磨矿方式对方解石颗粒形貌及浮选行为的影响

宁江峰, 李茂林, 崔瑞, 姚伟, 陈秋实, 江宏强. 磨矿方式对方解石颗粒形貌及浮选行为的影响[J]. 矿产保护与利用, 2020, 40(2): 51-55. doi: 10.13779/j.cnki.issn1001-0076.2020.02.007
引用本文: 宁江峰, 李茂林, 崔瑞, 姚伟, 陈秋实, 江宏强. 磨矿方式对方解石颗粒形貌及浮选行为的影响[J]. 矿产保护与利用, 2020, 40(2): 51-55. doi: 10.13779/j.cnki.issn1001-0076.2020.02.007
Ning Jiangfeng, Li Maolin, Cui Rui, Yao Wei, Chen Qiushi, Jiang Hongqiang. Effect of Grinding Method on Particle Morphology and Flotation Behavior of Calcite[J]. Conservation and Utilization of Mineral Resources, 2020, 40(2): 51-55. doi: 10.13779/j.cnki.issn1001-0076.2020.02.007
Citation: Ning Jiangfeng, Li Maolin, Cui Rui, Yao Wei, Chen Qiushi, Jiang Hongqiang. Effect of Grinding Method on Particle Morphology and Flotation Behavior of Calcite[J]. Conservation and Utilization of Mineral Resources, 2020, 40(2): 51-55. doi: 10.13779/j.cnki.issn1001-0076.2020.02.007

磨矿方式对方解石颗粒形貌及浮选行为的影响

  • 基金项目: 冶金矿产资源高效利用与造块湖北省重点试验室开放基金(2017zy010)
详细信息
    作者简介: 宁江峰(1995-),男,山西运城人,硕士研究生,主要从事磨矿浮选研究,E-mail:1377366783@qq.com
  • 中图分类号: TD921+.4;TD972

Effect of Grinding Method on Particle Morphology and Flotation Behavior of Calcite

  • 磨矿是浮选分离成功的前提。通过磨矿试验、单矿物浮选试验、润湿性测试、扫描电镜测试,研究了陶瓷棒磨与陶瓷球磨,不同磨矿方式对方解石颗粒表面形貌及浮选行为的影响。试验结果表明,经过陶瓷球磨处理后的方解石矿物颗粒相较于经过陶瓷棒磨处理后的方解石矿物颗粒有着更大的疏水性,更好的浮选回收率,更大的扁平率与伸长率,以及更小的圆度和相对宽度。

  • 加载中
  • 图 1  方解石X射线衍射图谱

    Figure 1. 

    图 2  浮选流程图

    Figure 2. 

    图 3  磨矿粒度曲线

    Figure 3. 

    图 4  捕收剂用量对浮选回收率的影响

    Figure 4. 

    图 5  不同pH对浮选回收率的影响

    Figure 5. 

    图 6  表面张力试验结果

    Figure 6. 

    图 7  临界表面张力测量图

    Figure 7. 

    图 8  球磨方解石(左)与棒磨方解石(右)的扫描电镜图片

    Figure 8. 

    表 1  球磨方解石与棒磨方解石的形状特性参数

    Table 1.  Shape characteristic parameters of ceramic ball-calcite and ceramic rod-calcite

    Milled products Particle number L (μm) W (μm) A (μm2) P (μm) R0 F ER RW
    Ball 178 106.157 66.515 5 569.822 275.612 0.909 1.108 1.638 0.645
    Rod 185 111.294 71.267 6 278.274 291.962 0.919 1.096 1.590 0.663
    下载: 导出CSV
  • [1]

    Wang X H, Xie Y. The Effect of Grinding Media and Environment on the Surface Properties and Flotation Behaviour of Sulfide Minerals[J]. Mineral Processing and Extractive Metallurgy Review, 1990, 7(1):49-79. doi: 10.1080/08827509008952666

    [2]

    Li C W, Gao Z Y. Effect of grinding media on the surface property and flotation behavior of scheelite particles[J]. Powder Technology, 2017, 322:386-392. doi: 10.1016/j.powtec.2017.08.066

