天然斜发沸石水热转化Na-P沸石及其吸附镉的性能研究

王程, 于佳乐, 冯锴, 王李鹏. 天然斜发沸石水热转化Na-P沸石及其吸附镉的性能研究[J]. 矿产保护与利用, 2021, 41(6): 96-102. doi: 10.13779/j.cnki.issn1001-0076.2021.06.011
引用本文: 王程, 于佳乐, 冯锴, 王李鹏. 天然斜发沸石水热转化Na-P沸石及其吸附镉的性能研究[J]. 矿产保护与利用, 2021, 41(6): 96-102. doi: 10.13779/j.cnki.issn1001-0076.2021.06.011
WANG Cheng, YU Jiale, FENG Kai, WANG Lipeng. Hydrothermal Transformation of Natural Clinoptilolite Zeolite to Zeolite Na-P and Its Adsorption Property for Cd ion[J]. Conservation and Utilization of Mineral Resources, 2021, 41(6): 96-102. doi: 10.13779/j.cnki.issn1001-0076.2021.06.011
Citation: WANG Cheng, YU Jiale, FENG Kai, WANG Lipeng. Hydrothermal Transformation of Natural Clinoptilolite Zeolite to Zeolite Na-P and Its Adsorption Property for Cd ion[J]. Conservation and Utilization of Mineral Resources, 2021, 41(6): 96-102. doi: 10.13779/j.cnki.issn1001-0076.2021.06.011

天然斜发沸石水热转化Na-P沸石及其吸附镉的性能研究

  • 基金项目:
    国家自然科学基金(51604170);中国博士后基金(2016M602936XB);陕西省无机材料绿色制备与功能化重点实验室开放基金(202007)
详细信息
    作者简介: 王程(1981-),男,博士,副教授,研究方向:矿物材料及生态环境材料,E-mail:wangcheng@sust.edu.cn
  • 中图分类号: TD985;O647.3

Hydrothermal Transformation of Natural Clinoptilolite Zeolite to Zeolite Na-P and Its Adsorption Property for Cd ion

  • 以河北承德围场地区天然沸石为原料,对其进行水热改性制备Na-P沸石。采用X射线衍射仪、X射线光电子能谱仪、气体吸附仪、扫描电镜和能谱分析仪等对材料进行表征分析,采用Cd2+离子评价材料的重金属离子去除性能。研究碱处理浓度、水热温度和时间对天然沸石结构的影响规律,着重研究所制备Na-P沸石的组成结构特征及重金属离子去除性能。结果表明:在NaOH浓度3 mol/L、水热温度100 ℃、水热时间12 h的条件下,斜发沸石可转化为纯度较高的Na-P沸石。所得材料对Cd2+的吸附容量为35.7 mg/g,较天然沸石提升7倍。Na-P沸石性能的提升主要归功于其较低的硅铝比和较高的表面Na+含量。

  • 加载中
  • 图 1  不同NaOH浓度处理下样品的XRD图谱

    Figure 1. 

    图 2  不同水热温度下样品的XRD图谱

    Figure 2. 

    图 3  不同水热时间下样品的XRD图谱

    Figure 3. 

    图 4  天然沸石和Na-P沸石的XPS全谱(a), 表面元素含量和硅铝比(b), Si2p谱(c), Al2p谱(d), O1s谱(e)和Na1s谱(f)

    Figure 4. 

    图 5  天然沸石和Na-P沸石的N2吸附-脱附曲线(a)和孔径分布图(b)

    Figure 5. 

    图 6  天然沸石(a, b)和Na-P沸石(c, d)的SEM照片和EDX能谱

    Figure 6. 

    图 7  天然沸石和Na-P沸石在不同吸附时间下对Cd2+的吸附容量(a)和对不同初始浓度Cd2+的吸附等温线(b)

    Figure 7. 

    图 8  天然沸石和Na-P沸石吸附Cd2+的准一级动力学(a)、准二级动力学(b)、Langmuir(c)和Freundlich(d)拟合图

    Figure 8. 

    图 9  斜发沸石和水热转化Na-P沸石的结构示意图

    Figure 9. 

  • [1]

    MISAELIDES P. Application of natural zeolites in environmental remediation: A short review[J]. Microporous and Mesoporous Materials, 2011, 144: 15-18. doi: 10.1016/j.micromeso.2011.03.024

    [2]

    李超, 王丽萍. 矿物材料处理废水的研究进展[J]. 矿产保护与利用, 2020, 40(1): 65-71. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=a3b2a301-2fca-4fbd-a0eb-b8ce86b6bf2a

    [3]

    佘振宝. 沸石加工与应用: 第2版[M]. 北京: 化学工业出版社, 2013.

    [4]

    杨磊. 改型斜发沸石与钙、镁离子水溶液体系离子交换平衡研究[D]. 天津: 河北工业大学, 2010.

