110(1-2): 1-10. doi: 10.1016/j.enggeo.2009.09.003

    [22]

    Ryel R, Caldwell M, Yoder C, et al. Hydraulic redistribution in a stand of Artemisia tridentata: evaluation of benefits to transpiration assessed with a simulation model [J]. Oecologia, 2002, 130(2): 173-184. doi: 10.1007/s004420100794

    [23]

    Sillers W S, Fredlund D G, Zakerzadeh N. Mathematical attributes of some soil—water characteristic curve models [M]. Unsaturated soil concepts and their application in geotechnical practice. Springer, Dordrecht, 2001: 243−283.

    [24]

    Wayllace A, Lu N. A Transient Water Release and Imbibitions Method for Rapidly Measuring Wetting and Drying Soil Water Retention and Hydraulic Conductivity Functions [J]. Geotechnical Testing Journal, 2012.

  • 加载中

(8)

(7)

计量
  • 文章访问数:  1223
  • PDF下载数:  37
  • 施引文献:  0
出版历程
收稿日期:  2022-12-29
修回日期:  2023-05-12
刊出日期:  2023-06-20

目录