Impact and Contribution of Atmospheric Pollutant Deposition from a Typical Power Plant on Surrounding Water Sources
-
摘要:
为揭示燃煤电厂大气污染物排放对周边水环境的影响,以典型燃煤电厂为研究对象,分析了2008~2020年电厂大气污染物(烟尘、SO2、NOx、NH3和颗粒物重金属)及电厂周边典型水库的水质,并估算了电厂大气污染物排放与水库水质的相关性及其对水库水体中硫化物、氮氧化物和重金属的贡献。结果显示,2008~2020年电厂烟尘、SO2、NOx和重金属(Hg、Cu、Zn、As、Cd、Cr和Pb)的排放量整体呈下降趋势,2015~2020年NH3的排放量呈波动状态;2008~2020年黄壁庄水库入口和中心处的水质均达到《地表水环境质量标准》(GB 3838-2002)II类水质标准以上,水库入口和中心处水体中的重金属含量与电厂烟尘重金属排放量呈显著相关。CALPUFF模型结果显示,该燃煤电厂排放的SO2、SO42−、NOx、HNO3、NH3、Hg、As、Cd、Cr、Cu、Pb、Zn沉降到黄壁庄水库水面进入水中转化生成的水污染物SO42−、HNO3、NH3-N、Hg、As、Cd、Cr6+、Cu、Pb和Zn贡献浓度分别为3.35×10−3 mg/L、5.86×10−3 mg/L、5.88×10−4 mg/L、3.73×10−7 mg/L、1.32×10−5 mg/L、7.46×10−10 mg/L、7.56×10−7 mg/L、2.16×10−7 mg/L、9.48×10−8 mg/L和8.66×10−6 mg/L,各项污染物的占标率的大小排序为Hg>NH3-N>HNO3>As>Cr6+>SO42−>Pb>Zn>Cu>Cd。
Abstract:To reveal the impact of atmospheric pollutant emissions from coal-fired power plants on the surrounding water environment, a typical coal-fired power plant was used as a research object to analyze the atmospheric pollutants (soot, SO2, NOx, NH3 and heavy metals in particulate matter) of the power plant and the water quality of typical reservoirs around the power plant from 2008 to 2020. The correlation between atmospheric pollutant emissions from power plants and reservoir water quality and their contributions to sulfide, nitrogen oxide, and heavy metals in reservoir waterbodies were estimated. The results showed that the emissions of soot, SO2, NOx and heavy metals (Hg, Cu, Zn, As, Cd, Cr and Pb) from the power plant showed an overall decreasing trend from 2008 to 2020, while the emissions of NH3 fluctuated from 2015 to 2020. From 2008 to 2020, the water quality at the entrance and centre of the reservoir all met the Environmental Quality Standard for Surface Water (GB3838-2002). The heavy metal contents in the water at the entrance and centre of the reservoir were significantly correlated with the heavy metal emissions from the power plant. The results of CALPUFF model showed that water pollutants SO42−, HNO3, NH3-N, Hg, As, Cd, Cr6+, Cu, Pb, and Zn, which were transformed by SO2, SO42−, NOx, HNO3, NH3, Hg, As, Cd, Cr, Cu, Pb, Zn deposited into the water surface of the reservoir from the power plant, contributed to the concentration of 3.35×10−3 mg/L, 5.86×10−3 mg/L, 5.88×10−4 mg/L, 3.73×10−7 mg/L, 1.32×10−5 mg/L, 7.46×10−10 mg/L, 7.56×10−7 mg/L, 2.16×10−7 mg/L, 9.48×10−8 mg/L, 8.66×10−6 mg/L, respectively. The order of proportion of various pollutants to standard was Hg>NH3-N>HNO3>As>Cr6+>SO42−>Pb>Zn>Cu>Cd.
-
-
[1] 曹佰迪, 李文明, 周一凡, 等. 鄱阳湖流域沉积物中重金属元素分布特征及生态风险浅析[J]. 西北地质, 2022, 55(04): 343-353
CAO Baidi, LI Wenming, ZHOU Yifan, et al. Geochemical Characteristic and Fluxes of Trace Metal in Water System of the Poyang Lake [J]. Northwestern Geology, 2022, 55(04): 343-353.
[2] 车凯, 陈崇明, 郑庆宇, 等. 燃煤电厂重金属排放与周边土壤中重金属污染特征及健康风险[J]. 环境科学, 2022, 43(10): 4578-4589
CHE Kai, CHEN Chongming, ZHENG Qingyu, et al. Heavy Metal Emissions from Coal-fired Power Plants and Heavy Metal Pollution Characteristics and Health Risks in Surrounding Soils [J]. Environmental Science, 2022, 43 (10): 4578-4589.
