Petrogenesis and Tectonic Implications of Daomuti Intrusive Rocks in East Kunlun Orogen: Constraints from the Geochronology and Geochemistry
-
摘要:
到木提岩体位于东昆仑造山带东段,主要岩性有二长花岗岩、花岗闪长岩及闪长岩。笔者对新发现的闪长岩进行了锆石U–Pb测年和岩石地球化学测试,以确定其形成时代及岩石成因,结合二长花岗岩和花岗闪长岩的岩石地球化学特征,综合探讨到木提岩体的侵位时代、岩石成因及构造演化程。LA–ICP–MS锆石U–Pb测年获得的闪长岩206Pb/238U年龄为(244.6±1.8)Ma,到木提闪长岩体结晶时代为早三叠世。二长花岗岩和花岗闪长岩的地球化学特征显示:里特曼指数小于3.3,具钙碱性–高钾钙碱性特征;铝饱和指数A/CNK值均小于1.1;岩石中P2O5含量普遍较低,且与SiO2含量呈负相关性;富集K、Rb、La等LILE,亏损Nb、Ta、Ti、P等HFSE。地球化学特征表明,到木提岩体属于I型花岗岩。综合分析认为,东昆仑东段到木提岩体是下地壳岩石发生部分熔融形成的火山弧花岗岩,阿尼玛卿洋俯冲作用可以持续到早—中三叠世,俯冲过程中形成区域性的地幔岩浆底侵就是导致下地壳熔融的热源,且幔源岩浆不同程度混入到到木提岩浆演化中,岩浆演化中伴有一定的结晶分异发生。
Abstract:The Daomuti intrusive rocks is located in the eastern section of the East Kunlun orogenic belt, and mainly includes monzogranite, granodiorite and diorite. In this paper, zircon U–Pb dating and petrogeochemical tests are performed on newly discovered diorite to determine its crystalline age and petrogenesis. Comprehensively analyse the petrogeochemical characteristics of monzogranite and granodiorite, and discuss the emplacement age, rock genesis and tectonic evolution of the Daomuti intrusive rocks. LA–ICP–MS zircon U–Pb dating analysis shows that the 206Pb/238U weighted average age of diorite is (244.6±1.8) Ma, and the crystallization age of the diorite is Early Triassic. The geochemical characteristics of the monzogranite and granodiorite show that the Ritman index is greater than 3.3 and has the characteristics of calcium alkalinity–high potassium calcium alkalinity; the aluminum saturation index A/CNK values are less than 1.1; the P2O5 content in the rocks is low, and its has a negative correlation with SiO2 content; It is enriched with LILE such as K, Rb, La, and loses HFSE such as Nb, Ta, Ti and P. The above characteristics indicate that the Daomuti intrusive rocks belongs to type I granite. Based on the research results of this paper, it can be considered that the Daomuti intrusive rocks is a volcanic arc granite, its formed by partial melting of the lower crust rocks, and the Animaqing Ocean subduction continued to the Early–Middle Triassic The mantle magma underplating during the subduction process is the heat source that causes the melting of the lower crust, and the mantle source magma is mixed into the Daomuti intrusive rocks’ magma evolution, and during the Daomuti intrusive rocks’ magma evolution occurred fractional crystallization.
-
Key words:
- diorite /
- granodiorite /
- monzogranite /
- geochemistry /
- zircon U–Pb dating /
- tectonic setting /
- east Kunlun orogeny
-
-
图 4 到木提岩体的TAS图解(a)(据Irvine et al.,1971;Middlemost,1994)、K2O–SiO2图解(b)(据Rickwood,1989)和A/CNK–A/NK图解(c)(据Maniar et al.,1989)
Figure 4.
图 5 到木提岩体的球粒陨石标准化稀土元素配分图(a)(标准化值据Boynton,1984)和原始地幔标准化微量元素蛛网图(b)(标准化值据Sun et al.,1989)
Figure 5.
图 6 到木提岩体的成因判别图解(据Collins et al.,1982)
Figure 6.
图 7 二长花岗岩和花岗闪长岩构造环境判别图解(据Pearce et al.,1984)
Figure 7.
