Comparison on Metallogenic Differences of Porphyry Deposits between Luanchuan Mo-W and Zhashui-Shanyang Cu-Mo Ore-clusters in Qinling Orogenic Belt: Constraints of Magmatic Source and Metallogenic Conditions
-
摘要:
栾川Mo-W矿集区和柞水–山阳Cu-Mo矿集区是秦岭造山带内152~140 Ma后碰撞造山环境下形成的两个典型斑岩型矿集区,其成矿差异显著,但控制因素尚不清楚。笔者收集两个矿集区的全岩地球化学、Sr-Nd-Hf同位素、锆石和磷灰石成分,从岩浆源区、岩浆水含量、氧逸度、挥发分和S含量等方面进行对比研究,揭示其成矿差异性的主控因素。柞水−山阳矿集区Cu-Mo矿的εHf(t)和εNd(t)值为−5~2和−6.6~−1.5,(87Sr/86Sr)i值接近于上地幔(平均为0.7051),指示岩浆源区为增厚的新生下地壳部分熔融与幔源岩浆的混合。栾川矿集区具有相对较低的εHf(t)和εNd(t)值(平均值为−18.38和−14.63)以及较老的Hf二阶段模式年龄表明富Mo-W斑岩来源于古老的太华群基底和扬子板块俯冲陆壳沉积物部分熔融。柞水−山阳矿集区和栾川矿集区成矿斑岩具有高Sr低Y,全岩Eu/Eu*>0.6,锆石饱和温度较低(<750 ℃),锆石EuN/EuN*>0.3,锆石CeN/CeN*>100,Ce/Nd>10,全岩V/Sc>5,氧化还原状态>FMQ+3等,指示其成矿岩浆均具有高水含量和高氧逸度特征。此外,柞水−山阳矿集区斑岩Cu-Mo体系更富集Cl ,而栾川矿集区斑岩Mo-W体系更富集F,二者的S含量相近。以上表明岩浆源区的不同是造成二者成矿差异的根本原因;Cl和F作为Cu和Mo在岩浆热液中迁移的主要配体,是造成两个矿集区成矿差异的另一关键因素;富水、高S和高氧逸度岩浆是两个矿集区斑岩型矿床形成的重要条件,但并不是造成矿化差异的直接原因。
Abstract:The Luanchuan Mo-W ore district and the Zhashui-Shanyang Cu-Mo ore district are two typical porphyry ore districts formed in the post-collision setting during 152-140Ma in the Qinling Orogenic Belt. Despite significant differences in their mineralization, the controlling factors remain unclear. This study collected whole-rock geochemical data, Sr-Nd-Hf isotopes, and the compositions of zircon and apatite from both ore districts. A comparative analysis was conducted on aspects such as magmatic source, water content, oxygen fugacity, volatiles(F, Cl)and sulfur content to reveal the key controlling factors of their metallogenic differences. The Zhashui-Shanyang Cu-Mo ore district shows εHf(t) and εNd(t) variations ranging from −5 to 2 and −6.6 to −1.5, with (87Sr/86Sr)i value close to the upper mantle (averaging 0.7051), indicating a mixture of melting of thickened juvenile lower crustal components with mantle-derived magmas in the magma source. The Luanchuan Mo-W ore district exhibits relatively low εHf(t) and εNd(t) values (averaging −18.38 and −14.63) and older Hf two-stage model ages, suggesting that the Mo-W-rich porphyries originated from the ancient Taihua Group basement and partial melting of the Yangtze Plate subducted continental crust sediment. Both ore districts' mineralized porphyries have high Sr and low Y, whole-rock Eu/Eu*>0.6, low zircon saturation temperatures (<750 ℃), zircon Eu/Eu*>0.3, zircon CeN/CeN*>100, Ce/Nd>10, whole-rock V/Sc>5, and oxidation state>FMQ+3, indicating characteristics of high water content and high oxygen fugacity in their mineralizing magmas. Furthermore, the Cu-Mo system in the Zhashui-Shanyang ore district is enriched in Cl, while the Mo-W system in the Luanchuan ore district is enriched in F, with similar S contents. These differences in the magma source are the fundamental reasons for the mineralization disparities between the two districts. Cl and F, as the main ligands for the migration of Cu and Mo in magmatic hydrothermal fluids, are another key factor causing the mineralization differences between the two ore districts. Enriched water, high S, and high oxygen fugacity magmas are important conditions for the formation of porphyry ore deposits in both districts, but they are not the direct causes of the mineralization differences.
-
Key words:
- porphyry deposits /
- magma source /
- water content and oxygen fugacity /
- volatile /
- Qinling orogenic belt
-
图 1 秦岭造山带构造格架图(a)(据Tang et al.,2022修)和秦岭Mo矿带斑岩–矽卡岩型Cu、Mo矿床分布图(b)(据朱赖民等,2019修)
Figure 1.
图 2 柞水–山阳矿集区地质简图(修改自Xie et al.,2017)
Figure 2.
图 3 柞水–山阳矿集区和栾川矿集区成矿岩体TAS岩石分类图解(a)、SiO2-K2O岩石系列判别图解(b)、A/CNK-A/NK铝饱和指数判别图解(c)和AR- SiO2碱度率判别图解(d)(底图分别据Wright,1969;Peccerillo et al.,1976;Maniar et al.,1989;Middlemost,1994)
Figure 3.
图 5 栾川矿集区地质简图(据Guo et al.,2020修改)
Figure 5.
图 6 柞水–山阳矿集区和栾川矿集区εHf(t)–年龄图解(a)、TDM2(Hf)分布直方图(b)、εNd(t)–年龄d图解(c)和(87Sr/86Sr)i-εNd(t)图解(d)(d底图据Xie et al.,2017)
Figure 6.
图 7 柞水–山阳矿集区和栾川矿集区成矿岩体Y-Nb(a)和(Y+Nb)-Rb(b)构造环境判别图解(底图据Pearce et al.,1984)
Figure 7.
图 9 柞水–山阳矿集区和栾川矿集区稀土元素球粒陨石标准化配分图(a、b)和微量元素原始地幔标准化蛛网图(c、d)(球粒陨石和原始地幔标准化值据Sun et al.,1989)
Figure 9.
图 10 柞水–山阳矿集区和栾川矿集区成矿岩体的SiO2- Fe2O3/FeO图解(a)、Rb/Sr- Fe2O3/FeO图解(b)、全岩V/Sc-锆石EuN/EuN*图解(c)和锆石CeN/CeN*-EuN/EuN*图解(d) (b底图据Hart et al.,2004)
Figure 10.
