-
摘要:
为研究浐河流域汛期地表水水化学特征及离子来源,完善区域水资源管理合理化的建议,共采集浐河流域地表水样10份,结合空间分布图、Piper三角图、Gibbs图、离子相关分析等方法,分析了浐河流域水化学特征、空间差异特征、主要离子来源及控制因素。结果表明:①浐河流域汛期水体整体呈弱碱性,TDS均值低于同流域枯水期均值但高于全球河流均值。②优势阳离子为Ca2+和Na+,优势阴离子为HCO3−,水化学类型以Na-HCO3为主,整体上主要离子含量呈现ES低WN高的趋势。③浐河流域主要受硅酸盐岩风化的控制作用,且存在受蒸发岩溶解影响的情况。同时,本研究也为开采和保护源头水、发展用于工业的中游水,警惕下游水发生污染事件,合理利用水资源,解决西安缺水问题等方面提供参考。
Abstract:In order to study the water chemistry characteristics and ion sources of surface water in the Chan River basin during the flood season and to add suggestions to rationalize local water resources management, a total of 10 surface water samples were collected from the Chan River basin and combined with spatial distribution maps, Piper triangles, Gibbs plots and ion correlation analysis to analyze the water chemistry characteristics, spatial variation characteristics, major ion sources and controlling factors in the Chan River basin. The results show that the Chan River basin is weakly alkaline during the flood season, with mean TDS values lower than the mean values during the dry season in the same basin but higher than the global river mean values. The dominant cations are Ca2+ and Na+, the dominant anion is HCO3−, and the water chemistry type is dominated by Na-HCO3, with an overall trend of low southeast to high northwest content of the major ions. The Chan River basin is mainly controlled by the weathering of silicate rocks and is subject to the influence of evaporite dissolution. In order to address the water shortage issue in Xi'an, we must simultaneously exploit and safeguard source water, develop midstream water for industrial use, prevent pollution events in downstream water, and utilize water resources intelligently.
-
Key words:
- Chan River Basin /
- flood season /
- hydrochemical characteristic /
- control factors /
- ion source
-
表 1 浐河流域地表水水化学参数统计
Table 1. Statistics on surface water chemistry parameters in the Chan River basin
河流 pH ρ(TDS) ρ(Ca2+) ρ(Na+) ρ(Mg2+) ρ(K+) ρ(Cl−) ρ(SO42−) ρ(NO3−) ρ(HCO3−) 浐河 汛期 8.74 145.50 66.04 90.66 12.81 14.90 7.22 15.29 33.53 133.84 枯水期
(朱娅娣等,2022)8.90 236.50 86.63 21.78 15.37 18.29 19.90 26.84 63.77 137.75 全球河流均值(Gaillardet j DBLP,1999) - 100 8 4.7 2.4 0.1 3.9 4.9 1 30.5 注:水化学参数中除pH,其余参数单位均为mg/L。 表 2 浐河流域各采样点流速统计
Table 2. Flow rate statistics for each sampling site in the Chan River basin
采样点编号 流速(m/s) 采样点编号 流速(m/s) X1 0.16 X6 0.55 X2 0.53 X7 1.55 X3 1.09 X8 0.35 X4 0.7 X9 0.90 X5 1.18 X10 0.20 表 3 浐河流域汛期地表水水化学参数相关系数分析
Table 3. Analysis of correlation coefficients of surface water chemistry parameters in the Chan River basin during the flood season
TDS Ca2+ Na+ Mg2+ K+ HCO3− Cl− SO42− NO3− TDS Ca2+ 0.679* Na+ 0.906** 0.474 Mg2+ 0.884** 0.905** 0.730* K+ 0.951** 0.626 0.940** 0.846** HCO3− 0.137 0.108 0.073 0.139 0.254 Cl− 0.963** 0.713* 0.937** 0.912** 0.962** 0.187 SO42− −0.298 0.235 −0.378 0.032 −0.431 −0.554 −0.227 NO3− 0.152 0.419 0.149 0.375 0.068 −0.003 0.295 0.588 -
[1] 白福, 杨小荟. 河西走廊黑河流域地下水化学特征研究[J]. 西北地质, 2007,40 (3): 105-110 doi: 10.3969/j.issn.1009-6248.2007.03.012
BAI Fu, YANG Xiaohui. Hydrochemical Characteristics of Groundwater of the Heihe Basin in the Hexi Corridor, Gansu Province[J]. Northwestern Geology, 2007(03): 105-110. doi: 10.3969/j.issn.1009-6248.2007.03.012
[2] 高榕, 王志盈, 邵远, 等. 西安浐河城市人造水面富营养化分析[J]. 西安科技大学学报, 2008, (01): 145-149
GAO Rong, WANG Zhiying, SHAO Yuan, et al. Eutrophication evaluation of urban constructed pool of Xi′an Chan river[J]. Journal of Xi'an University of Science and Technology, 2008(01): 145-149.