表 1 闪长岩的锆石LA–ICP–MS U–Pb测年分析结果统计表
Table 1. LA–ICP–MS U–Pb zircon analysis results for diorite
样品
编号元素含量
(10−6)Th/U 同位素比值 同位素年龄 Th U 比值 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ T05 11.4 28.2 0.4058 0.0523 0.0032 0.2720 0.0167 0.0384 0.0007 300 139 244 13 243 4 T06 15.7 40.9 0.3848 0.0527 0.0036 0.2733 0.0170 0.0388 0.0007 318 153 245 14 245 5 T07 12.8 27.4 0.4662 0.0534 0.0035 0.2746 0.0179 0.0387 0.0009 348 148 246 14 245 5 T08 13.7 36.3 0.3774 0.0523 0.0034 0.2679 0.0156 0.0386 0.0007 300 146 241 13 244 4 T09 14.9 39.6 0.3757 0.0532 0.0035 0.2732 0.0171 0.0385 0.0007 339 150 245 14 244 4 T10 11.9 32.5 0.3661 0.0548 0.0031 0.2784 0.0146 0.0381 0.0006 405 125 249 12 241 4 T12 15.5 45.3 0.3416 0.0516 0.0023 0.2707 0.0116 0.0387 0.0005 266 102 243 9 245 3 T13 9.4 26.3 0.3563 0.0538 0.0035 0.2746 0.0176 0.0383 0.0007 361 147 246 14 242 4 T14 15.2 34.2 0.4435 0.0540 0.0033 0.2798 0.0169 0.0381 0.0007 370 137 250 13 241 5 T15 12.4 23.0 0.5400 0.0554 0.0059 0.2733 0.0271 0.0383 0.0009 428 236 245 22 242 6 T16 15.8 41.1 0.3836 0.0542 0.0036 0.2823 0.0177 0.0387 0.0009 381 149 252 14 245 5 T20 19.1 64.1 0.2981 0.0521 0.0031 0.2738 0.0162 0.0386 0.0008 290 136 246 13 244 5 T21 16.6 42.1 0.3942 0.0541 0.0041 0.2823 0.0206 0.0390 0.0008 375 171 253 16 247 5 T22 14.5 34.6 0.4179 0.0514 0.0041 0.2719 0.0211 0.0392 0.0012 258 184 244 17 248 7 T23 13.5 37.8 0.3589 0.0543 0.0033 0.2894 0.0180 0.0394 0.0008 385 138 258 14 249 5 T24 10.7 31.6 0.3380 0.0529 0.0028 0.2738 0.0141 0.0391 0.0007 324 119 246 11 247 5 T25 19.2 41.7 0.4610 0.0538 0.0032 0.2788 0.0148 0.0392 0.0006 362 136 250 12 248 4 T26 16.0 48.1 0.3332 0.0518 0.0032 0.2701 0.0161 0.0383 0.0008 274 140 243 13 242 5 T27 13.9 39.4 0.3519 0.0533 0.0028 0.2822 0.0142 0.0393 0.0006 340 118 252 11 248 4 T29 11.2 28.6 0.3925 0.0550 0.0034 0.2750 0.0161 0.0385 0.0007 410 140 247 13 244 4 T30 13.7 37.8 0.3617 0.0525 0.0028 0.2715 0.0133 0.0387 0.0006 306 121 244 11 244 4 T31 20.8 63.7 0.3260 0.0491 0.0021 0.2593 0.0112 0.0386 0.0005 150 101 234 9 244 3 注:测试单位为北京燕都中实测试技术有限公司,测试时间为2019年。 表 2 到木提岩体的常量元素(%)、稀土和微量元素数据(10–6)统计表
Table 2. Major (%) and trace (10–6) element compositions of Daomuti intrusive rocks
岩性 二长花岗岩 花岗闪长岩 闪长岩 样品号 2PM2-1 2PM37-1 3PM2-1 3PM3-1 3PM4-1 3PM10-1 3PM14-1 2PM8-1 2PM18-1 2PM30-1 3PM1-1 3PM5-1 3PM8-1 2PM47-1 2PM48-1 2PM48-2 SiO2 74.47 72.12 77.06 76.61 76.65 70.32 77.09 74.98 72.93 69.65 76.55 71.57 69.03 58.82 50.09 49.51 TiO2 0.13 0.23 0.04 0.04 0.06 0.29 0.04 0.08 0.25 0.35 0.04 0.32 0.37 1.25 1.45 1.48 Al2O3 13.63 14.24 12.29 12.71 12.41 14.97 12.43 13.09 13.44 15.19 12.62 14.22 15.26 15.06 18.63 18.63 TFe2O3 1.63 2.80 1.41 1.41 1.57 3.10 1.33 2.01 3.44 3.58 1.37 3.26 3.76 8.80 13.40 14.26 MnO 0.04 0.09 0.06 0.05 0.07 0.09 0.04 0.05 0.09 0.08 0.06 0.08 0.10 0.16 0.21 0.23 MgO 0.33 0.65 0.16 0.13 0.21 0.77 0.15 0.38 0.48 0.89 0.15 0.72 0.94 2.88 1.79 1.92 CaO 0.88 1.53 0.79 0.70 0.86 2.21 0.30 0.79 2.05 3.57 0.78 3.00 3.06 5.92 7.89 8.07 Na2O 5.15 4.18 3.92 3.82 3.75 4.18 3.60 3.98 4.46 4.02 3.81 3.87 3.91 2.74 3.29 3.23 K2O 2.73 3.00 3.61 3.98 3.71 2.74 4.81 4.00 1.75 1.49 4.09 1.91 2.45 2.34 1.08 0.87 P2O5 0.06 0.07 0.02 0.02 0.02 0.09 0.01 0.04 0.06 0.11 0.02 0.08 0.12 0.13 0.48 0.48 LOI 0.90 0.99 0.65 0.36 0.49 1.14 0.31 0.97 0.77 0.70 0.35 0.58 0.67 1.50 1.08 0.71 Total 99.94 99.91 100.01 99.83 99.79 