表 1 柞水–山阳矿集区斑岩-矽卡岩型Cu-Mo矿床成矿特征简表
Table 1. Summary of characteristics of porphyry-skarn Cu-Mo deposits in Zhashui-Shanyang area
矿床名称/
矿化类型金属储量/品位 赋矿围岩 岩体岩性 岩体蚀变类型 矿石矿物 脉石矿物 成矿时间(Ma) 资料来源 池沟/矽卡岩型Cu,伴生Mo Cu:64 Mt/0.22% 池沟组石英砂岩、粉砂质板岩、大理岩 石英闪长斑岩、二长花岗岩、花岗闪长斑岩 矽卡岩化、钾化、绢云母化、角岩化、硅化、 黄铁矿、黄铜矿、辉钼矿、褐铁矿、闪锌矿、方铅矿 钾长石、斜长石、绢云母、透辉石、绿帘石、绿泥石、沸石、方解石 148.1~146.5
Molybdenite Re-Os任涛等,2014;Zhang et al.,2021 下官坊/矽卡岩型Cu,伴生Fe – 二峪河组变石英砂岩、板岩、粉砂岩 花岗闪长斑岩、闪长岩、花岗斑岩 钾化、硅化、绿泥石化、绢云母化 磁铁矿、磁黄铁矿、黄铁矿、赤铁矿、黄铜矿、辉铜矿、辉铜矿、辉钼矿、褐铁矿 石榴子石、透辉石、阳起石、绿帘石、绿泥石、石英、方解石 142.8~142.7
Zircon U-Pb吴发富,2013;Chen et al.,2023 元子街矽卡岩型Cu,伴生Fe-Au - 二峪河组变石英砂岩、板岩、粉砂岩 石英闪长斑岩、花岗闪长斑岩 绢云母化、绿泥石化、硅化、黏土化 磁铁矿、黄铜矿、白铁矿、磁黄铁矿、黄铁矿、赤铁矿、褐铁矿 透辉石、石榴子石、绿帘石、绿泥石、阳起石、石英、方解石 142.3~142.1
Zircon U-Pb吴发富,2013;Chen et al.,2023 小河口/矽卡岩型Cu Cu:>0.05 Mt 东沟组粉砂质板岩、泥质碳酸盐岩;桐峪寺组大理岩 花岗闪长斑岩、
花岗斑岩钾化、硅化、绢云母化、黏土化、绿泥石化 黄铜矿、黄铁矿、磁黄铁矿、磁铁矿 石榴子石、透辉石、阳起石、绿帘石、绿泥石、方解石、石英 150.2~149.6
Zircon U-Pb吴发富,2013;Chen et al.,2023 袁家沟/矽卡岩型Cu – 东沟组粉砂质板岩、泥质碳酸盐岩;桐峪寺组大理岩 石英闪长斑岩、花岗闪长斑岩 钾化、泥化、硅化 黄铁矿、辉钼矿、褐铁矿、黄铜矿 石英、石榴子石、透辉石、钾长石、方解石、绿帘石 147.5~141.5
Molybdenite Re-OsMao et al.,2008 双元沟/斑岩型Cu Cu:0.079 Mt/
0.51%~2.34%池沟组石英砂岩、粉砂质板岩、大理岩 石英闪长斑岩、花岗闪长斑岩 钾化、硅化、绿泥石化、绢云母化、黏土化 黄铜矿、黄铁矿、辉铜矿、黝铜矿、磁铁矿、褐铁矿 钾长石、绿泥石、石英、方解石、石榴子石、透辉石 151~144
Zircon U-PbXie et al.,2015;Chen et al.,2023 土地沟/斑岩型Cu-Mo – 池沟组石英砂岩、粉砂质板岩、大理岩 石英闪长斑岩、花岗闪长斑岩 钾化、绢云母化、碳酸盐化、高岭土化 黄铁矿、黄铜矿、辉钼矿 石榴子石、透辉石、绿泥石、钾长石、石英、方解石、 150~148
Molybdenite Re-OsZhang et al.,2023 冷水沟/矽卡岩Cu,斑岩型Cu-Mo Cu:44 Mt/0.25 % 云镇组千枚岩、石英砂岩;龙洞沟组大理岩、灰岩、千枚岩 花岗闪长斑岩、
石英闪长岩、花岗斑岩钾化、硅化、绢云母化、绿泥石化、高岭土化 黄铜矿、黄铁矿、辉钼矿、辉铜矿、黝铜矿、褐铁矿 石榴子石、透辉石、绿帘石、绿泥石、透闪石、石英、方解石 150.0~145.6
Molybdenite Re-OsXie et al.,2017 注:“–”表示无数据来源。 表 2 栾川矿集区斑岩–矽卡岩型Mo-W矿床成矿特征简表
Table 2. Summary of characteristics of porphyry-skarn Mo-W deposits in Luanchuan area
矿床名称/
矿化类型金属储量/品位 赋矿围岩 岩体岩性 蚀变类型 矿石矿物 脉石矿物 成矿时间(Ma) 资料来源 南泥湖/斑岩–矽卡岩Mo-W Mo:1.24 Mt/0.079%~0.143%;WO3:0.64 Mt 栾川群碳硅泥岩系 花岗斑岩、斑状二长花岗岩 矽卡岩化、钾化、硅化、绢云母化、绿泥石化、碳酸盐化 黄铁矿、磁黄铁矿、辉钼矿、黄铜矿、方铅矿、闪锌矿、白钨矿 阳起石、绿帘石、石英、钾长石、黑云母、方解石、萤石、绿泥石、沸石 145.8~143.9
Molybdenite Re-OsLi et al.,2004;向君峰等,2012 三道庄/斑岩–矽卡岩Mo-W Mo:0.75 Mt/0.109%;WO3:0.55 Mt/0.112% 栾川群碳硅泥岩系 花岗斑岩、斑状二长花岗岩 矽卡岩化、钾化、硅化、绢云母化、绿泥石化、碳酸盐化 黄铁矿、磁黄铁矿、辉钼矿、黄铜矿、方铅矿、闪锌矿、白钨矿 石榴子石、透辉石、阳起石、绿帘石、石英、黑云母、方解石、绿泥石、沸石 146.5~143.5
Molybdenite Re-OsMao et al.,2008;向君峰等,2012 上房沟/斑岩–矽卡岩Mo-W Mo:0.72 Mt/0.134% 栾川群碳硅泥岩系 花岗斑岩、黑云母二长花岗岩 矽卡岩化、硅化、绢云母化、碳酸盐化 黄铁矿、磁黄铁矿、辉钼矿、闪锌矿、白钨矿、磁黄铁矿 透辉石、透闪石、阳起石、金云母、蛇纹石、滑石、绿泥石、石英、方解石、钾长石 144.8~141.8
Molybdenite Re-OsLi et al.,2004;Mao et al.,2008 东鱼库/斑岩–矽卡岩Mo-W Mo:1.5 Mt/0.055%~0.186%;WO3:0.3 Mt/0.06%~0.13% 栾川群碳硅泥岩系 花岗斑岩、石英二长斑岩 硅化、绢云母化、矽卡岩化、钾化、绿泥石化 辉钼矿、白钨矿、黄铁矿、磁黄铁矿、闪锌矿、方铅矿、黄铜矿 钾长石、石英、透辉石、石榴子石、绢云母、萤石、电气石 147.1~145.9
Molybdenite Re-OsLi et al.,2015 石宝沟/斑岩-矽卡岩Mo-W Mo:0.2 Mt/0.05%~0.1%, WO3:0.17 Mt/0.07%~0.18% 栾川群碳硅泥岩系 花岗斑岩、二长花岗岩 钾化、硅化、矽卡岩化、碳酸盐化、绢云母化 辉钼矿、黄铁矿、白钨矿、磁黄铁矿 石英、石榴子石、透辉石、钾长石、方解石、绿帘石 147.5~141.5
Molybdenite Re-OsMao et al.,2008 榆木沟/斑岩–矽卡岩Mo-W Mo:0.14 Mt/0.05%~0.1%; WO3:0.17 Mt/0.07%~0.18% 栾川群碳硅泥岩系 斑状二长花岗岩和黑云母二长花岗岩 钾化、硅化、碳酸盐化 辉钼矿、白钨矿、闪锌矿、方铅矿、黄铁矿 钾长石、斜长石、石英、绿泥石、绿帘石 147.7~147.2
Molybdenite Re-OsQian et al.,2022;Yang et al.,2022 大坪/斑岩–矽卡岩Mo-W - 栾川群碳硅泥岩系 二长花岗斑岩 矽卡岩化、钾化、硅化、绢云母化、绿泥石化、碳酸盐化 黄铁矿、磁黄铁矿、辉钼矿、黄铜矿、方铅矿、闪锌矿、白钨矿 阳起石、绿帘石、透辉石、斜长石 141.2±0.5
Zircon U-Pb张云辉,2014 火神庙/ 矽卡岩Mo-W Mo:0.053 Mt/0.11% 栾川群碳硅泥岩系 花岗斑岩、石英闪长岩 矽卡岩化、钾化、硅化、绢云母化 辉钼矿、黄铁矿、磁黄铁矿、黄铜矿、方铅矿、闪锌矿 透辉石、透闪石、石英、钾长石、黑云母、方解石、绿帘石 148.1~146.1
Molybdenite Re-Os王赛等,2014 马圈/斑岩–矽卡岩Mo-W Mo:0.01 Mt/0.109% 官道口群白云石大理岩 花岗斑岩 矽卡岩化、硅化、绢云母化、绿泥石化、碳酸盐化 黄铁矿、辉钼矿、磁黄铁矿、方铅矿、闪锌矿、黄铜矿、白钨矿 透辉石、石榴子石、斜长石、方解石、石英 141.8±2.1
Molybdenite Re-Os李诺等,2007 -
[1] 陈建林, 许继峰, 任江波, 等. 俯冲型和碰撞型含矿斑岩地球化学组成的差异[J]. 岩石学报, 2011, 27: 2733-2742.