[3] 韩朝辉, 王郅睿, 田辉, 等. 汉中盆地地下水水化学特征及其成因研究[J]. 西北地质, 2023, 56(04): 263-273
HAN Chaohui, WANG Zhirui, TIAN Hui, et al. Hydrochemical Characteristics and Genesis of Groundwater in the Hanzhong Basin[J]. Northwestern Geology, 2023, 56(04): 263-273.
[4] 胡甜, 谢先军, 严璐, 等. 东寨港流域地表水水化学组成特征及其成因[J]. 安全与环境工程, 2022, 29(01): 154-162 doi: 10.13578/j.cnki.issn.1671-1556.20210312
HU Tian, XIE Xianjun, YAN Lu, et al. Hydrochemical Characteristics and Genesis of Surface Water in Dongzhai Harbor Watershed[J]. Safety and Environmental Engineering, 2022, 29(01): 154-162. doi: 10.13578/j.cnki.issn.1671-1556.20210312
[5] 蒋亦媛, 张永奎, 袁宏林. 浐河水质污染特征及水质改善措施分析[J]. 供水技术, 2014, 8(06): 1-6 doi: 10.3969/j.issn.1673-9353.2014.06.001
Jiang Yiyuan, Zhang Yongkui, Yuan Honglin. Analysis for the water contamination characteristics and water quality improvement measures in Chanhe River[J]. Water Technology, 2014, 8(06): 1-6. doi: 10.3969/j.issn.1673-9353.2014.06.001
[6] 李果, 吕情绪, 许峰. 神东矿区地表水和地下水水化学特征及其影响因素研究[J]. 煤炭工程, 2022, 54(04): 145-150
LI Guo, LYU Qingxu, XU Feng. Hydrochemistry characteristics and its influencing factors of surface water and groundwater in the Shendong mining area[J]. Coal Engineering, 2022, 54(04): 145-150.
[7] 李书鉴, 韩晓, 王文辉, 等. 无定河流域地表水地下水的水化学特征及控制因素[J]. 环境科学, 2022, 43(01): 220-229
LI Shujian, HAN Xiao, WANG Wenhui, et al. Hydrochemical Characteristics and Controlling Factors of Surface Water and Groundwater in Wuding River Basin[J]. Environmental Science, 2022, 43(01): 220-229.
[8] 孙龙, 刘廷玺, 段利民, 等. 平朔矿区不同水体水化学特征及氟分布成因[J]. 环境科学, 2022, 43(12): 5547-5559
SUN Long, LIU Tingxi, DUAN Limin, et al. Hydrochemical Characteristics and Fluorine Distribution and Causes of Different Water Bodies in Pingshuo Mining Area[J]. Environmental Science, 2022, 43(12): 5547-5559.
[9] 王博, 刘卫国. 浐河流域水-土-植物硝酸盐和氮同位素组成及氮源示踪[J]. 地球环境学报, 2018, 9(05): 480-488
WANG Bo, LIU Weiguo. Nitrogen isotopic composition and source analysis of water, soil and plant in Chanhe River[J]. Journal of Earth Environment, 2018, 9(05): 480-488.
[10] 王彦国. 新疆木垒县地表水水质评价及变化趋势分析[J]. 陕西水利, 2021, (10): 116-118
WANG Yanguo. Evaluation of surface water quality and trend analysis in Mubi County[J], Xinjiang. Shaanxi Water Resources, 2021, (10): 116-118.
[11] 邢萌, 刘卫国, 胡婧. 浐河、涝河河水硝酸盐氮污染来源的氮同位素示踪[J]. 环境科学, 2010, 31(10): 2305-2310
XING Meng, LIU Weiguo, HU Jing. Using Nitrate Isotope to Trace the Nitrogen Pollution in Chanhe and Laohe River[J]. Environmental Science, 2010, 31(10): 2305-2310.