99.89 100.10 100.37 99.72 99.64 99.83 99.59 99.66 99.60 99.39 99.40 A/CNK 1.05 1.10 1.04 1.07 1.05 1.08 1.06 1.06 1.04 1.03 1.04 1.02 1.04 0.84 0.89 0.89 A/NK 1.19 1.40 1.19 1.20 1.22 1.52 1.11 1.20 1.45 1.85 1.18 1.69 1.68 2.14 2.83 2.98 Mg# 28.43 31.60 18.58 15.77 20.89 32.94 18.30 27.47 21.58 32.93 17.71 30.37 33.19 39.33 20.95 21.08 K2O/Na2O 0.53 0.72 0.92 1.04 0.99 0.66 1.33 1.01 0.39 0.37 1.07 0.49 0.63 0.85 0.33 0.27 σ 1.97 1.76 1.66 1.81 1.65 1.74 2.07 1.99 1.28 1.13 1.86 1.16 1.54 1.58 2.48 2.41 La 42.36 34.01 38.28 36.21 42.56 53.79 13.90 18.77 58.25 19.08 36.03 70.02 46.41 21.69 45.80 42.20 Ce 70.63 60.52 63.91 61.96 72.30 93.99 33.33 34.71 108.19 34.65 63.26 121.93 84.38 43.62 83.51 83.15 Pr 6.65 5.44 5.46 5.22 5.98 7.16 3.28 3.16 10.00 3.03 5.60 9.09 6.51 4.56 8.40 8.37 Nd 25.83 20.28 23.49 22.89 26.21 29.48 18.42 13.75 39.99 12.85 23.54 39.03 28.03 21.43 41.78 41.04 Sm 4.67 3.57 4.24 4.27 4.64 4.06 5.19 2.84 7.16 2.13 4.66 5.32 4.34 4.99 7.58 7.61 Eu 1.37 1.07 1.10 1.00 1.14 1.38 0.31 0.86 2.61 1.42 0.94 1.69 1.51 1.88 3.56 3.44 Gd 6.21 4.46 5.15 5.29 5.98 5.10 7.64 3.67 8.61 2.66 5.65 7.43 5.45 6.53 8.73 8.74 Tb 0.81 0.67 0.75 0.80 0.81 0.58 1.65 0.66 1.21 0.34 0.84 0.81 0.69 1.12 1.20 1.22 Dy 4.43 3.75 3.88 4.82 4.45 2.74 10.17 4.17 5.67 1.65 4.88 3.71 3.28 6.00 5.83 5.91 Ho 0.89 0.82 0.87 1.02 0.93 0.59 2.33 0.92 1.24 0.36 1.01 0.84 0.74 1.36 1.29 1.35 续表2 岩性 二长花岗岩 花岗闪长岩 闪长岩 样品号 2PM2-1 2PM37-1 3PM2-1 3PM3-1 3PM4-1 3PM10-1 3PM14-1 2PM8-1 2PM18-1 2PM30-1 3PM1-1 3PM5-1 3PM8-1 2PM47-1 2PM48-1 2PM48-2 Er 2.50 2.45 2.55 3.06 2.75 1.76 6.58 2.83 3.43 1.09 2.99 2.43 2.13 3.78 3.66 3.84 Tm 0.39 0.40 0.40 0.50 0.46 0.29 0.99 0.48 0.46 0.19 0.48 0.37 0.31 0.53 0.50 0.52 Yb 2.48 2.59 2.57 3.19 2.99 1.74 6.49 3.13 2.67 1.30 3.06 2.43 2.09 3.35 3.13 3.25 Lu 0.38 0.39 0.34 0.42 0.40 0.25 0.70 0.47 0.38 0.24 0.40 0.33 0.27 0.46 0.45 0.47 ∑REE 169.59 140.41 153.00 150.65 171.60 202.91 110.98 90.43 249.86 81.00 153.33 265.43 186.12 121.30 215.43 211.12 LREE 151.51 124.88 136.48 131.55 152.83 189.86 74.44 74.09 226.20 73.16 134.02 247.08 171.17 98.17 190.63 185.82 HREE 18.08 15.53 16.52 19.10 18.77 13.05 36.54 16.33 23.67 7.84 19.32 18.35 14.95 23.13 24.79 25.30 LREE/HREE 8.38 8.04 8.26 6.89 8.14 14.55 2.04 4.54 9.56 9.33 6.94 13.47 11.45 4.24 7.69 7.34 δEu 0.78 0.82 0.72 0.64 0.66 0.92 0.15 0.81 1.01 1.82 0.56 0.82 0.95 1.01 1.33 1.29 Ba 692.59 775.97 1477.96 1330.70 1535.58 956.45 251.43 895.83 880.88 659.55 1234.95 761.41 954.30 549.35 361.61 261.73 Th 10.97 23.70 25.93 30.34 25.06 17.60 15.94 22.32 11.25 12.02 30.53 14.74 15.09 11.72 9.10 8.75 Nb 10.43 12.63 15.10 15.89 12.53 14.77 21.91 10.74 18.55 10.89 15.53 13.69 12.63 47.53 16.68 16.51 Sr 203.31 192.30 74.15 78.71 268.33 63.24 32.08 137.87 230.91 303.60 65.77 247.06 307.76 290.15 481.48 465.38 Zr 126.42 114.50 61.95 89.23 104.56 197.03 113.27 104.32 240.48 242.56 74.99 295.24 203.41 219.86 416.36 623.22 Ti 1059.90 1601.06 448.00 421.98 558.29 2123.53 413.66 724.60 1843.01 2377.33 385.92 2212.97 2361.55 8420.51 9460.81 9216.83 Rb 68.16 80.96 86.36 110.23 109.17 58.06 180.23 110.88 62.36 58.14 125.74 56.94 66.82 88.97 39.04 32.11 Ta 0.92 0.94 1.14 1.01 1.51 0.74 2.28 1.26 1.37 0.58 1.19 0.79 0.65 2.29 0.84 0.84 Hf 4.16 3.45 2.43 3.26 3.86 5.33 6.03 3.57 6.76 6.45 2.78 7.77 5.69 5.28 8.76 12.98 U 0.02 0.06 0.02 0.02 