CHEN Jianlin, XU Jifeng, REN Jiangbo, et al. Geochemical differences between the subduction-and collisional type ore-bearing porphyric rocks[J]. ACTA PETROLOGICA SINICA, 2011, 27: 2733-2742.
[2] 陈雷, 闫臻, 王宗起, 等. 陕西山阳-柞水矿集区燕山期岩体矿物学特征: 对岩浆性质及成矿作用的指示[J]. 地质学报, 2014a, 88: 109-133
CHEN Lei, YAN Zhen, WANG Zongqi, et al. Mineralogical characteristic of the Yanshanian granitic rocks in Shanyang–Zhashui ore concentration area: an indicator for the magmatic nature and metallogenesis[J]. Acta Geol Sin, 2014a, 88: 109-133.
[3] 陈雷, 王宗起, 闫臻, 等. 秦岭山阳-柞水矿集区150~140Ma斑岩-矽卡岩型CuMoFe(Au)矿床成矿作用研究[J]. 岩石学报, 2014b, 30: 415-436
CHEN Lei, WANG Zongqi, YAN Zhen, et al. Metallogenesis of 150–140 Ma porphyry–skarn CuMoFe (Au) deposit in Shanyang–Zhashui ore concentration area, Qinling[J]. Acta Petrol Sin, 2014b, 30: 415-436.
[4] 陈雷, 闫臻, 王宗起, 等. 东秦岭160~140Ma Cu(Mo)和Mo(W)成矿作用的差异性: 来自成矿岩体的地球化学及其岩浆源区的证据[J]. 岩石学报, 2015, 31: 2383-2401
CHEN Lei, YAN Zhen, WANG Zongqi, et al. Diversity of the 160–140Ma Cu (Mo) and Mo (W) mineralization in East Qinling: constraint on the geochemistry and magma source of the metallogenic rocks[J]. ACTA PETROLOGICA SINICA, 2015, 31: 2383-2401.
[5] 陈雷, 闫臻, 王宗起, 等. 东秦岭160~140Ma Cu(Mo)和Mo(W)矿床磷灰石成分特征[J]. 地质学报, 2017, 91: 1925-1941
CHEN Lei, YAN Zhen, WANG Zongqi, et al. Characteristics of apatite from 160–140 Ma Cu (Mo) and Mo (W) deposits in East Qinling[J]. Acta Geologica Sinica, 2017, 91: 1925-1941.
[6] 陈衍景, 李诺, 邓小华, 等. 秦岭造山带钼矿床成矿规律[M]. 北京: 科学出版社, 2020
CHEN Yanjing, LI Nuo, DENG Xiaohua, et al. Molybdenum Mineralization in Qinling Orogen[M]. Beijing: Science Press, 2020.
[7] 戴宝章, 蒋少涌, 王孝磊 河南东沟钼矿花岗斑岩成因: 岩石地球化学、锆石U-Pb年代学及Sr-Nd-Hf同位素制约[J]. 岩石学报, 2009, 25: 2889-2901
DAI Baozhang, JIANG Shaoyong, WANG Xiaolei Petrogenesis of the granitic porphyry related to the giant molybdenum deposit in Donggou, Henan Province, China: Constraints from petrogeochemistry, zircon U-Pb chronology and Sr-Nd-Hf isotopes[J]. ACTA PETROLOGICA SINICA, 2009, 25: 2889-2901.
[8] 韩江伟, 郭波, 王宏卫, 等. 栾川西鱼库隐伏斑岩型Mo-W矿床地球化学及其意义[J]. 岩石学报, 2015, 31: 1789-1796
HAN Jiangwei, GUO Bo, WANG Hongwei, et al. Geochemistry of the Xiyuku large concealed porphyry Mo-W ore deposit, Luanchuan County[J]. ACTA PETROLOGICA SINICA, 2015, 31: 1789-1796.
[9] 侯增谦, 王涛. 同位素填图与深部物质探测(Ⅱ): 揭示地壳三维架构与区域成矿规律[J]. 地学前缘, 2018, 25: 20-41.
HOU Zengqian, WANG Tao. Isotopic mapping and deep material probing (Ⅱ): imaging crustal architecture and its control on mineral systems[J]. Earth Science Frontiers, 2018, 25: 20.
[10] 侯增谦, 杨志明. 中国大陆环境斑岩型矿床: 基本地质特征、岩浆热液系统和成矿概念模型[J]. 地质学报, 2009, 83: 1779-1817
HOU Zengqian, YANG Zhiming. Porphyry deposits in continental settings of China: Geological characteristics, magmatic-hydrothermal system, and metallogenic model[J]. Acta Geologica Sinica, 2009, 83: 1779-1817.
[11] 侯增谦, 杨志明, 王瑞, 等. 再论中国大陆斑岩Cu-Mo-Au矿床成矿作用[J]. 地学前缘, 2020, 27: 20-44
HOU Zengqian, YANG Zhiming, WANG Rui, et al. Further discussion on porphyry Cu-Mo-Au deposit formation in Chinese mainland[J]. Earth Science Frontiers, 2020, 27: 20-44.
[12] 黄典豪, 吴澄宇, 杜安道, 等. 东秦岭地区钼矿床的铼-锇同位素年龄及其意义[J]. 矿床地质, 1994, 13(3): 221−230.
HUANG Dianhao, WU Chengyu, DU Andao, et al. Re-Os isotope ages of molybdenum deposits in East Qinling and their significance[J]. Mineral Deposits, 1994, 13(3): 313−322.
[13] 李诺, 陈衍景, 张辉, 等. 东秦岭斑岩钼矿带的地质特征和成矿构造背景[J]. 地学前缘, 2007, 05): 186-198
LI Nuo, CHEN Yanjing, ZHANG Hui, et al. Molybdenum deposits in east Qinling[J]. Earth Science Frontiers, 2007, (05): 186-198.
[14] 李永峰, 毛景文, 白凤军, 等. 东秦岭南泥湖钼(钨)矿田Re-Os同位素年龄及其地质意义[J]. 地质论评, 2003: 652-659 doi: 10.3321/j.issn:0371-5736.2003.06.014
LI Yongfeng, MAO Jingwen, BAI Fengjun, et al. Re–Os isotopic dating of molybdenites in the Nannihu molybdenum (tungsten) ore field in the eastern Qinling and its geological significance[J]. Geological Review, 2003, 49: 652-659. doi: 10.3321/j.issn:0371-5736.2003.06.014
[15] 李永峰, 毛景文, 刘敦一, 等. 豫西雷门沟斑岩钼矿SHRIMP锆石U-Pb和辉钼矿Re-Os测年及其地质意义[J]. 地质论评, 2006: 122-131
LI Yongfeng, MAO Jingwen, LIU Dunyi, et al. SHRIMP zircon U-Pb and molybdenite Re-Os datings for the Leimengou porphyry molybdenum deposit, western Henan and its geological implication[J]. Geological Review, 2006, 52: 122-131.
[16] 刘凯, 赵亮, 任涛, 等. 南秦岭柞水—山阳矿集区成矿特征及找矿方向[J]. 矿产勘查, 2020, 11: 849-857
LIU Kai, ZHAO Liang, REN Tao, et al. Analysis on metallogenic characteristics and prospecting direction of Zhashui-Shanyang ore cluster in South Qinling Mountains[J]. Mineral Exploration, 2020, 11: 849-857.
[17] 冉亚洲, 陈涛, 梁文天, 等. 西秦岭郎木寺组火山岩锆石U–Pb年龄及其构造意义[J]. 西北地质, 2024, 57(1), 110−121
RAN Yazhou, CHEN Tao, LIANG Wentian, et al. Zircon U–Pb Age of Volcanic Rocks from the Langmusi Formation in the Western Qinling Mountains and Its Tectonic Significance[J]. Northwestern Geology, 2024, 57(1), 110−121
[18] 任涛, 王瑞廷, 谢桂青, 等. 陕西池沟斑岩型铜矿床含矿岩体地球化学特征、成岩成矿时代及其意义[J]. 矿床地质, 2014, 33: 807-820
REN Tao, WANG Ruiting, XIE Guiqin, et al. Geochemistry and rock-forming and ore-forming epochs of Chigou Cu porphyry deposit in Shaanxi Province, and their implications[J]. Mineral Deposits, 2014, 33: 807-820.
