-
摘要:
为阐明辉钼矿在浮选过程的氧化溶解特性,研究通过溶液电导率、矿浆pH值和离子浓度等手段检测并分析溶液性质,利用XPS、SEM和EDS分析及Raman光谱等方法对辉钼矿氧化溶解产物进行了表征。结果表明,辉钼矿极性面和非极性面上钼和硫的氧化能力有所不同,且硫更易氧化。辉钼矿极性面上不同元素的氧化产物的溶解能力也有不同,其中硫的氧化产物更容易溶解。在辉钼矿的氧化溶解过程中,矿浆的pH值先减小后增大,溶液的电导率达到0.51 S/m后基本不变。当氧化溶解时间为0.5 h时溶液中SO42-浓度达最大值56.8 mg/L,同时辉钼矿极性面上硫的相对含量达到了最小值24.92%,其氧化产物得到了充分溶解。当氧化溶解时间大于2.0 h后,溶液电导率基本保持不变并且辉钼矿表面的Mo-O键相对含量也基本保持不变,此时辉钼矿极性面上钼的氧化产物达到了溶解平衡。研究可为实现浮选过程中辉钼矿水化能力的调控提供理论依据,对提高辉钼矿的选别效率也有一定的参考意义。
Abstract:In order to reveal the oxidation-dissolution mechanism of molybdenite in the flotation process, the products were characterized by means of XPS, SEM, EDS and Raman spectroscopy, and the solution properties was detected through conductivity, pH value and ion concentration. The results show that there are different oxidation ability of molybdenum and sulfur between the polar surface and the non-polar surface of molybdenite, and the sulfur is more easily oxidized. The solubility of oxidation products of different elements on the polar surface of molybdenite are also various, and the oxidation product of sulfur on the polar surface is easier to dissolve. During the oxidation-dissolution process of molybdenite, the pH value of the solution decreases firstly and then increases, and the solution conductivity the remains unchanged after reaching 0.51 S·m-1. The oxidation products of the sulfur on the polar surface of molybdenite are fully dissolved when the oxidation-dissolution time is 0.5 h, which causes the concentration of SO42- in the solution reaches 56.8 mg/L and the relative content of sulfur on the polar surface reaches a minimum of 24.92%. In view of the fact that the conductivity of the solution remains basically unchanged and the relative content of Mo-O bond almost unchanged when the oxidation-dissolution time is greater than 2.0 h, the oxidation products of the molybdenum on the polar surface of the molybdenite attain solution equilibrium. The research can provide a theoretical basis for realizing the control of molybdenite hydration capacity in the flotation process, and it also has certain reference significance for improving the separation efficiency of molybdenite.
-
Key words:
- molybdenite /
- oxidation /
- dissolution characteristics /
- surface
-
-
表 1 Mo(3d3/2)的价健形态及分布
Table 1. The valence bond morphology and distribution of Mo(3d3/2)
Samples Peak area Area ratio/% Mo-S(3d3/2) Mo-O (3d3/2) Mo-S(3d3/2) Mo-O (3d3/2) a 13 115.53 - 100.00 - b 5 238.73 5 275.78 49.82 50.18 c 5 022.94 4 862.13 50.81 49.19 d 4 822.56 6 312.97 43.31 56.69 e 3 969.90 5 007.59 44.22 55.78 表 2 辉钼矿样品不同破裂面的元素相对含量
Table 2. Relative content of elements at different fracture plane of molybdenite
Samples Fracture plane Content/% Mo S O a Polar surface 70.95 29.05 - Non-polar surface - 100.00 - b Polar surface 67.77 24.92 7.31 Non-polar surface - 95.11 4.89 c Polar surface 68.47 25.06 6.47 Non-polar surface - 95.72 4.28 d Polar surface 67.96 25.02 6.02 Non-polar surface - 95.70 4.30 e Polar surface 67.49 25.07 7.44 Non-polar surface - 95.68 4.32 -
[1] В. А. Γлембоцкиий. 浮选过程物理化学基础[M]. 北京: 冶金工业出版社, 1985.
[2] 牛晓鹏. 方铅矿、黄铜矿和黄铁矿表面氧化与可浮性研究[D]. 北京: 中国科学院大学(中国科学院过程工程研究所), 2019.
[3] 肖策环. 微细粒黄铜矿表面特性与可浮性关系研究[D]. 赣州: 江西理工大学, 2016.