0.03 0.04 0.06 0.03 0.07 0.03 0.09 0.02 0.02 0.12 0.15 0.08 Sc 2.96 4.86 3.40 3.45 4.00 4.91 1.11 3.13 8.63 4.41 3.22 8.43 7.40 40.47 43.03 45.41 Cs 0.83 1.73 0.80 2.03 3.52 0.49 1.66 1.38 1.38 1.70 2.71 2.03 1.40 0.89 1.18 1.55 V 9.98 20.96 2.20 2.46 4.11 26.05 1.99 9.63 13.77 35.26 1.60 26.47 30.99 168.41 85.76 84.99 Co 1.95 3.75 0.93 0.89 1.10 4.13 0.78 2.29 3.23 5.68 0.77 4.64 4.95 18.38 13.19 13.66 Ni 3.27 3.33 2.91 1.24 1.88 5.55 1.44 3.19 2.07 3.32 1.60 2.79 3.07 6.05 3.02 16.55 Y 26.87 24.41 26.83 30.93 28.48 16.38 56.04 27.87 29.96 9.84 30.47 23.43 19.75 33.94 31.90 32.45 Th/Ce 0.16 0.39 0.41 0.49 0.35 0.19 0.48 0.64 0.10 0.35 0.48 0.12 0.18 0.27 0.11 0.11 Th/La 0.26 0.70 0.68 0.84 0.59 0.33 1.15 1.19 0.19 0.63 0.85 0.21 0.33 0.54 0.20 0.21 Nb/Ta 11.29 13.46 13.29 14.56 10.51 16.84 9.60 8.55 13.58 18.76 13.02 17.24 19.44 20.79 19.76 19.66 注:Mg#=100*Mg / (Mg+Fe);测试单位为北京燕都中实测试技术有限公司,测试时间为2019年。 -
[1] 陈国超, 裴先治, 李瑞保, 等. 东昆仑造山带东段南缘和勒冈希里克特花岗岩体时代、成因及其构造意义[J]. 地质学报, 2013, 87(10): 1525-1541
CHEN Guochao, PEI Xianzhi, LI Ruibao, et al. Geochronology and genesis of the Helegang Xilikete granitic plutons from the southern margin of the Eastern East Kunlun Orogenic Belt and Their Tectonic Significance[J]. Acta Geologica Sinica, 2013, 87(10): 1525-1541.
[2] 陈国超, 裴先治, 李瑞保, 等. 东昆仑东段香加南山花岗岩基的岩浆混合成因: 来自镁铁质微粒包体的证据[J]. 地学前缘, 2016, 23(4): 226-240
CHEN Guochao, PEI Xianzhi, LI Ruibao, et al. Genesis of magma mixing and mingling of Xiangjiananshan granite batholith in the eastern section of East Kunlun Orogen: Evidence from mafic microgranular Enclaves(MMEs) [J]. Earth Science Frontiers, 2016, 23(4): 226-240.
[3] 陈国超, 裴先治, 李瑞保, 等. 东昆仑东段香加南山花岗岩基中加鲁河中基性岩体形成时代、成因及其地质意义[J]. 大地构造与成矿学, 2017, 41(06): 1097-1115
CHEN Guochao, PEI Xianzhi, LI Ruibao, et al. Age and Petrogenesis of Jialuhe Basic-Intermediate Pluton in Xiangjia’nanshan Granite Batholith in the Eastern Part of East Kunlun Orogenic Belt, and its Geological Significance[J]. Geotectonica et Metallogenia, 2017, 41(06): 1097-1115.
[4] 陈国超, 裴先治, 李瑞保, 等. 东昆仑东段可日正长花岗岩年龄和岩石成因对东昆仑中三叠世构造演化的制约[J]. 岩石学报, 2018a, 34(03): 567-585
CHEN Guochao, PEI Xianzhi, LI Ruibao, et al. Age and lithogenesis of Keri syenogranite from eastern part of East Kunlun Orogenic Belt: Constraint on the Middle Triassic tectonic evolution of East Kunlun[J]. Acta Petrologica Sinica, 2018a, 34(3): 567-585.
[5] 陈国超, 裴先治, 李瑞保, 等. 东昆仑东段三叠纪岩浆混合作用: 以香加南山花岗岩基为例[J]. 岩石学报, 2018b, 34(08): 2441-2480
CHEN Guochao, PEI Xianzhi, LI Ruibao, et al. , Triassic magma mixing and mingling at thethe eastern section of Eastern Kunlun: A case study from Xiangjiananshan granitic batholith[J]. Acta Petrologica Sinica, 2018b 34( 8): 2441-2480.
[6] 高永宝, 李文渊, 钱兵, 等. 东昆仑野马泉铁矿相关花岗质岩体年代学、地球化学及Hf同位素特征[J]. 岩石学报, 2014, 30(06): 1647-1665.
GAO Yongbao, LI Wenyuan, QIAN Bing, et al. Geochronology, geochemistry and Hf isotopic compositions of the granitic rocks related with iron mineralization in Yemaquan deposit, East Kunlun, NW China[J]. Acta Petrologica Sinica, 2014, 30( 6) : 1647 - 1665.
[7] 韩建军, 李运冬, 宋传中, 等. 东昆仑东段都兰热水花岗岩锆石U-Pb年龄、地球化学及构造意义. 地质学报, 2020, 94(3): 768~781
HAN Jianjun, LI Yundong, SONG Chuanzhong, et al. Zircon U-Pb dating and geochemistry of granite in the Reshui area of Dulan County, eastern section of east Kunlun orogeny and its tectonic implications. Acta Geologica Sinica, 2020, 94(3): 768~781.
