-
摘要:
以丁基黄药(NaBX)为捕收剂,甲基异丁基甲醇(MIBC)为起泡剂,通过单矿物浮选试验,研究了矿浆温度变化对方铅矿浮选效果的影响,同时通过红外光谱(FTIR)、Zeta电位、捕收剂吸附量、X射线光电子能谱(XPS)、矿浆黏度等测试分析并结合浮选动力学研究,探究了矿浆温度变化对方铅矿浮选效果的影响机理。结果表明:矿浆温度变化会显著影响方铅矿浮选效果,低温(5℃)下的回收率较常温(20℃)下的降低约7个百分点;NaBX在方铅矿表面的吸附产物为丁基黄原酸铅,矿浆温度变化不改变其在方铅矿表面的化学吸附特性,但矿浆温度降低会减弱方铅矿表面的氧化程度,减少表面活性吸附点,使NaBX在方铅矿表面的吸附量减小从而降低浮选效果;低温下矿浆黏度增大,使气泡上升速度及气泡与矿粒碰撞速率降低,这在一定程度上会降低浮选效果;浮选动力学表明:低温(5℃)下的最大回收率和浮选速率常数小于常温(20℃)下的。
Abstract:The effct of pulp temperature change on galena flotation was studied though the single mineral flotation test with butyl xanthate (NaBX) as the collector and 4-Methyl-2-pentanol (MIBC) as the frother. Meanwhile, the effect mechanisms of pulp temperature change on recovery were investigated by infrared spectrum, Zeta potential, the collectors adsorption amount, XPS, the pulp viscosity and combined with flotation dynamics. The results indicated that pulp temperature had a significant influence on the recovery of galena flotation, and the recovery at 5 ℃ decreased by 7 percentage points compared with that at 20 ℃. The adsorption product of NaBX on the galena surface was lead butyl xanthate, and the temperature change had little effect the adsorption characteristics of NaBX on the galena surface, but the decrease of pulp temperature could weaken the oxidation degree of galena surface, reduce the amount of both the active adsorption seats and the adsorption of NaBX on the galena surface, thus the flotation effect was inhibited. When the pulp viscosity increased at low temperature, the rising speed of bubbles and the collision rate between bubbles and ore particles decreased, which could reduce the flotation effect to a certain extent. Flotation dynamics showed that the maximum recovery and flotation rate constant at low temperature (5 ℃) were lower than that at normal temperature (20 ℃).
-
Key words:
- galena /
- flotation /
- pulp temperature /
- butyl xanthate /
- mechanisms
-
-
表 1 方铅矿表面原子相对含量
Table 1. Atomic relative content of galena surface
Sample Relative content/% C S Pb O Galena at 5 ℃ 55.36 25.64 8.87 10.14 Galena with NaBX at 5 ℃ 57.53 25.39 8.05 9.03 Galena at 20 ℃ 52.46 25.89 9.60 12.04 Galena with NaBX at 20 ℃ 71.74 13.11 5.34 9.81 表 2 浮选动力学模型拟合参数
Table 2. Flotation kinetic model fitting parameters
Number Model 5 ℃ 20 ℃ ε∞ k R2 ε∞ k R2 1 A 87.15 0.0251 6 0.9925 94.36 0.0254 1 0.9925 2 B 98.09 0.0503 3 0.9922 106.2 0.0507 4 0.9890 3 C 105.4 0.0002 679 0.9830 100 0.0004 612 0.9047 4 D 115.2 0.0584 7 0.9756 124.6 0.0590 4 0.9683 -
[1] 戴曦, 黄根红. 我国主要炼铅方法及行业发展建议[J]. 湖南有色金属, 2010, 26(3): 29-32, 62. doi: 10.3969/j.issn.1003-5540.2010.03.010
[2] 刘英俊. 元素地球学[M]. 北京科学出版社, 1984: 407-414.
[3] 李建民. 复杂铅锌多金属硫化矿浮选分离研究及机理探讨[D]. 昆明: 昆明理工大学, 2018: 2-4.
[4] 周娟. 中国铅锌工业布局评价体系研究[D]. 合肥: 合肥工业大学, 2012: 5-6.
[5] 邱廷省, 何元卿, 于文, 等. 硫化铅锌矿浮选分离技术的研究现状及进展[J]. 金属矿山, 2016(3): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201603002.htm
[6] 刘向, 李祚毕, 李展, 等. 黄铁矿低温浮选试验及机理分析[J]. 矿产保护与利用, 2019(4): 115-120. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=a60e6297-e520-4b96-8819-7ab22cbb5fb4
[7] OCONNOR C T, DUNNE R C, BOTELHO AM R. 温度对两种不同类型黄铁矿浮选的影响[J]. 张秀华, 译. 国外金属矿选矿, 1986(1): 8-12.
[8] 张心平, 邵广全, 吴沛然, 等. 氧化铅锌矿石低温浮选工艺研究[J]. 矿冶, 2003(1): 21-25, 47. https://www.cnki.com.cn/Article/CJFDTOTAL-KYZZ200301007.htm
[9] 赵明林. 温度对辉钼矿浮选的影响及其改善途径[J]. 国外金属矿选矿, 1991(Z1): 86-89. https://www.cnki.com.cn/Article/CJFDTOTAL-JSXK1991Z1014.htm
[10] 李超, 惠艳华. 安徽李楼铁矿强磁选尾矿反浮选温度试验[J]. 现代矿业, 2013(10): 112-113. https://www.cnki.com.cn/Article/CJFDTOTAL-KYKB201310046.htm
[11] 何廷树, 石旭, 李慧, 等. 磁化改性煤油对洛阳某钼矿石低温浮选指标的影响[J]. 金属矿山, 2017(6): 99-103. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201706021.htm
[12] 常庆伟. 新型高效低温捕收剂在某铁矿反浮选脱硅中的应用[J]. 金属矿山, 2016(12): 109-112. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201612025.htm
[13] 魏茜. 硫化铜铅矿浮选分离研究[D]. 长沙: 中南大学, 2012: 40-42.
[14] 董艳红. 硫化铜铅矿物浮选分离的电化学机理研究[D]. 长沙: 中南大学, 2011: 27-28.
[15] 陆娅琳. 方铅矿的粒级效应及其对铅硫浮选分离的影响机理研究[D]. 昆明: 昆明理工大学, 2018: 68-70.
[16] 杨超. 不同种类抑制剂对铜铅硫化矿分离浮选效果的影响研究[D]. 西安: 西安建筑科技大学, 2018: 49-50.
[17] 蓝丽红. 不同晶格缺陷对方铅矿表面性质、药剂分子吸附及电化学行为影响的研究[D]. 南宁: 广西大学, 2012: 120-123.
[18] 李新泉, 译. 温度对磁铁矿浮选行为的影响[J]. 国外选矿快报, 1994(6): 167-171. https://www.cnki.com.cn/Article/CJFDTOTAL-KYKB199606000.htm
[19] BAYAT O, UCURUM M, POOLE C. Effect of size distribution on flotation kinetics of Turkish sphalerite[J]. Mineral Processing and Extractive Metallurgy, 2004, 3: 53-59. http://www.tandfonline.com/doi/abs/10.1179/037195504225004643
-