[4] ZHU Y G, ZHANG G F, FENG Q M, et al. Effect of surface dissolution on flotation separation of fine ilmenite from titanaugite[J]. Transactions of Nonferrous Metals Society of China, 2011, 21(5): 1149-1154. doi: 10.1016/S1003-6326(11)60835-2
[5] 何发钰, 张文彬, 戈保梁. 辉铜矿氧化溶解行为的研究[J]. 矿冶, 1994(4): 45-49. https://www.cnki.com.cn/Article/CJFDTOTAL-KYZZ404.008.htm
[6] 柯家骏. 辉钼矿晶面特性工艺矿物学的研究[J]. 化工冶金, 1981(4): 35-41. doi: 10.3321/j.issn:1009-606X.1981.04.005
[7] 黄霞光, 卢可可. 微细粒辉钼矿浮选行为研究[J]. 矿产保护与利用, 2014(2): 18-21. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=dedd137f-b92c-4ea2-8210-8710513e4560
[8] 林清泉, 詹信顺, 张红华, 等. 辉钼矿和黄铁矿的晶体结构与表面性质研究[J]. 矿冶工程, 2019, 39(3): 40-45. https://www.cnki.com.cn/Article/CJFDTOTAL-KYGC201903010.htm
[9] 吕建业, 沈耀平, 张洪恩. 辉钼矿表面特性及其可浮性的研究[J]. 有色金属(选矿部分), 1992(4): 4-8, 41. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXK199204001.htm
[10] 李希明, 柯家骏. 硫化钼矿浸取过程热力学分析[J]. 化工冶金, 1982(4): 89-95. doi: 10.3321/j.issn:1009-606X.1982.04.011
[11] 赵中伟, 刘大学. 使用氧逸度-pH图对辉钼矿浸出过程的热力学分析[J]. 中国钼业, 2009, 33(1): 18-21. doi: 10.3969/j.issn.1006-2602.2009.01.006
[12] CHANDER S, FUERSTENAU D W. On the natural floatability of molybdenite[J]. Transaction of American Institute of Mining, Metallurgical, and Petroleum Engineers, 1972, (1): 62-69. http://www.researchgate.net/publication/313556893_On_the_natural_floatability_of_molybdenite
[13] BERTRAND. Surface-phonon dispersion of MoS2[J]. Physical Review. B, Condensed matter, 1991, 44(11): 5745-5749. doi: 10.1103/PhysRevB.44.5745
[14] LEE C G, YAN H G, BRUS L E, et al. Anomalous lattice vibrations of single- and few-layer MoS2[J]. ACS Nano. 2010, 4(5): 2695-700. doi: 10.1021/nn1003937
[15] 林清泉, 顾帼华, 陈雄, 等. 微细粒辉钼矿的浮选动力学研究[J]. 中南大学学报(自然科学版), 2018, 49(7): 1573-1581. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201807001.htm
[16] 付云枫. 氧压水浸法分解辉钼矿提取分离钼硫资源的应用基础研究[D]. 北京: 中国科学院大学(中国科学院过程工程研究所), 2018.
[17] 李忠瑞, 姜明, 伏义路. 硫化Mo-K-Rh/Al2O3表面物种的XPS研究[J]. 化学物理学报, 1997(3): 50-53. https://www.cnki.com.cn/Article/CJFDTOTAL-HXWL703.012.htm
[18] 魏淑贤, 李阳, 葛少辉, 等. MoS2催化剂活性位形成及甲硫醇脱硫机理的研究[J]. 高校化学工程学报, 2018, 32(4): 956-962. doi: 10.3969/j.issn.1003-9015.2018.04.028
[19] WANG L, JI X H, WANG T, et al. Novel red emission from MoO3/MoS2-MoO2-MoO3 core-shell belt surface[J]. ACS Applied Materials & Interfaces, 2018, 10(42): 36297-36303. http://www.ncbi.nlm.nih.gov/pubmed/30261141
[20] LI H, ZHANG Q, YAP C C R, et al. From bulk to monolayer MoS2: evolution of Raman scattering[J]. Advanced Functional Materials, 2012, 22(7): 1385-1390. doi: 10.1002/adfm.201102111
[21] HIRAJIMA T, MORI M, ICHIKAWA O, et al. Selective flotation of chalcopyrite and molybdenite with plasma pre-treatment[J]. Minerals Engineering, 2014, 66/67/68(11): 102-111. http://www.sciencedirect.com/science/article/pii/S0892687514002416
-