[8] 雷玮琰, 施光海, 刘迎新. 不同成因锆石的微量元素特征研究进展[J]. 地学前缘, 2013, 20(04): 273-284
LEI Weiyan, SHI Guanghai, LIU Yingxin. Research progress on trace element characteristics of zircons of different origins[J]. Earth Science Frontiers, 2013, 20(4): 273-284.
[9] 李碧乐, 孙丰月, 于晓飞, 等. 东昆中隆起带东段闪长岩U-Pb年代学和岩石地球化学研究[J]. 岩石学报, 2012, 28(4): 1163-1172
LI Bile, SUN Fengyue, YU Xiaofei, et al. U-Pb dating and geochemistry of diorite in the easternsection from eastern Kunlun middle uplifted basement and granitic belt[J]. Acta Petrologica Sinica, 2012, 28(4): 1163-1172.
[10] 李积清, 张鑫利, 王涛, 等. 东昆仑战红山地区花岗斑岩LA-ICP-MAS锆石U-Pb测年及岩石地球化学特征[J]. 西北地质, 2021, 54(1): 30-40
LI Jiqing, ZHANG Xinli, WANG Tao, et al. Zircon U-Pb dating and geochemical characteristics of granite porphyry in zhanhongshan area, east Kunlun[J]. Northwestern Geology, 2021, 54(1): 30-40.
[11] 李荣社, 计文化, 杨永成, 等. 昆仑山及邻区地质[M]. 北京: 地质出版社, 2008: 1−400
LI Rongshe, JI Wenhua, YANG Yongcheng, et al. Geology of Kunlun Mountain and adjacent areas[M]. Beijing: Geological Publishing House, 2008: 1−400.
[12] 李瑞保, 裴先治, 李佐臣, 等. 东昆仑东段晚古生代-中生代若干不整合面特征及其对重大构造事件的响应[J]. 地学前缘, 2012, 19(5): 244-254
LI Ruibao, PEI Xianzhi, LI Zuochen, et al. Geological characteristics of Late Palaeozoic-Mesozoic unconformities and their response to some significant tectonic events in eastern part of Eastern Kunlun[J]. Earth Science Frontiers, 2012, 19(5): 244-254.
[13] 李瑞保, 裴先治, 李佐臣, 等. 东昆仑东段下三叠统洪水川组沉积序列与盆地构造原型恢复[J]. 地质通报, 2015, 34(12): 2302-2314
LI Ruibao, PEI Xianzhi, LI Zuochen, et al. The depositional sequence and prototype basin forLower Triassic Hongshuichuan Formation in the eastern segment of East Kunlun Mountains[J]. Geological Bulletin of China, 2015, 34(12): 2302-2314.
[14] 李瑞保, 裴先治, 李佐臣, 等. 东昆仑东段古特提斯洋俯冲作用——乌妥花岗岩体锆石U-Pb年代学和地球化学证据[J]. 岩石学报, 2018, 34(11): 3399-3421
LI Ruibao, PEI Xianzhi, LI Zuochen, et al. Paleo-Tethys Ocean subduction ineastern section of East Kunlun Orogen: Evidence from the geochronology and geochemistry of the Wutuo pluton[J]. Acta Petrologica Sinica, 2018, 34(11): 3399-3421.
[15] 李艳广, 靳梦琪, 汪双双, 等. LA–ICP–MS U–Pb定年技术相关问题探讨[J]. 西北地质, 2023, 56(4): 274−282.
LI Yanguang, JIN Mengqi, WANG Shuangshuang, et al. Exploration of Issues Related to the LA–ICP–MS U–Pb Dating Technique[J]. Northwestern Geology, 2023, 56(4): 274−282.
[16] 罗明非, 莫宣学, 喻学惠, 等. 东昆仑香日德地区晚三叠世花岗岩LA-ICP-MS锆石U-Pb定年、岩石成因和构造意义[J]. 岩石学报, 2014, 30(11): 3229-3241
LUO Mingfei, MO Xuanxue, YU Xuehui, et al. Zircon LA-ICP-MS U-Pb age dating, petrogenesis andtectonic implications of the Late Triassic granites from the Xiangride area, East Kunlun[J]. Acta Petrologica Sinica, 2014, 30(11): 3229-3241.
[17] 罗照华, 柯珊, 曹永清, 等. 东昆仑印支晚期幔源岩浆活动[J]. 地质通报, 2002, 21(6): 292-297 doi: 10.3969/j.issn.1671-2552.2002.06.003
LUO Zhaohua, KE Shan, CAO Yongqing, et al. Late indosinian mantle-derived magmatism in the East Kunlun[J]. Geoliogical Bulletin of China, 2002, 21(6): 292-297. doi: 10.3969/j.issn.1671-2552.2002.06.003
[18] 马昌前, 熊富浩, 张金阳, 等. 从板块俯冲到造山后阶段俯冲板片对岩浆作用的影响: 东昆仑早二叠世-晚三叠世镁铁质岩墙群的证据[J]. 地质学报, 2013, 87(增刊): 79-81
MA Changqian, XIONG Fuhao, ZHANG Jinyang, et al. Impact of subducted slabs on magmatism from plate subduction to post-orogenic stage: Evidence from the Early Permian-Late Triassic Magnesite Wall Group in East Kunlun [J]. Acta Geologica Sinica, 2013, 87(supp): 79-81.