[19] 孙卫东, 李聪颖, 凌明星, 等. 钼的地球化学性质与成矿[J]. 岩石学报, 2015, 31: 1807-1817
SUN Weidong, LI Congying, LING Mingxing, et al. The geochemical behavior of molybdnum and mineralization[J]. ACTA PETROLOGICA SINICA, 2015, 31: 1807-1817.
[20] 唐利, 张寿庭, 曹华文, 等. 河南栾川矿集区钼钨铅锌银多金属矿成矿系统及演化特征[J]. 成都理工大学学报(自然科学版), 2014, 41: 356-368.
TANG Li, ZHANG Shouting, CAO Huawen, et al. Metallogenic system and evolutionary characteristics of Mo-W-Pb-Zn-Ag polymetallic metallogenic concentration area in Luanchuan, Henan[J]. China. J. Chengdu Univ. Technol.(Sci. Technol. Ed.), 2014, 41: 356-368
[21] 陶威, 郭岭, 李阳, 等. 南秦岭小寨沟银矿地质特征及其构造约束[J]. 西北地质, 2021 ,54(3): 108−120.
TAO Wei, GUO Ling, LI Yang, et al. The Geological Characteristics and Structural Constraints of Xiaozhaigou Silver Deposit in South Qinling[J]. Northwestern Geology, 2021, 54(3): 108−120.
[22] 王汉辉, 唐利, 杨勃畅, 等. 东秦岭黄水庵碳酸岩型Mo–REE矿床方解石地球化学特征和氟碳铈矿U–Th–Pb年龄及其意义[J]. 西北地质, 2023, 56(1): 48−62.
WANG Hanhui, TANG Li, YANG Bochang, et al. Geochemical Characteristics of Calcite and Bastnäsite U–Th–Pb Age of the Huangshui’an Carbonatite–hosted Mo–REE Deposit, Eastern Qinling[J]. Northwestern Geology, 2023, 56(1): 48−62.
[23] 王瑞, 罗晨皓, 夏文杰, 等. 冈底斯后碰撞斑岩成矿带高水、高氧逸度岩浆成因研究进展[J]. 矿物岩石地球化学通报, 2021, 40: 1061-1077
WANG Rui, LUO Chenhao, XIA Wenjie, et al. Progresses in the study of high magmatic water and oxidation state of post-collisional magmas in the Gangdese porphyry deposit belt[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2021, 40: 1061-1077.
[24] 王瑞, 朱弟成, 王青, 等. 特提斯造山带斑岩成矿作用[J]. 中国科学: 地球科学, 2020, 50: 1919-1946.
WANG Rui, ZHU Dicheng, WANG Qing, et al. Porphyry mineralization in the Tethyan orogen[J]. Science China Earth Sciences, 2020, 63: 2042-2067.
[25] 王瑞廷, 刘凯, 冀月飞, 等. 陕西柞水-山阳金铜银多金属矿集区典型矿床模型和找矿预测. 地质通报, 2023, 42(6): 895−908.
WANG Ruiting, LIU Kai, JI Yuefei, et al. Typical deposit model and prospecting prediction of the Zhashui-Shanyang Au-Cu-Ag polymetallic ore-concentration area, Shaanxi Province. Geological Bulletin of China, 2023, 42(6): 895−908.
[26] 王赛, 叶会寿, 杨永强, 等. 河南栾川火神庙钼矿床辉钼矿Re-Os同位素年龄及其地质意义[J]. 地质通报, 2014, 33: 1430-1438
WANG Sai, YE Huishou, YANG Yongqiang, et al. Molybdenite Re‐Os Isochron Age of the Huoshenmiao Mo Deposit in Luanchuan Henan Province and Its Geological Implications[J]. Geological Bulletin of China, 2014, 33: 1430-1438.
[27] 王赛, 叶会寿, 杨永强, 等. 豫西火神庙岩体锆石U-Pb年代学、地球化学及Hf同位素组成[J]. 地球科学, 2016, 41(2): 293−316.
WANG Sai, YE Huishou, YANG Yongqiang, et al. Zircon U-Pb chronology, geochemistry and Hf isotopic compositions of the Huoshenmiao pluton, western Henan[J]. Earth Science, 2016, 41(2): 293−316.
[28] 王晓霞, 王涛, 齐秋菊, 等. 秦岭晚中生代花岗岩时空分布、成因演变及构造意义[J]. 岩石学报, 2011, 27: 1573-1593
WANG Xiaoxia, WANG Tao, QI Qiuju, et al. Temporal-spatial variations, origin and their tectonic significance of the Late Mesozoic granites in the Qinling, Central China[J]. ACTA PETROLOGICA SINICA, 2011, 27: 1573-1593.
[29] 王晓霞, 王涛, 张成立. 秦岭造山带花岗质岩浆作用与造山带演化[J]. 中国科学: 地球科学, 2015, 45: 1109-1125.
WANG Xiaoxia, WANG Tao, ZHANG Chengli Granitoid magmatism in the Qinling orogen, central China and its bearing on orogenic evolution[J]. Science China Earth Sciences, 2015, 58: 1497-1512.
[30] 王宗起, 闫全人, 闫臻, 等. 秦岭造山带主要大地构造单元的新划分[J]. 地质学报, 2009, 83: 1527-1546
WANG Zongqi, YAN Quanren, YAN Zhen, et al. New division of the main tectonic units of the Qinling Orogenic Belt, Central China[J]. Acta Geologica Sinica, 2009, 83: 1527-1546.
[31] 吴发富, 王宗起, 闫臻, 等. 秦岭山阳-柞水地区燕山期中酸性侵入岩地球化学特征、锆石U-Pb年龄及Lu-Hf同位素组成[J]. 岩石学报, 2014, 30: 451-471
WU Fafu, WANG Zongqi, YAN Zhen, et al. Geochemical characteristics, zircons U-Pb ages and Lu-Hf isotopic composition of the Yanshanian intermediate-acidic plutons in the Shanyang-Zhashui areas, Qinling Orogenic Belt[J]. ACTA PETROLOGICA SINICA, 2014, 30: 451-471.
[32] 吴发富. 中秦岭山阳—柞水地区岩浆岩及其成矿构造环境研究[D]. 北京:中国地质科学院, 2013.
WU Fafu. Research on the magmatite and its metallogenic tectonic setting in the Shanyang-Zhashui area, Middle Qinling Orogenic Belt[D]. Beijing: Chinese Academy of Geological Sciences, 2013.
[33] 向君峰, 毛景文, 裴荣富, 等. 南泥湖—三道庄钼(钨)矿的成岩成矿年龄新数据及其地质意义[J]. 中国地质, 2012, 39: 458-473
XIANG Junfeng, MAO Jingwen, PEI Rongfu, et al. New geochronological data of granites and ores from the Nannihu-Sandaozhuang Mo (W) deposit[J]. Geology in China, 2012, 39: 458-473.
[34] 谢桂青, 任涛, 李剑斌, 等. 陕西柞山盆地池沟铜钼矿区含矿岩体的锆石U-Pb年龄和岩石成因[J]. 岩石学报, 2012, 28: 15-26
XIE Guiqing, REN Tao, LI Jianbin, et al. Zircon U-Pb age and petrogenesis of ore-bearing granitoid for the Chigou Cu-Mo deposit from the Zhashan basin, Shaanxi Province[J]. Acta Petrol Sin, 2012, 28: 15-26.
[35] 薛飞. 栾川矿集区花岗岩地质地球化学特征及其找矿指示意义[D]. 北京: 中国地质大学(北京), 2017
XUE Fei. Geology and Geochemistry of Granites in Luanchuan Ore District and Their Implications for Mineral Exploration[D]. Beijing: China University of Geosciences (Beijing), 2017.
[36] 闫臻, 王宗起, 陈雷, 等. 南秦岭山阳-柞水矿集区构造-岩浆-成矿作用[J]. 岩石学报, 2014, 30: 401-414
YAN Zhen, WANG Zongqi, CHEN Lei, et al. Tectono-magmatism and metallogeneses of Shanyang-Zhashui ore concentration area, Qinling Orogen[J]. ACTA PETROLOGICA SINICA, 2014, 30: 401-414.
[37] 燕长海, 刘国印, 彭翼, 等. 豫西南地区铅锌银成矿规律[M]. 北京: 地质出版社, 2009
YAN Changhai, LIU Guoyin, PENG Yi, et al. The Metallogenetical Characteristics of the Pb-Zn-Ag Deposits in Southwest Henan [M]. Beijing: Geological Publishing House, 2009.