[3] 董文鹏, 陈占辉, 霍巧云, 等. 黄壁庄水库消落区植物自然分布特征与多样性研究[J]. 中国水土保持, 2022, 483(06): 43-47+9
DONG Wenpeng, CHEN Zhanhui, HUO Qiaoyun, et al. Natural Distribution Characteristics and Diversity of Plants in the Drawdown Area of Huagbizhuang Reservoir [J]. Soil and Water Conservation in China. 2022, 483(06): 43-47+9.
[4] 冯紫艳. 硫酸盐还原菌和蓝藻对太湖底泥形成湖泛的模拟研究[D]. 南京: 南京农业大学, 2013: 158.
FENG Ziyan, The simulation study of the formation of lacustrine black bloom in Taihu Lake sediment on the effect of algae and sulfate-reducing bacteria [D]. Nanjing: Nanjing Agricultural University, 2013: 158.
[5] 顾晨, 赵瑜. 中国燃煤电厂大气污染物排放研究进展[J]. 煤炭学报, 2022, 47(12): 4352-4361
GU Chen, ZHAO Yu. Research progress of air pollutant emissions of Chinese coal-fired power plant [J]. Journal of China Coal Society, 2022, 47(12): 4352-4361.
[6] 国家统计局. 中华人民共和国2022年国民经济和社会发展统计公报[N]. 人民日报, 2023-03-01(009).
[7] 郝素华, 张志勇. 燃煤电厂SO3脱除、测试技术研究进展[J]. 资源节约与环保, 2022, 253(12): 5-10
HAO Suhua, ZHANG Zhiyong. Research progress in SO3 removal and testing technology for coal-fired power plants [J]. Resource Conservation and Environmental Protection, 2022, 253 (12): 5-10.
[8] 蒋起保, 欧阳永棚, 章敬若, 等. 江西省贵溪市水系沉积物重金属污染及其潜在生态风险评价[J]. 西北地质, 2022, 55(03): 326-334
JIANG Qibao, OUYANG Yongpeng, ZHANG Jingruo, et al. Evaluation of Heavy Metal Pollution and Its Potential Ecological Risk in Stream Sediments in Guixi City, Jiangxi Province [J]. Northwestern Geology, 2022, 55(03): 326-334.
[9] 金树权. 水库水源地水质模型预测与不确定性分析[D]. 杭州: 浙江大学, 2008: 124.
JIN Shuquan, Modeling and prediction of water quality in headwater area of reservoir and uncertainty analysis [D]. Hangzhou: Zhejiang University, 2008: 124.
[10] 康文忠. 石家庄市滹沱河水利工程管护模式探索[J]. 水科学与工程技术, 2022, 233(03): 84-88
KANG Wenzhong. Exploration on the management and maintenance of Hutuo River water conservancy project in Shijiazhuang [J]. Water Sciences and Engineering Technology, 2022, 233(03): 84-88.
[11] 李昌鑫, 王昊, 叶坚锴, 等. 燃煤电厂区域颗粒物及颗粒物汞分布特征研究[J]. 环境科学学报, 2020, 40(08): 2944-2951
LI Changxin, WANG Hao, YE Jiankai, et al. Pollution characteristics of particulate matter and particulate mercury near a coal-fired power plant [J]. Acta Scientiae Circumstantiae, 2020, 40(08): 2944-2951.
[12] 李旭, 张军. 燃煤电厂周边河流中重金属污染特征及其风险评价研究[J]. 环境科学与管理, 2022, 47(05): 168-173
LI Xu, ZHANG Jun. Study on the characteristics of heavy metal pollution in rivers around coal-fired power plants and its risk evaluation [J]. Environmental Science and Management, 2022, 47(05): 168-173.
[13] 刘瑞平, 徐友宁, 何芳, 等. 某金矿带双桥河河水-底泥-悬浮物中Hg含量时程分布特征[J]. 西北地质, 2017, 50(03): 231-237
LIU Ruiping, XU Youning, HE Fang, et al. The Mercury Concentration Time and Space Characterized of Shuangqiao River in the Gold Mine Area [J]. Northwestern Geology, 2017, 50(03): 231-237.