    [5]

    YANG S J, LACH-HAB M, VAISMAN I I, et al. Framework-type determination for zeolite structures in the inorganic crystal structure database[J]. Journal of Physical and Chemical Reference Data, 2010, 39: 1-45.

    [6]

    BEHIN J., KAZEMIAN H., ROHANI S. Sonochemical synthesis of zeolite NaP from clinoptilolite[J]. Ultrasonics Sonochemistry, 2016, 28: 400-408. doi: 10.1016/j.ultsonch.2015.08.021

    [7]

    ALDAHRI T, BEHIN J, KAZEMIAN, et al. Synthesis of zeolite Na-P from coal fly ash by thermo-sonochemical treatment[J]. Fuel, 2016, 182: 494-501. doi: 10.1016/j.fuel.2016.06.019

    [8]

    LIU Y, YAN C J, ZHAO J J, et al. Synthesis of zeolite P1 from fly ash under solvent-free conditions for ammonium removal from water[J]. Journal of Cleaner Production, 2018, 202: 11-22. doi: 10.1016/j.jclepro.2018.08.128

    [9]

    ALIAS M Y, NIK A N N M, NURUL A K, et al. Removal of Ca2+ and Zn2+ from aqueous solutions by zeolites NaP and KP[J]. Environmental Technology, 2010, 31: 41-46. doi: 10.1080/09593330903313794

    [10]

    ZHANG Y N, CHEN Y G, KANG W, et al. Excellent adsorption of Zn (Ⅱ) using NaP zeolite adsorbent synthesized from coal fly ash via stage treatment[J]. Journal of Cleaner Production, 2020, 258: 120736. doi: 10.1016/j.jclepro.2020.120736

    [11]

    NERY J G, YVONNE P M, ANTHONY K C. A study of the highly crystalline, low-silica, fully hydrated zeolite P ion exchanged with (Mn2+, Cd2+, Pb2+, Sr2+, Ba2+) cations[J]. Microporous and Mesoporous Materials, 2003, 57: 229-248. doi: 10.1016/S1387-1811(02)00594-2

    [12]

    CHENM Y, NONG S Y, ZHAO Y T, et al. Renewable P-type zeolite for superior absorption of heavy metals: Isotherms, kinetics, and mechanism[J]. Science of the Total Environment, 2020, 726: 138535. doi: 10.1016/j.scitotenv.2020.138535

    [13]

    LIU Y, WANG G D, WANG L, et al. Zeolite P synthesis based on fly ash and its removal of Cu (Ⅱ) and Ni (Ⅱ) ions[J]. Chinese Journal of Chemical Engineering, 2019, 27: 341-348. doi: 10.1016/j.cjche.2018.03.032

    [14]

    DENG H, GE Y. Formation of NaP zeolite from fused fly ash for the removal of Cu(Ⅱ) by an improved hydrothermal method[J]. RSC Advances, 2015, 5: 9180-9188. doi: 10.1039/C4RA15196H

    [15]

    KANG S J, KAZUHIKO E, AKIRA Y. Transformation of a low-grade Korean natural zeolite to high catadsorbent by hydrothermal reaction with or without fusion with sodium hydroxide[J]. Applied Clay Science, 1998, 13: 117-135. doi: 10.1016/S0169-1317(98)00019-2

    [16]

    WANG Y F, FENG L. Synthesis of high capacity catadsorbents from a low-grade Chinese natural zeolite[J]. Journal of Hazardous Materials, 2009, 166: 1014-1019. doi: 10.1016/j.jhazmat.2008.12.001

    [17]

    LIMLAMTHONG M, LEE M, JONGSOMJIT B, et al. Solution-mediated transformation of natural zeolite to ANA and CAN topological structures with altered active sites for ethanol conversion[J]. 2021, 32: 4155-4166.

    [18]

    WANG C, LENG S Z, GUO H D, et al. Acid and alkali treatments for regulation of hydrophilicity/hydrophobicity of natural zeolite[J]. Applied Surface Science, 2019, 478: 319-326. doi: 10.1016/j.apsusc.2019.01.263

    [19]

    WANG X Y, PLACKOWSKI C X, NGUYEN A V X-ray photoelectron spectroscopic investigation into the surface effects of sulphuric acid treated natural zeolite[J]. Powder Technology, 295: 27-34.

    [20]

    CORMA A, FORNES V, PALLOTA O, et al. Determination of framework and non-framework aluminium in HY dealuminated zeolites by X-ray photoelectron spectroscopy[J]. Journal of the Chemical Society, Chemical Communications, 1986, 333-334.

  • 加载中

(9)

计量
  • 文章访问数:  1007
  • PDF下载数:  10
  • 施引文献:  0
出版历程
收稿日期:  2021-11-12
刊出日期:  2021-12-25

目录