[38] 杨航, 秦克章, 吴鹏, 等. 斑岩铜-钼-金矿床: 构造环境、成矿作用与控制因素[J]. 矿床地质, 2023, 42: 128-156
YANG Hang, QIN Kezhang, Wu Peng, et al. Tectonic setting, mineralization and ore-controlling factors of porphyry Cu-Mo-Au deposits[J]. Mineral Deposits, 2023, 42: 128-156.
[39] 杨阳, 王晓霞, 柯昌辉, 等. 豫西南泥湖矿集区石宝沟花岗岩体的锆石U-Pb年龄、岩石地球化学及Hf同位素组成[J]. 中国地质, 2012, 39(6): 1525−1542.
YANG Yang, WANG Xiaoxia, KE Changhui, et al. Zircon U-Pb age, geochemistry and Hf isotopic compositions of Shibaogou granitoid pluton in the Nannihu ore district, western Henan Province[J]. Geology in China, 2012, 39(6): 1525−1542.
[40] 叶会寿, 毛景文, 李永峰, 等. 东秦岭东沟超大型斑岩钼矿SHRIMP锆石U-Pb和辉钼矿Re-Os年龄及其地质意义[J]. 地质学报, 2006: 1078-1088 doi: 10.3321/j.issn:0001-5717.2006.07.014
YE Huishou, MAO Jingwen, LI Yongfeng, et al. SHRIMP zircon U-Pb and molybdenite Re-Os dating for the superlarge Donggou porphyry Mo deposit in East Qinling, China, and its geological implication[J]. Acta Geol. Sin. , 2006, 80: 1078-1088. doi: 10.3321/j.issn:0001-5717.2006.07.014
[41] 张国伟, 郭安林, 董云鹏, 等. 关于秦岭造山带[J]. 地质力学学报, 2019, 25: 746-768 doi: 10.12090/j.issn.1006-6616.2019.25.05.064
ZHANG Guowei, GUO Anlin, DONG Yunpeng, et al. Rethinking of the Qinling orogen[J]. Journal of Geomechanics, 2019, 25: 746-768. doi: 10.12090/j.issn.1006-6616.2019.25.05.064
[42] 张国伟, 张宗清, 董云鹏. 秦岭造山带主要构造岩石地层单元的构造性质及其大地构造意义[J]. 岩石学报, 1995: 101-114
ZHANG Guowei, ZHANG Zongqing, DONG Yunpeng, et al. Nature of main tectono-lithostratigraphic units of the Qinling orogen: implications for the tectonic evolution[J]. Acta Petrol. Sinica, 1995, 11: 101-114.
[43] 张国伟, 张本仁, 肖庆辉, 等. 秦岭造山带与大陆动力学[M]. 北京: 科学出版社, 2001
ZHANG Guowei, ZHANG Benren, XIAO Qinghui, et al. Qinling orogenic belt and continental dynamics [M]. Beijing: Science Press, 2001.
[44] 张云辉. 栾川地区晚中生代构造-岩浆演化与成矿关系探讨[D]. 北京: 中国地质大学(北京), 2014
ZHANG Yunhui. Late-Mesozoic tectonic-magma evolution and its relationship with mineralization in Luanchuan County[D]. Beijing: China University of Geosciences (Beijing), 2014.
[45] 郑俊, 朱赖民, 姜航, 等. 南秦岭柞水-山阳矿集区印支期和燕山期花岗岩对比研究[J]. 矿物岩石地球化学通报, 2015, 34: 1155-1172
ZHENG Jun, ZHU Laimin, JIANG Hang, et al. A Comparisonal Study on the Indosinian and Yanshanian Granites of the Zhashui-Shanyang ore Cluster District in the Southern Qinling, China[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2015, 34: 1155-1172.
[46] 朱赖民, 张国伟, 郭波, 等. 东秦岭金堆城大型斑岩钼矿床LA-ICP-MS锆石U-Pb定年及成矿动力学背景[J]. 地质学报, 2008: 204-220
ZHU Laimin, ZHANG Guowei, GUO Bo, et al. U–Pb (LA-ICP-MS) zircon dating for the large Jinduicheng porphyry Mo deposit in the East Qinling, China, and its metallogenetic geodynamical setting[J]. Acta Geologica Sinica, 2008, 82: 204-220.
[47] 朱赖民, 郑俊, 熊潇, 等. 南秦岭柞水—山阳矿集区园子街岩体岩石地球化学与成矿潜力探讨[J]. 地学前缘, 2019, 26: 189-205.
ZHU Laimin, ZHENG Jun, XIONG Xiao, et al. Petrogeochemistry and mineralization potential of the Yuanzijie intrusion in the ZhashuiShanyang ore deposit cluster in southern Qinling[J]. Earth Science Frontiers, 2019, 26: 189.
[48] Andersson Stefan S, Wagner Thomas, Jonsson Erik, et al. Apatite as a tracer of the source, chemistry and evolution of ore-forming fluids: The case of the Olserum-Djupedal REE-phosphate mineralisation, SE Sweden[J]. Geochimica et Cosmochimica Acta, 2019, 255: 163-187. doi: 10.1016/j.gca.2019.04.014
[49] Ayers John C, Watson E Bruce. Solubility of apatite, monazite, zircon, and rutile in supercritical aqueous fluids with implications for subduction zone geochemistry[J]. Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences, 1991, 335: 365-375.
[50] Ayers John C, Watson E Bruce. Apatite/fluid partitioning of rare-earth elements and strontium: Experimental results at 1.0 GPa and 1000 C and application to models of fluid-rock interaction[J]. Chemical Geology, 1993, 110: 299-314. doi: 10.1016/0009-2541(93)90259-L
[51] Ballard Julian R, Palin Michael J, Campbell Ian H. Relative oxidation states of magmas inferred from Ce (IV)/Ce (III) in zircon: application to porphyry copper deposits of northern Chile[J]. Contributions to Mineralogy and Petrology, 2002, 144: 347-364. doi: 10.1007/s00410-002-0402-5
[52] Bao Zhiwei, Wang Christina Yan, Zhao Taiping, et al. Petrogenesis of the Mesozoic granites and Mo mineralization of the Luanchuan ore field in the East Qinling Mo mineralization belt, Central China[J]. Ore Geology Reviews, 2014, 57: 132-153. doi: 10.1016/j.oregeorev.2013.09.008
[53] Berndt Jasper, Koepke JÜrgen, Holtz Francois. An experimental investigation of the influence of water and oxygen fugacity on differentiation of MORB at 200 MPa[J]. Journal of Petrology, 2005, 46: 135-167.
[54] Berry Andrew J, Harris Anthony C, Kamenetsky Vadim S, et al. The speciation of copper in natural fluid inclusions at temperatures up to 700 C[J]. Chemical Geology, 2009, 259: 2-7. doi: 10.1016/j.chemgeo.2008.10.018
[55] Boudreau Ae, Kruger Fj. Variation in the composition of apatite through the Merensky cyclic unit in the western Bushveld Complex[J]. Economic geology, 1990, 85: 737-745. doi: 10.2113/gsecongeo.85.4.737
[56] Buddington Arthur F, Lindsley Dh. Iron-titanium oxide minerals and synthetic equivalents[J]. Journal of Petrology, 1964, 5: 310-357. doi: 10.1093/petrology/5.2.310
[57] Cao Mingjian, Li Guangming, Qin Kezhang, et al. Major and trace element characteristics of apatites in granitoids from Central Kazakhstan: implications for petrogenesis and mineralization[J]. Resource Geology, 2012, 62: 63-83. doi: 10.1111/j.1751-3928.2011.00180.x
[58] Chelle-Michou Cyril, Chiaradia Massimo. Amphibole and apatite insights into the evolution and mass balance of Cl and S in magmas associated with porphyry copper deposits[J]. Contributions to Mineralogy and Petrology, 2017, 172: 105. doi: 10.1007/s00410-017-1417-2
[59] Chelle-Michou Cyril, Chiaradia Massimo, Ovtcharova Maria, et al. Zircon petrochronology reveals the temporal link between porphyry systems and the magmatic evolution of their hidden plutonic roots (the Eocene Coroccohuayco deposit, Peru)[J]. LITHOS, 2014, 198: 129-140.