[19] 马昌前, 熊富浩, 尹烁, 等. 造山带岩浆作用的强度和旋回性: 以东昆仑古特提斯花岗岩类岩基为例[J]. 岩石学报, 2015, 31(12): 3555-3568
MA Changqian, XIONG Fuhao, YIN Shuo, et al. Intensity and cyclicity of orogenic magmatism: An example from aPaleo-Tethyan granitoid batholith, Eastern Kunlun, northern Qinghai-Tibetan Plateau[J]. Acta Petrologica Sinica, 2015, 31(12): 3555-3568.
[20] 莫宣学, 罗照华, 邓晋福, 等. 东昆仑造山带花岗岩及地壳生长[J]. 高校地质学报, 2007, 13(03): 403-414 doi: 10.3969/j.issn.1006-7493.2007.03.010
MO Xuanxue, LUO Zhaohua, DENG Jinfu, et al. Granitoids and crustal growth in the East-Kunlun Orogenic Belt[J]. Geological Journal of China Universities, 2007, 13(03): 403-414. doi: 10.3969/j.issn.1006-7493.2007.03.010
[21] 牛腾, 倪志耀, 孟宝航, 等. 冀北康保芦家营巨斑状花岗岩: 华北克拉通北缘中段1.3~1.2Ga B.P.伸展-裂解事件的地质记录[J]. 成都理工大学学报(自然科学版), 2023, 50(4): 486−503.
NIU Teng, NI Zhiyao, MENG Baohang, et al. The Lujiaying megaporphyric granite in Kangbao area, North Hebei: A geological record of extension and breakup event at 1.3~1.2Ga B.P. in the central segment of northern margin of North China Craton [J], Journal of Chengdu University of Technology (Science & Technology Edition), 2023, 50(4): 486−503.
[22] 祁生胜, 宋述光, 史连昌, 等. 东昆仑西段夏日哈木-苏海图早古生代榴辉岩的发现及意义[J]. 岩石学报, 2014, 30(11): 3345-3356
QI Shengsheng, SONG Shuguang, SHI Lianchang, et al. Discovery and its geological significance of Early Paleozoic eclogite in Xiarihamu-Suhaitu area, western part of the East Kunlun[J]. Acta Petrologica Sinica, 2014, 30(11): 3345-3356.
[23] 祁晓鹏, 范显刚, 杨杰, 等. 青海省都兰县尕日当地区1: 5万I47E002011、I47E003011、I47E004011、I47E004012四幅区域地质调查成果报告[R]. 陕西省核工业地质调查院, 2016a.
QI Xiaopeng, FAN Xiangang, YANG Jie, et al. Report from 1: 50000 regional geological survey results in the Jiedang area, Dulan County, Qinghai[R]. Shanxi Institute of Nuclear Geology, 2016a.
[24] 祁晓鹏, 范显刚, 杨杰, 等. 2016b, 东昆仑东段浪木日上游早古生代榴辉岩的发现及其意义[J]. 地质通报, 35(11): 1771-1783
QI Xiaopeng, FAN Xiangang, YANG Jie, et al. The discovery of Early Paleozoic eclogite in the upper reaches of Langmuri in eastern East Kunlun Mountains and its significance[J]. Geological Bulletin of China, 2016b, 35(11): 1771-1783.
[25] 史连昌, 常革红, 祁生胜, 等. 东昆仑大灶火沟-万宝沟晚二叠世陆缘弧火山岩的发现及意义[J]. 地质通报, 2016, 35(7): 1115-1122 doi: 10.3969/j.issn.1671-2552.2016.07.007
SHI Lianchang, CHANG Gehong, QI Shengsheng, et al. The discovery of Dazaohuogou-Wanbaogou Late Permian epicontinental arc volcanic rocks in Eastern Kunlun Mountains and its significance[J]. Geological Bulletin of China, 2016, 35(7): 1115-1122. doi: 10.3969/j.issn.1671-2552.2016.07.007
[26] 王梓桐, 王根厚, 张维杰, 等. 阿拉善地块南缘志留纪花岗闪长岩LA-ICP-MS锆石U-Pb年龄及地球化学特征[J]. 成都理工大学学报(自然科学版), 2022, 49(5): 586−600.
WANG Zitong, WANG Genghou, ZHANG Weijie, et al. LA-ICP-MS zircon U-Pb dating and geochemical characteristics of the Silurian granodiorite in the southern margin of Alxa Block, China [J], Journal of Chengdu University of Technology (Science Technology Edition), 2022, 49(5): 586−600.
[27] 吴树宽, 陈国超, 李积清, 等. 东昆仑东段沟里地区战红山过铝质流纹斑岩年代学、岩石成因及构造意义[J]. 西北地质, 2023, 56(2): 92−108.
WU Shukuan, CHEN Guochao, LI Jiqing, et al. Geochronology, Petrogenesis and Tectonic Significance of Zhanhongshan Peraluminous Rhyolite Porphyry in Gouli Area, Eastern Section of East Kunlun[J]. Northwestern Geology, 2023, 56(2): 92−108.
[28] 吴元保, 郑永飞. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, 2004, 49(16): 1589-1604 doi: 10.3321/j.issn:0023-074X.2004.16.002
WU Yuanbao, ZHENG Yongfei. Study on the mineralogy of zircon and its constraints on the interpretation of U-Pb age[J]. Chinese Science Bulletin, 2004, 49(16): 1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002
[29] 熊富浩, 马昌前, 张金阳, 等. 东昆仑造山带早中生代镁铁质岩墙群LA-ICP-MS锆石U-Pb定年、元素和Sr-Nd-Hf同位素地球化学[J]. 岩石学报, 2011, 27(11): 3350-3364
XIONG Fuhao, MA Changqian, ZHANG Jinyang, et al. LA-ICP-MS zircon U-Pb dating, elements and Sr-Nd-Hf isotopegeochemistry of the Early Mesozoic mafic dyke swarms in East Kunlun orogenic belt[J]. Acta Petrologica Sinica, 2011, 27(11): 3350-3364.