[14] 刘昭, 周宏, 曹文佳, 等. 清江流域地表水重金属季节性分布特征及健康风险评价[J]. 环境科学, 2021, 42(01): 175-183
LIU Zhao, ZHOU Hong, CAO Wenjia, et al. Seasonal Distribution Characteristics and Health Risk Assessment of Heavy Metals in Surface Water of Qingjiang River [J]. Environmental Science, 2021, 42 (01): 175-183.
[15] 卢燕宇, 孙维. 基于CALPUFF模型的NO2剩余大气环境容量测算及污染源布局优化——以合肥市为例[J]. 环境污染与防治, 2017, 39(12): 1358-1362
LU Yanyu, SUN Wei. Estimation of NO2 remainder atmospheric environmental capacity and layout optimization of emission sources based on CALPUFF model: a case study in Hefei [J]. Environmental Pollution and Prevention, 2017, 39(12): 1358-1362.
[16] 潘莎, 陈再琴, 汪钊宇, 等. 燃煤电厂周边河流中氟、砷和重金属污染健康风险评价[J]. 环境监测管理与技术, 2019, 31(04): 33-37 doi: 10.3969/j.issn.1006-2009.2019.04.008
PAN Sha, CHEN Zaiqin, WANG Zhaoyu, et al. Health Risk Assessment of Fluorine, Arsenic and Heavy Metals in River around Coal-fired Power Plant [J]. The Administration and Technique of Environmental Monitoring, 2019, 31(04): 33-37. doi: 10.3969/j.issn.1006-2009.2019.04.008
[17] 宋保平, 过仲阳, 郑艳侠, 等. 近50年来滹沱河流域水资源变化规律与影响因素[J]. 南水北调与水利科技, 2013, 11(04): 17-21
SONG Baoping, GUO Zhongyang, ZHENG Yanxia, et al. Variation Characteristics and Their Impact Factors of Water Resources in the Hutuo River Basin during Last 50 Years [J]. South-to-North Water Transfers and Water, 2013, 11(04): 17-21.
[18] 王瑶, 王慧勇, 安丽娟, 等. 黄壁庄水库水质评价及氮污染成因分析[J]. 水电能源科学, 2020, 38(04): 60-63
WANG Yao, WANG Huiyong, AN Lijuan, et al. Water Quality Evaluation and Cause Analysis of Nitrogen in Huangbizhuang Reservoir [J]. Water Resources and Power, 2020, 38(04): 60-63.
[19] 王毓秀, 彭林, 王燕, 等. 电厂燃煤烟尘PM2.5中化学组分特征[J]. 环境科学, 2016, 37(01): 60-65
WANG Yuxiu, PENG Lin, WANG Yan, et al. Characteristics of Chemical Components in PM2.5 from the Coal Dust of Power Plants [J]. Environmental Science, 2016, 37(01): 60-65.
[20] 王永英. 我国燃煤大气污染物控制现状及对策研究[J]. 煤炭经济研究, 2019, 39(08): 66-70
WANG Yongying. Research on current situation and countermeasures of coal-fired air pollutants control in China [J]. Coal Economic Research, 2019, 39(08): 66-70.
[21] 徐钢, 王春兰, 许诚, 等. 京津冀地区散烧煤与电采暖大气污染物排放评估[J]. 环境科学研究, 2016, 29(12): 1735-1742
XU Gang, WANG Chunlan, XU Cheng, et al. Evaluation of air pollutant emissions from scattered coal burning and electric heating in Beijing-Tianjin-Hebei region [J]. Research of Environmental Sciences, 2016, 29(12): 1735-1742.
[22] 于洋, 王晓燕. 自然生境中氨氧化细菌的分子生物学研究进展[J]. 环境污染与防治, 2012, 34(11): 79-85
YU Yang, WANG Xiaoyan. Molecular analysis of ammonia-oxidizing bacteria in natural environments [J]. Environmental Pollution & Control, 2012, 34(11): 79-85.
[23] 周永江, 姚宜斌, 熊永良, 等. 基于Spearman秩相关系数的PWV与PM2.5相关性研究[J]. 大地测量与地球动力学, 2020, 40(03): 236-241
ZHOU Yongjiang, YAO Yibin, XIONG Yongliang, et al. Study of correlation between PWV and PM2.5 based on Spearman rank correlation coefficient [J]. Journal of Geodesy and Geodynamics, 2020, 40(03): 236-241.
[24] 邹伟. CALPUFF模型在洋浦区域环境空气影响评价中的应用[J]. 环境科学与管理, 2010, 35(10): 186-189
ZOU Wei. The application of CALPUFF model in atmospheric environmental impact assessment of Yangpu economic development zone [J]. Environmental Science and Management, 2010, 35(10): 186-189.
-