[60] Chen Lei, Yan Zhen, Wang Zongqi, et al. Contributions of juvenile lower crust and mantle components to porphyry Cu deposits in an intracontinental setting: evidence from late Mesozoic porphyry Cu deposits in the South Qinling Orogenic Belt, Central China[J]. Mineralium Deposita, 2023, 58: 489-509. doi: 10.1007/s00126-022-01138-8
[61] Chiaradia Massimo. How much water in basaltic melts parental to porphyry copper deposits?[J]. Frontiers in Earth Science, 2020, 8: 138.
[62] Cooke David R, Hollings Peter, Walshe John L. Giant porphyry deposits: characteristics, distribution, and tectonic controls[J]. Economic geology, 2005, 100: 801-818. doi: 10.2113/gsecongeo.100.5.801
[63] Cooke D R, Hollings P, Wilkinson J J, et al. Geochemistry of porphyry deposits[J]. In: editor(s): Holland H D, Turekian KK (editors). Treatise on Geochemistry (Second Edition)[M]. Elsevier, 2014: 357−381.
[64] Dong Yunpeng, Sun Shengsi, Santosh M, et al. Central China orogenic belt and amalgamation of East Asian continents[J]. Gondwana Research, 2021, 100: 131-194. doi: 10.1016/j.gr.2021.03.006
[65] Du Jingguo, Wang Gongwen, Jia Lihui. In situ major and trace element compositions of apatites from Luanchuan orecluster: Implications for porphyry Mo mineralization[J]. Ore Geology Reviews, 2019, 115: 103174. doi: 10.1016/j.oregeorev.2019.103174
[66] Gammons Ch, Williams-Jones Ae. Chemical mobility of gold in the porphyry-epithermal environment[J]. Economic geology, 1997, 92: 45-59. doi: 10.2113/gsecongeo.92.1.45
[67] Griffin Wl, Wang Xiang, Jackson Se, et al. Zircon chemistry and magma mixing, SE China: in-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes[J]. LITHOS, 2002, 61: 237-269. doi: 10.1016/S0024-4937(02)00082-8
[68] Grondahl Carter, Zajacz Zoltán. Sulfur and chlorine budgets control the ore fertility of arc magmas[J]. Nature communications, 2022, 13: 4218. doi: 10.1038/s41467-022-31894-0
[69] Guo Bo, Yan Changhai, Zhang Shouting, et al. Geochemical and geological characteristics of the granitic batholith and Yuku concealed Mo–W deposit at the southern margin of the North China Craton[J]. Geological Journal, 2020, 55: 95-116. doi: 10.1002/gj.3372
[70] Hart Craig Jr, Mair John L, Goldfarb Richard J, et al. Source and redox controls on metallogenic variations in intrusion-related ore systems, Tombstone-Tungsten Belt, Yukon Territory, Canada[J]. Earth and Environmental Science Transactions of The Royal Society of Edinburgh, 2004, 95: 339-356.
[71] Hou Zengqian, Duan Lianfeng, Lu Yongjun, et al. Lithospheric architecture of the Lhasa terrane and its control on ore deposits in the Himalayan-Tibetan orogen[J]. Economic geology, 2015a, 110: 1541-1575. doi: 10.2113/econgeo.110.6.1541
[72] Hou Zengqian, Yang Zhiming, Lu Yongjun, et al. A genetic linkage between subduction-and collision-related porphyry Cu deposits in continental collision zones[J]. Geology, 2015b, 43: 247-250. doi: 10.1130/G36362.1
[73] Hou Zengqian, Zhang Hongrui. Geodynamics and metallogeny of the eastern Tethyan metallogenic domain[J]. Ore Geology Reviews, 2015c, 70: 346-384. doi: 10.1016/j.oregeorev.2014.10.026
[74] Hou Zengqian, Li Qiuyun, Gao Yongfeng, et al. Lower-Crustal magmatic hornblendite in North China Craton: insight into the genesis of porphyry Cu deposits[J]. Economic geology, 2015d, 110: 1879-1904. doi: 10.2113/econgeo.110.7.1879
[75] Hou Zengqian, Zhang Hongrui, Pan Xiaofei, et al. Porphyry Cu (–Mo–Au) deposits related to melting of thickened mafic lower crust: examples from the eastern Tethyan metallogenic domain[J]. Ore Geology Reviews, 2011, 39: 21-45. doi: 10.1016/j.oregeorev.2010.09.002
[76] Hou Zengqian, Zheng Yuanchuan, Yang Zhiming, et al. Contribution of mantle components within juvenile lower-crust to collisional zone porphyry Cu systems in Tibet[J]. Mineralium Deposita, 2013, 48: 173-192. doi: 10.1007/s00126-012-0415-6
[77] Hu Xin-Kai, Tang Li, Zhang Shou-Ting, et al. Geochemistry, zircon U-Pb geochronology and Hf-O isotopes of the Late Mesozoic granitoids from the Xiong'ershan area, East Qinling Orogen, China: Implications for petrogenesis and molybdenum metallogeny[J]. Ore Geology Reviews, 2020, 124: 103653. doi: 10.1016/j.oregeorev.2020.103653
[78] Imai Akira. Metallogenesis of porphyry Cu deposits of the western Luzon arc, Philippines: K‐Ar ages, SO3 contents of microphenocrystic apatite and significance of intrusive rocks[J]. Resource Geology, 2002, 52: 147-161. doi: 10.1111/j.1751-3928.2002.tb00127.x
[79] Imai Akira. Variation of Cl and SO3 contents of microphenocrystic apatite in intermediate to silicic igneous rocks of Cenozoic Japanese island arcs: Implications for porphyry Cu metallogenesis in the Western Pacific Island arcs[J]. Resource Geology, 2004, 54: 357-372. doi: 10.1111/j.1751-3928.2004.tb00211.x
[80] Jugo Pedro J. Sulfur content at sulfide saturation in oxidized magmas[J]. Geology, 2009, 37: 415-418. doi: 10.1130/G25527A.1
[81] Kemp Ais, Hawkesworth Cj, Paterson Ba, et al. Episodic growth of the Gondwana supercontinent from hafnium and oxygen isotopes in zircon[J]. nature, 2006, 439: 580-583. doi: 10.1038/nature04505
[82] Kendall-Langley Lillian A, Kemp Anthony Is, Hawkesworth Chris J, et al. Quantifying F and Cl concentrations in granitic melts from apatite inclusions in zircon[J]. Contributions to Mineralogy and Petrology, 2021, 176: 1-19. doi: 10.1007/s00410-020-01755-4
[83] Keppler Hans, Wyllie Peter J. Partitioning of Cu, Sn, Mo, W, U, and Th between melt and aqueous fluid in the systems haplogranite-H2O− HCl and haplogranite-H2O− HF[J]. Contributions to Mineralogy and Petrology, 1991, 109: 139-150. doi: 10.1007/BF00306474
[84] Ketcham Richard A Calculation of stoichiometry from EMP data for apatite and other phases with mixing on monovalent anion sites[J]. American Mineralogist, 2015, 100: 1620-1623. doi: 10.2138/am-2015-5171
[85] Koleszar Am, Saal Ae, Hauri Eh, et al. The volatile contents of the Galapagos plume; evidence for H2O and F open system behavior in melt inclusions[J]. Earth and Planetary Science Letters, 2009, 287: 442-452. doi: 10.1016/j.jpgl.2009.08.029
[86] Kress Victor C, Carmichael Ian Se. The compressibility of silicate liquids containing Fe 2 O 3 and the effect of composition, temperature, oxygen fugacity and pressure on their redox states[J]. Contributions to Mineralogy and Petrology, 1991, 108: 82-92. doi: 10.1007/BF00307328
[87] Li Dong, Han Jiangwei, Zhang Shouting, et al. Temporal evolution of granitic magmas in the Luanchuan metallogenic belt, east Qinling Orogen, central China: Implications for Mo metallogenesis[J]. Journal of Asian Earth Sciences, 2015a, 111: 663-680. doi: 10.1016/j.jseaes.2015.05.017
[88] Li Dong, Zhang Shou-Ting, Yan Chang-Hai, et al. Late Mesozoic time constraints on tectonic changes of the Luanchuan Mo belt, East Qinling orogen, Central China[J]. Journal of Geodynamics, 2012, 61: 94-104. doi: 10.1016/j.jog.2012.02.005
[89] Li Huijuan, Hermann Joerg Chlorine and fluorine partitioning between apatite and sediment melt at 2.5 GPa, 800 C: A new experimentally derived thermodynamic model[J]. American Mineralogist, 2017, 102: 580-594. doi: 10.2138/am-2017-5891
[90] Li Nuo, Chen Yan-Jing, Santosh M. , et al. Late Mesozoic granitoids in the Qinling Orogen, Central China, and tectonic significance[J]. Earth-Science Reviews, 2018, 182: 141-173. doi: 10.1016/j.earscirev.2018.05.004
[91] Li Z X A, Lee C T A. The constancy of upper mantle fO2 through time inferred from V/Sc ratios in basalts[J]. Earth and Planetary Science Letters, 2004, 228: 483−493.