[30] 许荣华, Harris N B W, Lewis C L, 等. 拉萨至格尔木的同位素地球化学. 青藏高原地质演化[M]. 北京: 科学出版社, 1990: 282−302
XU Ronghua, Harris N B W, Lewis C L, et al. Isotope geochemistry of the Tibet Geotraverse, Lhasa to Golmud. The geological evolution of the Tibet Plateau[M]. Beijing: Science Press, 1990: 282−302.
[31] 许长坤, 刘世宝, 赵子基, 等. 青海省东昆仑成矿带铁矿成矿规律与找矿方向研究[J]. 地质学报, 2012, 86(10): 1621-1678 doi: 10.3969/j.issn.0001-5717.2012.10.006
XU Changkun, LIU Shibao, ZHAO Ziji, et al. Metallogenic law and prospect direction of iron deposits in the East Kunlun metallogenic belt in Qinghai[J]. Acta Geologica Sinica, 2012, 86(10): 1621-1678. doi: 10.3969/j.issn.0001-5717.2012.10.006
[32] 许志琴, 杨经绥, 张建新, 等. 阿尔金断裂两侧构造单元的对比及岩石圈剪切机制[J]. 地质学报, 1999, 73(03): 193-205 doi: 10.3321/j.issn:0001-5717.1999.03.001
XU Zhiqin, YANG Jingsui, ZHANG jianxin, et al. A ComParison between the Teetonic Units on the Two Sides of the AItun Sinistral Strike-sliP Fault and the Meehanism of Lithospheric Shearing[J]. Acta geologica sinica, 1999, 73(03): 193-205. doi: 10.3321/j.issn:0001-5717.1999.03.001
[33] 许志琴, 杨经绥, 李海兵, 等. 中央造山带早古生代地体构架与高压/超高压变质带的形成[J]. 地质学报, 2006, 80(12): 1793-1806 doi: 10.3321/j.issn:0001-5717.2006.12.002
XU Zhiqin, YANG Jingsui, LI Haibing, et al. The Early Palaeozoic Terrene Framework and the Formation of the High-Pressure ( HP) and Ultra-High Pressure ( UHP) MetamorphicBelts at the Central Orogenic Belt ( COB) [J]. Acta geologica sinica, 2006, 80(12): 1793-1806. doi: 10.3321/j.issn:0001-5717.2006.12.002
[34] 杨经绥, 刘福来, 吴才来, 等. 中央碰撞造山带中两期超高压变质作用: 来自含柯石英锆石的定年证据. [J]地质学报, 2003, 77(4): 463-477 doi: 10.3321/j.issn:0001-5717.2003.04.003
YANG Jingsui, LIU Fulai, WU Cailai, et al. Two Ultrahigh Pressure Metamorphic Events Recognized in the Central Orogenic Belt of China: Evidence from the U-Pb Dating of Coesite-bearing Zireons[J]. Acta geologica sinica, 2003, 77(4): 463-477. doi: 10.3321/j.issn:0001-5717.2003.04.003
[35] 杨经绥, 许志琴, 李海兵, 等. 东昆仑阿尼玛卿地区古特提斯火山作用和板块构造体系[J]. 岩石矿物学杂志, 2005, 24(5): 369-380 doi: 10.3969/j.issn.1000-6524.2005.05.004
YANG Jingsui, XU Zhiqin, LI Haibing, et al. The paleo-Tethyan volcanism and plate tectonic regime in the A nyemaqen region of East Kunlun, northern Tibet Plateau[J]. Acta Petrologica et Mineralogica, 2005, 24(5): 369-380. doi: 10.3969/j.issn.1000-6524.2005.05.004
[36] 袁万明, 莫宣学, 喻学惠, 等. 东昆仑印支期区域构造背景的花岗岩记录[J]. 地质论评, 2000, 46(2): 203-211 doi: 10.3321/j.issn:0371-5736.2000.02.012
YUAN Wanming, MO Xuanxue, YU Xuehui, et al. The Record of Indosinian Tectonic Setting from the Granotoid of Eastern Kunlun Mountains[J]. Geological review, 2000, 46(2): 203-211. doi: 10.3321/j.issn:0371-5736.2000.02.012
[37] 张照伟, 钱兵, 李文渊, 等. 东昆仑夏日哈木铜镍矿区发现早古生代榴辉岩: 锆石U-Pb定年证据[J]. 中国地质, 2017, 44(04): 816-817
ZHANG Zhaowei, QIAN Bing, LI Wenyuan, et al. The discovery of Early Paleozoic eclogite from the Xiarihamu magmatic Ni-Cu sulfide deposit in eastern Kunlun orogenic belt: Zircon U-Pb chronologic evidence[J]. Geology in china, 2017, 44(04): 816-817.
[38] Barbarin B. A review of the relationships between granitoid types, their origins and their geodynamic environments[J]. Lithos, 1999, 46(3): 605-626. doi: 10.1016/S0024-4937(98)00085-1
[39] Boynton W V. Geochemistry of the rare earth elements: Meteorite studies[J]. Developments in Geochemistry, 1984, 2: 63-114.
