Numerical simulation of tidal current field in the reclamation area of Jinzhou Bay, Bohai Sea
-
摘要:
金州湾沿岸海洋工程的建设, 将不可避免地对周围海域水动力环境、生态环境等产生影响.通过二维水动力数值模拟, 对金州湾围海造陆区潮流场进行模拟计算, 同时对机场人工岛接岸工程在不同开口情况下对潮流场的影响及侵蚀淤积情况进行预测研究.结果表明: 金州湾潮流特征整体表现为较强的往复性, 海流主流向为偏NE-SW向, 其中偏NE向为涨潮流向, 偏SW向为落潮流向, 潮流最大可能流速在23.2~100.9 cm/s之间.当接陆堤坝在开口50 m、200 m时, 流态变化明显区域主要集中在开口区附近水域, 开口通道及其附近流速明显增加, 而北段接陆堤坝的东侧水域流速呈减小趋势.当开口宽度从50 m拓宽到200 m, 淤积区的平均淤积强度从0.06 m/a增加到0.14 m/a.
Abstract:The construction projects along the coast of Jinzhou Bay will inevitably affect the surrounding marine hydrodynamic environment and ecological environment. The paper simulates and calculates the tidal current field in the reclamation area of Jinzhou Bay by 2D hydrodynamic numerical simulation, and predicts the impact of airport artificial island shore connection project on the tidal current field and erosion siltation under different conditions. The results show that the tidal current is generally characterized by strong reciprocation, and the main flow direction of ocean current is NE-SW, with NE for flood tide and SW for ebb tide. The maximum possible flow velocity is 23.2-100.9 cm/s. When the opening width of land connection dam is 50 m and 200 m, the areas with obvious flow pattern changes are concentrated in the waters near the opening. The flow velocity in the opening channel and vicinity increases significantly, while that in the eastern waters of the northern land connection dam tends to decrease. When the opening width is expanded from 50 m to 200 m, the average siltation intensity in the siltation area increases from 0.06 m/a to 0.14 m/a.
-
Key words:
- tidal current /
- numerical simulation /
- hydrodynamic force /
- flow velocity /
- siltation /
- Jinzhou Bay
-
-
表 1 数值模型参数表
Table 1. Parameters of numerical model
参数名称 整体模型 局部模型 网格单元数 431×341 403×407 空间步长/m 47~2577 25~463 时间步长/s 20 15 动边界控制水深/m 0.05 糙率 n=n0+n'/H 涡动扩散系数 $0.1 \Delta x \Delta y \sqrt{\left(\frac{\partial u}{\partial x}\right)^2+\left(\frac{\partial v}{\partial y}\right)^2+\frac{1}{2}\left(\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}\right)^2}$ 表 2 极值潮位模拟偏差统计
Table 2. Simulation deviation statistics of extreme tide level
测站 潮位 实测 计算 偏差 1# 最高/m 1.06 1.06 0.00 最低/m -0.70 -0.72 -0.02 潮差/m 1.76 1.78 0.02 4# 最高/m 1.12 1.07 -0.05 最低/m -0.73 -0.76 -0.03 潮差/m 1.85 1.83 -0.02 -
[1] 符文侠, 何宝林, 刘伟. 辽东半岛沿海第四纪地层特征及其分布[J]. 海洋通报, 1992, 11(4): 58-64.
Fu W X, He B L, Liu W. Characteristics and distribution of quaternary strata along coast of Liaodong Peninsula[J]. Marine Science Bulletin, 1992, 11(4): 58-64.
[2] 中国海湾志编纂委员会. 中国海湾志: 第二分册(辽东半岛西部和辽宁省西部海湾)[M]. 北京: 海洋出版社, 1997.
The Compilation Committee of Bays in China. Bays in China: Part 2[M]. Beijing: China Ocean Press, 1997. (in Chinese)
[3] 钱程, 秦涛, 李林川, 等. 大兴安岭北段东坡扎兰屯地区高位砂砾石层研究及其地质意义[J]. 地质与资源, 2016, 25(5): 424-435. doi: 10.3969/j.issn.1671-1947.2016.05.002
Qian C, Qin T, Li L C, et al. Study on the highstand sand-gravel layers in Zalantun area, northern Daxinganling Mountains: Geological implication[J]. Geology and Resources, 2016, 25(5): 424-435. doi: 10.3969/j.issn.1671-1947.2016.05.002
[4] 王方旗, 胡光海, 吴永亭, 等. 渤海金州湾海域声学浅地层剖面及其解释[J]. 海洋科学进展, 2013, 31(1): 128-137.
Wang F Q, Hu G H, Wu Y T, et al. Acoustic subbottom profile and their interpretations in the Jinzhou Bay of the Bohai Sea[J]. Advances in Marine Science, 2013, 31(1): 128-137.
[5] 刘伟峰, 孙英兰, 陈时俊, 等. 胶南东部近岸海域实测海流分析及潮流场数值模拟[J]. 海洋科学, 2008, 32(8): 9-12.
Liu W F, Sun Y L, Chen S J, et al. Analysis of observed tidal current and numerical model of tidal current in the offshore area of eastern Jiaonan[J]. Marine Sciences, 2008, 32(8): 9-12.