[92] Loader Matthew A, Wilkinson Jamie J, Armstrong Robin N The effect of titanite crystallisation on Eu and Ce anomalies in zircon and its implications for the assessment of porphyry Cu deposit fertility[J]. Earth and Planetary Science Letters, 2017, 472: 107-119. doi: 10.1016/j.jpgl.2017.05.010
[93] Loucks Rr. Distinctive composition of copper-ore-forming arcmagmas[J]. Australian Journal of Earth Sciences, 2014, 61: 5-16. doi: 10.1080/08120099.2013.865676
[94] Loucks Robert R, Fiorentini Marco L, Henríquez Gonzalo J. New magmatic oxybarometer using trace elements in zircon[J]. Journal of Petrology, 2020, 61: egaa034. doi: 10.1093/petrology/egaa034
[95] Lowell J David, Guilbert John M. Lateral and vertical alteration-mineralization zoning in porphyry ore deposits[J]. Economic geology, 1970, 65: 373-408. doi: 10.2113/gsecongeo.65.4.373
[96] Lu Yong-Jun, Kerrich Robert, Kemp Anthony Is, et al. Intracontinental Eocene-Oligocene porphyry Cu mineral systems of Yunnan, western Yangtze Craton, China: compositional characteristics, sources, and implications for continental collision metallogeny[J]. Economic geology, 2013, 108: 1541-1576. doi: 10.2113/econgeo.108.7.1541
[97] Lu Yong-Jun, Loucks Robert R, Fiorentini Marco L, et al. Fluid flux melting generated postcollisional high Sr/Y copper ore–forming water-rich magmas in Tibet[J]. Geology, 2015, 43: 583-586. doi: 10.1130/G36734.1
[98] Luo Biji, Zhang Hongfei, Zhang Liqi, et al. The magma plumbing system of Mesozoic Shanyang porphyry groups, South Qinling and implications for porphyry copper mineralization[J]. Earth and Planetary Science Letters, 2020, 543: 116346. doi: 10.1016/j.jpgl.2020.116346
[99] Maniar Papu D, Piccoli Philip M. Tectonic discrimination of granitoids[J]. Geological society of America bulletin, 1989, 101: 635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
[100] Mao J W, Xie G Q, Pirajno Franco, et al. Late Jurassic–Early Cretaceous granitoid magmatism in Eastern Qinling, central-eastern China: SHRIMP zircon U–Pb ages and tectonic implications[J]. Australian Journal of Earth Sciences, 2010, 57: 51-78. doi: 10.1080/08120090903416203
[101] Mao J W, Pirajno Franco, Xiang Jf, et al. Mesozoic molybdenum deposits in the east Qinling–Dabie orogenic belt: characteristics and tectonic settings[J]. Ore Geology Reviews, 2011, 43: 264-293. doi: 10.1016/j.oregeorev.2011.07.009
[102] Mao J W, Xie Gq, Bierlein Frank, et al. Tectonic implications from Re–Os dating of Mesozoic molybdenum deposits in the East Qinling–Dabie orogenic belt[J]. Geochimica et Cosmochimica Acta, 2008, 72: 4607-4626. doi: 10.1016/j.gca.2008.06.027
[103] Mccubbin Fm, Jones Rh. Naming materials in the magma/igneous rock system[J]. Elements, 2015, 11: 183-188. doi: 10.2113/gselements.11.3.183
[104] Middlemost Eric Ak. Extraterrestrial apatite: planetary geochemistry to astrobiology[J]. Earth-Science Reviews, 1994, 37: 215-224. doi: 10.1016/0012-8252(94)90029-9
[105] Munoz Marcia, Charrier R, Fanning Cm, et al. Zircon trace element and O–Hf isotope analyses of mineralized intrusions from El Teniente ore deposit, Chilean Andes: constraints on the source and magmatic evolution of porphyry Cu–Mo related magmas[J]. Journal of Petrology, 2012, 53: 1091-1122. doi: 10.1093/petrology/egs010
[106] Naney Mt. Phase equilibria of rock-forming ferromagnesian silicates in granitic systems[J]. American journal of science, 1983, 283: 993-1033. doi: 10.2475/ajs.283.10.993
[107] Parat Fleurice, Holtz François, Klügel Andreas. S-rich apatite-hosted glass inclusions in xenoliths from La Palma: constraints on the volatile partitioning in evolved alkaline magmas[J]. Contributions to Mineralogy and Petrology, 2011, 162: 463-478. doi: 10.1007/s00410-011-0606-7
[108] Pearce Julian A, Harris Nigel Bw, Tindle Andrew G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984, 25: 956-983. doi: 10.1093/petrology/25.4.956
[109] Peccerillo Angelo, Taylor Sr. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey[J]. Contributions to Mineralogy and Petrology, 1976, 58: 63-81. doi: 10.1007/BF00384745
[110] Qian Zesheng, Yang Fan, Liu Chao, et al. Late Mesozoic Huangbeiling S-type granite in the East Qinling Orogen, China: Geochronology, petrogenesis and implications for tectonic evolution[J]. Geochemistry, 2022, 82: 125857. doi: 10.1016/j.chemer.2021.125857
[111] Richards Jeremy P. Magmatic to hydrothermal metal fluxes in convergent and collided margins[J]. Ore Geology Reviews, 2011, 40: 1-26. doi: 10.1016/j.oregeorev.2011.05.006
[112] Richards Jeremy P. Tectonic, magmatic, and metallogenic evolution of the Tethyan orogen: From subduction to collision[J]. Ore Geology Reviews, 2015, 70: 323-345. doi: 10.1016/j.oregeorev.2014.11.009
[113] Richards Jeremy P. Tectono-magmatic precursors for porphyry Cu-(Mo-Au) deposit formation[J]. Economic geology, 2003, 98: 1515-1533. doi: 10.2113/gsecongeo.98.8.1515
[114] Ridolfi Filippo, Renzulli Alberto, Puerini Matteo. Stability and chemical equilibrium of amphibole in calc-alkaline magmas: an overview, new thermobarometric formulations and application to subduction-related volcanoes[J]. Contributions to Mineralogy and Petrology, 2010, 160: 45-66. doi: 10.1007/s00410-009-0465-7
[115] Riker Jenny, Humphreys Madeleine Cs, Brooker Richard A, et al. First measurements of OH-C exchange and temperature-dependent partitioning of OH and halogens in the system apatite–silicate melt[J]. American Mineralogist, 2018, 103: 260-270. doi: 10.2138/am-2018-6187CCBY
[116] Shu Qihai, Chang Zhaoshan, Lai Yong, et al. Zircon trace elements and magma fertility: insights from porphyry (-skarn) Mo deposits in NE China[J]. Mineralium Deposita, 2019, 54: 645-656. doi: 10.1007/s00126-019-00867-7
[117] Sillitoe Richard H. Characteristics and controls of the largest porphyry copper‐gold and epithermal gold deposits in the circum‐Pacific region[J]. Australian Journal of Earth Sciences, 1997, 44: 373-388. doi: 10.1080/08120099708728318
[118] Sillitoe Richard H. A plate tectonic model for the origin of porphyry copper deposits[J]. Economic geology, 1972, 67: 184-197. doi: 10.2113/gsecongeo.67.2.184
[119] Sillitoe Richard H. Porphyry copper systems[J]. Economic geology, 2010, 105: 3-41. doi: 10.2113/gsecongeo.105.1.3
[120] Sisson Tw, Grove Tl. Experimental investigations of the role of H 2 O in calc-alkaline differentiation and subduction zone magmatism[J]. Contributions to Mineralogy and Petrology, 1993, 113: 143-166. doi: 10.1007/BF00283225
[121] Sun Weidong, Huang Rui-Fang, Li He, et al. Porphyry deposits and oxidized magmas[J]. Ore Geology Reviews, 2015, 65: 97-131. doi: 10.1016/j.oregeorev.2014.09.004