[40] Chappell B W. Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranites[J]. Lithos, 1999, 46(3): 535-551. doi: 10.1016/S0024-4937(98)00086-3
[41] Collins W J, Beams S D, White A J R, et al. Nature and origin of A-type granites with particular reference to southeastern Australia[J]. Contributions to Mineralogy and Petrology, 1982, 80: 189-200. doi: 10.1007/BF00374895
[42] Frey F A and Prinz M. Ultramafic inclusions from San Carlos, Arizona: petrologic and geochemical data bearing on their petrogenesis[J]. Earth and Planetary Science Letters, 1978, 38: 129-176. doi: 10.1016/0012-821X(78)90130-9
[43] Green T H, Watson E B. Crystallization of apatite in natural magmas under high pressure, hydrous conditions, with particular reference to ‘orogenic’rock series[J]. Contributions to mineralogy and petrology, 1982, 79(1): 96-105. doi: 10.1007/BF00376966
[44] Green T H. Significance of Nb /Ta as an indicator of geochemical processes in the crust-mantle system[J]. Chemical Geology, 1995, 120(3): 347-359.
[45] Irvine T N and Baragar W R A. A guide to chemical classification of the common volcanic rock[J]. Canadian Journal of Earth Sciences, 1971, 8: 523-548. doi: 10.1139/e71-055
[46] Liu Y S, Gao S, Hu Z C, et al. Continental and oceanic crust recycling-induced melt- peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology, 2010, 51(1/2): 537-571.
[47] Maniar PD, Piccoli PM. Tectonic discrimination of granitoids. GSA Bullentin, 1989, 101(5): 635−643.
[48] McDonough WF and Sun SS. The composition of the Earth[J]. Chemical Geology, 1995, 120( 3-4) : 223-253. doi: 10.1016/0009-2541(94)00140-4
[49] Meng F C, Zhang J X and Cui M H. Discovery of Early Paleozoic eclogite from the East Kunlun, western China and its tectonic significance[J]. Gondwana Research, 2013, 23( 2) : 825-836. doi: 10.1016/j.gr.2012.06.007
[50] Middlemost EAK. Naming materials in the magma /igneous rock system[J]. Earth-Science Review, 1994, 37(3-4): 215-224. doi: 10.1016/0012-8252(94)90029-9
[51] Pearce J A, Harris N B W and Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984, 25: 956-983. doi: 10.1093/petrology/25.4.956
[52] Rickwood P C. Boundary lines within petrologic diagrams which use oxides of major and minor elements[J]. Lithos, 1989, 22(4): 247-263. doi: 10.1016/0024-4937(89)90028-5
[53] Rogers G and Hawkesworth C J. Reply to comment of C. R. Sternon “A geochemical traverse across the North Chilean Andes: Evidence for crust generation from the mantle wedge” [J]. Earth and Planetary Science Letters, 1990, 101(1): 134–137. doi: 10.1016/0012-821X(90)90135-K
[54] Rubatto D, Gebauer D. Use of cathodoluminescence for U-Pb zircon dating by IOM Microprobe: Some examples from the western Alps[J]. Cathodoluminescence in Geoscience, Springer-Verlag Berlin Heidelberg, Germany. 2000, 373-400.
[55] Sajona F G, Maury R C, Bellon H, et al. High field strength element enrichment of Pliocene-Pleistocene island arc basalts, Zamboanga Peninsula, Western Mindanao ( Philippines) [J]. Journal of Petrology, 1996, 37(3): 693-726. doi: 10.1093/petrology/37.3.693
[56] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders A D, Norry M J, eds. magmatism in the ocean basins[J]. Geological Society, London, Special Publications, 1989, 42: 313-345. doi: 10.1144/GSL.SP.1989.042.01.19
[57] Taylor S R and Mclennan S M. The continental crust: Its composition and evolution[J]. Journal of Geology, 1985, 94(4): 632-633.
[58] Vavra G, Gebauer D, Schmid R. Multiple zircon growth and recrystallization during polyphase Late Carboniferous to Triassic metamorphism in granulites of the Ivrea Zone (Southern Alps): Anion microprobe (SHRIMP) study[J]. Contrib Mineral Petrol, 1996, 122(4): 337~358. doi: 10.1007/s004100050132
[59] Weyer S, Münker C and Mezger K. Nb /Ta, Zr /Hf and REE in the depleted mantle: Implications for the differentiation history of the crust-mantle system[J]. Earth and Planetary Science Letters, 2003, 205( 3-4) : 309-324. doi: 10.1016/S0012-821X(02)01059-2
[60] Wolf M B and London D. 1994. Apatite dissolution into peraluminous haplogranitic melts: An experimental study of solubilities and mechanisms[J]. Geochimica et Cosmochimica Acta, 1994, 58(19) : 4127 -4145. doi: 10.1016/0016-7037(94)90269-0
[61] Xiong F H, Ma C Q, Zhang J Y, et al. Reworking of old continental lithosphere: An important crustal evolution mechanism in orogenic belts, as evidenced by Triassic I-type granitoids in the East Kunlun orogen, Northern Tibetan Plateau[J]. Journal of the Geological Society, 2014, 171( 6) : 847-863. doi: 10.1144/jgs2013-038
[62] Zhang J Y, Ma C Q, Xiong F H, et al. Petrogenesis and tectonic significance of the Late Permian-Middle Triassic calcalkaline granites in the Balong region, eastern Kunlun Orogen, China[J]. Geological Magazine, 2012, 149( 5) : 892-908. doi: 10.1017/S0016756811001142
-