[12] 许秋瑾, 赖承钺, 丁瑶, 等. 成都市地表水天然水化学变化特征及影响因素[J]. 环境科学, 2021, 42(11): 5364-5374
XU Qiu-jin, LAI Chengyue, DING Yao, et al. Natural Water Chemistry Change in the Surface Water of Chengdu and Impact Factors[J]. Environmental Science, 2021, 42(11): 5364-5374.
[13] 延子轩, 冯民权. 长河流域矿区地表水水化学特征及驱动因子分析[J]. 环境化学, 2022, 41(02): 632-642
YAN Zixuan, FENG Minquan. Hydrochemical characteristics and driving factors of surface water in the mining area of Changhe River Basin[J]. Environmental Chemistry, 2022, 41(02): 632-642.
[14] 杨媛媛, 佘志鹏, 夏梦洁, 等. 西安市浐灞生态区地表水水质变化特征研究[J]. 水利规划与设计, 2022, (03): 50-53+70
YANG Yuanyuan, SHE Zhipeng, XIA Mengjie, et al. Study on variation characteristics of surface water quality in Chanba ecological area of Xi'an city[J]. Water Resources Planning and Design, 2022(03): 50-53, 70.
[15] 张嘉欣, 朱秉启. 北疆地区的水化学组成特征及其影响因素[J]. 地理研究, 2022, 41(05): 1437-1458
ZHANG Jiaxin, ZHU Bingqi. Hydrochemical characteristics and influencing factors in Northern Xinjiang: Research progress and overview[J]. Geographical Research, 2022, 41(05): 1437-1458.
[16] 张杰, 周金龙, 曾妍妍, 等. 新疆叶尔羌河流域地表水水化学特征及控制因素[J]. 环境科学, 2021, 42(04): 1706-1713
ZHANG Jie, ZHOU Jinlong, ZENG Yanyan, et al. Hydrochemical Characteristic and Their Controlling Factors in the Yarkant River Basin of Xinjiang[J]. Environmental Science, 2021, 42(04): 1706-1713.
[17] 赵春红, 申豪勇, 王志恒, 等. 汾河流域地表水水化学同位素特征及其影响因素[J]. 环境科学, 2022, 43(10): 4440-4448
ZHAO Chunhong, SHEN Haoyong, WANG Zhiheng, et al. Hydrochemical and Isotopic Characteristics in the Surface Water of the Fenhe River Basin and Influence Factors[J]. Environmental Science, 2022, 43(10): 4440-4448.
[18] 赵倩, 张耀文, 迟宝明, 等. 锦州市小凌河扇地地表水与地下水水化学特征[J]. 水电能源科学, 2022, 40(02): 65-69
ZHAO Qian, ZHANG Yaowen, CHI Baoming, et al. Hydrochemical Characteristics of Surface Water and Groundwater in Xiaoling River Fan of Jinzhou City[J]. Water Resources and Power, 2022, 40(02): 65-69.
[19] 朱娅娣, 邵天杰. 浐河流域地表水水化学特征[J]. 三峡大学学报(自然科学版), 2022, 03(44): 7-12
ZHU Yadi, SHAO Tianjie. Preliminary Study on Hydrochemical Characteristics in Chan River Basin[J]. Journal of China Three Gorges University(Natural Sciences), 2022, 03(44): 7-12.
[20] Zi-Xiang Chen, Lei Yu, Wei-Guo Liu, et al. Nitrogen and oxygen isotopic compositions of water-soluble nitrate in Taihu Lake water system, China: implication for nitrate sources and biogeochemical process[J]. Environmental Earth Sciences, 2013, 71: 217-223. doi: 10.1007/s12665-013-2425-9
[21] Gaillardet J, Dupré B, Louvat P, et al. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers[J].Chemical Geology 1999,159: 3−30.
[22] Wangjia Ji, Jun Xiao, Gurpal S. Toor, et al. Nitrate-nitrogen transport in streamwater and groundwater in a loess covered region: Sources, drivers, and spatiotemporal variation[J]. Science of the Total Environment, 2021, 761: 143278. doi: 10.1016/j.scitotenv.2020.143278