[6] 韩康, 张存智, 张砚峰, 等. 大连湾及附近海域潮流场数值模拟[J]. 海洋通报, 1994, 13(4): 20-25.
Han K, Zhang C Z, Zhang Y F, et al. Numerical computation of tidal current field in Dalian Bay and neighbouring water area[J]. Marine Science Bulletin, 1994, 13(4): 20-25.
[7] Lardner R W, Belen M S, Cekirge H M. Finite difference model for tidal flows in the Arabian Gulf[J]. Computers & Mathematics with Applications, 1982, 8(6): 425-444.
[8] Chau K W, Jin H S, Sin Y S. A finite difference model of two-dimensional tidal flow in Tolo Harbor, Hong Kong[J]. Applied Mathematical Modelling, 1996, 20(4): 321-328.
[9] 王志力, 陆永军, 耿艳芬. 基于非结构网格有限体积法的二维高精度物质输运模拟[J]. 水科学进展, 2008, 19(4): 531-536.
Wang Z L, Lu Y J, Geng Y F. High resolution two-dimensional numerical model of scalar transport based on unstructured grid finite volume method[J]. Advances in Water Science, 2008, 19(4): 531-536.
[10] 赖锡军, 曲卓杰, 周杰, 等. 非结构网格上的三维浅水流动数值模型[J]. 水科学进展, 2006, 17(5): 693-699.
Lai X J, Qu Z J, Zhou J, et al. 3-D hydrodynamic model for shallow water on unstructured grids[J]. Advances in Water Science, 2006, 17(5): 693-699.
[11] Wang J H, Shen Y M, Guo Y K. Seasonal circulation and influence factors of the Bohai Sea: A numerical study based on Lagrangian particle tracking method[J]. Ocean Dynamics, 2010, 60(6): 1581-1596.
[12] 祝丽丽, 孙志林, 黄赛花, 等. 钱塘江河口弯道潮流场的数值模拟[J]. 浙江大学学报(理学版), 2007, 34(3): 351-356.
Zhu L L, Sun Z L, Huang S H, et al. Numerical simulation of tidal flow field in the Qiantang Estuary bends[J]. Journal of Zhejiang University (Science Edition), 2007, 34(3): 351-356.
[13] 温生辉, 陈季良. 厦门附近海域潮流场的数值模拟[J]. 海洋学报, 1996, 18(2): 15-25.
Wen S H, Chen J L. Numerical simulation of tidal current field in the waters near Xiamen[J]. Acta Oceanologica Sinica, 1996, 18(2): 15-25. (in Chinese)
[14] 陈满春. 厦门湾潮流场的数值模拟[J]. 海洋通报, 1997, 16(3): 13-20.
Chen M C. Numerical computation of tides and tidal currents in the Xiamen Bay[J]. Marine Science Bulletin, 1997, 16(3): 13-20.
[15] 杨晨, 刘颖, 路宽. 泉州湾潮流场的数值模拟研究[J]. 海洋技术学报, 2017, 36(3): 117-120.
Yang C, Liu Y, Lu K. Numerical study of tidal current field in the Quanzhou Bay[J]. Journal of Ocean Technology, 2017, 36(3): 117-120.
[16] 李国杰, 胡建平. 湛江东海岛近岸潮流场数值模拟[J]. 水道港口, 2007, 28(5): 325-330.
Li G J, Hu J P. Numerical simulation of tidal current fields near Donghai Island of Zhanjiang Bay[J]. Journal of Waterway and Harbor, 2007, 28(5): 325-330.
[17] 孙昭晨, 梁书秀, 沈永明, 等. 三维海洋紊流模型对杭州湾附近潮流场数值模拟[J]. 大连理工大学学报, 2000, 40(5): 609-612.
Sun Z C, Liang S X, Shen Y M, et al. Numerical simulation of tidal flow near Hangzhou Bay with three dimensional ocean circulation model[J]. Journal of Dalian University of Technology, 2000, 40(5): 609-612.
[18] 王卫远, 杨娟, 何倩倩, 等. 苏北沿海大丰海域潮流场数值模拟计算[J]. 人民长江, 2012, 43(19): 79-81, 89.
Wang W Y, Yang J, He Q Q, et al. Numerical simulation of tidal current field of Dafeng Sea area in North Jiangsu Province[J]. Yangtze River, 2012, 43(19): 79-81, 89.
[19] 韩康, 吴冠, 张存智. 普兰店湾潮流场数值模拟[J]. 海洋环境科学, 2001, 20(1): 42-46.
Han K, Wu G, Zhang C Z. Numerical modeling of tidal current field in Pulandian Bay[J]. Marine Environmental Science, 2001, 20(1): 42-46.
[20] 犹爽, 张宁川. 大连海上机场施工通道开口宽度对水环境影响的数值研究[J]. 水道港口, 2014, 35(1): 19-25.
You S, Zhang N C. Numerical analysis on impact of water environment by construction access with different opening-size of Dalian offshore airport[J]. Journal of Waterway and Harbor, 2014, 35(1): 19-25.
-