[122] Sun S-S, Mcdonough William F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42: 313-345. doi: 10.1144/GSL.SP.1989.042.01.19
[123] Tang Li, Wagner Thomas, Fusswinkel Tobias, et al. Fluid inclusion evidence for the magmatic-hydrothermal evolution of closely linked porphyry Au, porphyry Mo, and barren systems, East Qinling, China[J]. GSA Bulletin, 2022, 134: 1529-1548. doi: 10.1130/B36170.1
[124] Tang Li, Zhao Yu, Zhang Shou-Ting, et al. Origin and evolution of a porphyry-breccia system: Evidence from zircon U-Pb, molybdenite Re-Os geochronology, in situ sulfur isotope and trace elements of the Qiyugou deposit, China[J]. Gondwana Research, 2021, 89: 88-104. doi: 10.1016/j.gr.2020.08.013
[125] Trail Dustin, Watson E Bruce, Tailby Nicholas D. Ce and Eu anomalies in zircon as proxies for the oxidation state of magmas[J]. Geochimica et Cosmochimica Acta, 2012, 97: 70-87. doi: 10.1016/j.gca.2012.08.032
[126] Ulmer Peter, Kaegi Ralf, Müntener Othmar. Experimentally derived intermediate to silica-rich arc magmas by fractional and equilibrium crystallization at 1· 0 GPa: an evaluation of phase relationships, compositions, liquid lines of descent and oxygen fugacity[J]. Journal of Petrology, 2018, 59: 11-58. doi: 10.1093/petrology/egy017
[127] Wang Rui, Richards Jeremy P, Hou Zeng-Qian, et al. Increasing magmatic oxidation state from paleocene to miocene in the eastern Gangdese Belt, Tibet: implication for collision-related porphyry Cu-Mo±Au mineralization[J]. Economic geology, 2014a, 109: 1943-1965. doi: 10.2113/econgeo.109.7.1943
[128] Wang Rui, Richards Jeremy P, Hou Zengqian, et al. Increased magmatic water content—the key to Oligo-Miocene porphyry Cu-Mo±Au formation in the eastern Gangdese belt, Tibet[J]. Economic geology, 2014b, 109: 1315-1339. doi: 10.2113/econgeo.109.5.1315
[129] Wang Rui, Weinberg Roberto F, Collins William J, et al. Origin of postcollisional magmas and formation of porphyry Cu deposits in southern Tibet[J]. Earth-Science Reviews, 2018, 181: 122-143. doi: 10.1016/j.earscirev.2018.02.019
[130] Webster James D, Tappen Christine M, Mandeville Charles W. Partitioning behavior of chlorine and fluorine in the system apatite–melt–fluid. II: Felsic silicate systems at 200 MPa[J]. Geochimica et Cosmochimica Acta, 2009, 73: 559-581. doi: 10.1016/j.gca.2008.10.034
[131] Williamson Bj, Herrington Rj, Morris A. Porphyry copper enrichment linked to excess aluminium in plagioclase[J]. Nature Geoscience, 2016, 9: 237-241. doi: 10.1038/ngeo2651
[132] Wright Jb. A simple alkalinity ratio and its application to questions of non-orogenic granite genesis[J]. Geological Magazine, 1969, 106: 370-384. doi: 10.1017/S0016756800058222
[133] Wu Chao, Chen Huayong, Lu Yongjun. Magmatic water content and crustal evolution control on porphyry systems: insights from the Central Asian Orogenic Belt[J]. Journal of Petrology, 2021, 62: egab021. doi: 10.1093/petrology/egab021
[134] Xie Gui Qing, Mao Jing Wen, Wang Rui Ting, et al. Origin of the Lengshuigou porphyry–skarn Cu deposit in the Zha-Shan district, South Qinling, central China, and implications for differences between porphyry Cu and Mo deposits[J]. Mineralium Deposita, 2017, 52: 621-639. doi: 10.1007/s00126-016-0688-2
[135] Xie Guiqing, Mao Jingwen, Wang Ruiting, et al. Origin of Late Mesozoic granitoids in the newly discovered Zha-Shan porphyry Cu district, South Qinling, central China, and implications for regional metallogeny[J]. Journal of Asian Earth Sciences, 2015, 103: 184-197. doi: 10.1016/j.jseaes.2014.09.018
[136] Xiong Xiao, Zhu Laimin, Zhang Guowei, et al. Origin of the Xiaohekou skarn copper deposit and related granitoids in the Zha-Shan ore cluster area, South Qinling, China[J]. Ore Geology Reviews, 2019, 114: 103143. doi: 10.1016/j.oregeorev.2019.103143
[137] Xu Lei-Luo, Bi Xian-Wu, Zhang Xing-Chun, et al. Mantle contribution to the generation of the giant Jinduicheng porphyry Mo deposit, Central China: New insights from combined in-situ element and isotope compositions of zircon and apatite[J]. Chemical Geology, 2023, 616: 121238. doi: 10.1016/j.chemgeo.2022.121238
[138] Xue Fei, Wang Gongwen, Santosh M, et al. Geochemistry and geochronology of ore-bearing and barren intrusions in the Luanchuan ore fields of East Qinling metallogenic belt, China: Diverse tectonic evolution and implications for mineral exploration[J]. Journal of Asian Earth Sciences, 2018, 157: 57−77.
[139] Yang Fan, Xue Fei, Santosh M, et al. Late Mesozoic magmatism in the East Qinling Orogen, China and its tectonic implications[J]. Geoscience Frontiers, 2019, 10(5): 1803−1821.
[140] Yang Fan, Maojing Wen, Ren Weidong, et al. Temporal evolution and origin of the Yumugou Mo-W deposit, East Qinling, China: Evidence from molybdenite Re-Os age and U-Pb dating and geochemistry of titanite[J]. Ore Geology Reviews, 2022, 150: 105172.
[141] Yang Zhi-Ming, Lu Yong-Jun, Hou Zeng-Qian, et al. High-Mg diorite from Qulong in southern Tibet: Implications for the genesis of adakite-like intrusions and associated porphyry Cu deposits in collisional orogens[J]. Journal of Petrology, 2015, 56: 227-254. doi: 10.1093/petrology/egu076
[142] Zhang Chan-Chan, Sun Wei-Dong, Wang Jin-Tuan, et al. Oxygen fugacity and porphyry mineralization: A zircon perspective of Dexing porphyry Cu deposit, China[J]. Geochimica et Cosmochimica Acta, 2017, 206: 343-363. doi: 10.1016/j.gca.2017.03.013
[143] Zhang Zhong-Yu, Wang Yin-Hong, Zhang Fang-Fang, et al. Origin of high Ba-Sr granitoids at Chigou in central China and implications for Cu mineralization: Insights from whole-rock geochemistry, zircon U–Pb dating, Lu–Hf isotopes and molybdenite Re–Os systematics[J]. Ore Geology Reviews, 2021, 138: 104416. doi: 10.1016/j.oregeorev.2021.104416
[144] Zhang Yunhui, Cao Huawen, Xu Mo, et al. Petrogenesis of the late Mesozoic highly fractionated I-type granites in the Luanchuan district: implications for the tectono-magmatic evolution of eastern Qinling[J]. Geosciences Journal, 2018, 22(2): 253–272.
[145] Zhang Zhong‐Yu, Wang Yin‐Hong, Liu Jia‐Jun, et al. Origin of the Tudigou intrusion and associated porphyry Cu mineralization in the southern Qinling, Central China: Implication for regional tectonic setting[J]. Geological Journal, 2023, 58: 368-392. doi: 10.1002/gj.4598
[146] Zheng Yong-Fei. Subduction zone geochemistry[J]. Geoscience Frontiers, 2019, 10: 1223-1254. doi: 10.1016/j.gsf.2019.02.003
[147] Zou Shaohao, Xu Deru, Deng Teng, et al. Geochemical variations of the Late Mesozoic granitoids in the southern margin of North China Craton: A possible link to the tectonic transformation from compression to extension[J]. Gondwana Research, 2019, 75: 118-133. doi: 10.1016/j.gr.2019.04.012