    [3]

    Hi yilmaz C, Ulusoy U, Yekeler M. Effects of the shape properties of talc and quartz particles on the wettability based separation processes[J]. Applied Surface Science, 2004, 233(1):204-212. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3d900e9f355ccbf9d689200fd4d5f9be

    [4]

    Xia W. Role of particle shape in the floatability of mineral particle:An overview of recent advances[J]. Powder Technology, 2017, 317:104-116. doi: 10.1016/j.powtec.2017.04.050

    [5]

    Allan G C, Woodcock J T. A review of the flotation of native gold and electrum[J]. Minerals Engineering, 2001, 14(9):931-962. doi: 10.1016/S0892-6875(01)00103-0

    [6]

    孙伟,陈臣,唐鸿鹄.碳酸根对方解石浮选速率的影响及机理研究[J].中国矿业大学学报,2012,41(1):48-51. http://d.old.wanfangdata.com.cn/Periodical/zgkydxxb201201009

    [7]

    王淀佐,胡岳华.浮选溶液化学[M].长沙:湖南科学技术出版社,1988:116.

    [8]

    Chau T T, Bruckard W J, Koh P T, et al. A review of factors that affect contact angle and implications for flotation practice[J]. Advances in Colloid & Interface Science, 2009, 150(2):106-115. doi: 10.1016/j.cis.2009.07.003

    [9]

    Gao Y, Gao Z, Sun W, et al. Selective flotation of scheelite from calcite:A novel reagent scheme[J]. International Journal of Mineral Processing, 2016, 154(154):10-15. http://openurl.ebscohost.com/linksvc/linking.aspx?stitle=International%20Journal%20of%20Mineral%20Processing&volume=154&issue=154&spage=10

    [10]

    Liu W, Zhang J, Wang W, et al. Flotation behaviors of ilmenite, titanaugite, and forsterite using sodium oleate as the collector[J]. Minerals Engineering, 2015, 72:1-9. doi: 10.1016/j.mineng.2014.12.021

    [11]

    Lu Y, Drelich J, Miller J D. Wetting of francolite and quartz and its significance in the flotation of phosphate rock[J]. Minerals Engineering, 1997, 10(11):1219-1231. doi: 10.1016/S0892-6875(97)00108-8

    [12]

    Bruno M, Massaro F R, Pastero L, et al. New Estimates of the Free Energy of Calcite/Water Interfaces for Evaluating the Equilibrium Shape and Nucleation Mechanisms[J]. Crystal Growth & Design, 2013, 13(3):1170-1179. doi: 10.1021/cg3015817

    [13]

    Yekeler M, Ulusoy U, Hiyilmaz C. Effect ofparticle shape and roughness of talc mineral ground bydifferent mills on the wettability and floatability[J]. Powder Technology, 2004, 140(1-2):68-78. doi: 10.1016/j.powtec.2003.12.012

    [14]

    Guven O, Karakas F, Kodrazi N, et al. Dependence of morphology on anionic flotation of alumina[J]. International Journal of Mineral Processing, 2016, 156:69-74. doi: 10.1016/j.minpro.2016.06.006

    [15]

    Aslani M R, Rezai B. Influence of particles shape characteristics of galena on their flotability under the flotation behavior[C]. 8th International Scientific Conference on Modern Management of Mine Producing, Geology and Environmental Protection, 2008, 1:457-464.

    [16]

    Fosu S, Skinner W, Zanin M. Detachment of coarse composite sphalerite particles from bubbles in flotation:Influence of xanthate collector type and concentration[J]. Minerals Engineering, 2015, 71(1):73-84. https://www.sciencedirect.com/science/article/abs/pii/S0892687514003549

  • 加载中

(8)

(1)

计量
  • 文章访问数:  1643
  • PDF下载数:  35
  • 施引文献:  0
出版历程
收稿日期:  2019-11-20
刊出日期:  2020-04-25

目录