赤泥低温烧结制备长石—刚玉质复相陶瓷

陈新义, 房明浩, 王淇, 刘艳改, 吴小文, 米瑞宇, 黄朝晖, 闵鑫. 赤泥低温烧结制备长石—刚玉质复相陶瓷[J]. 矿产保护与利用, 2021, 41(6): 103-111. doi: 10.13779/j.cnki.issn1001-0076.2021.06.012
引用本文: 陈新义, 房明浩, 王淇, 刘艳改, 吴小文, 米瑞宇, 黄朝晖, 闵鑫. 赤泥低温烧结制备长石—刚玉质复相陶瓷[J]. 矿产保护与利用, 2021, 41(6): 103-111. doi: 10.13779/j.cnki.issn1001-0076.2021.06.012
CHEN Xinyi, FANG Minghao, WANG Qi, LIU Yangai, WU Xiaowen, MI Ruiyu, HUANG zhaohui, MIN Xin. Low-Temperature Preparation of Feldspar-Corundum Composite Ceramics from Red Mud[J]. Conservation and Utilization of Mineral Resources, 2021, 41(6): 103-111. doi: 10.13779/j.cnki.issn1001-0076.2021.06.012
Citation: CHEN Xinyi, FANG Minghao, WANG Qi, LIU Yangai, WU Xiaowen, MI Ruiyu, HUANG zhaohui, MIN Xin. Low-Temperature Preparation of Feldspar-Corundum Composite Ceramics from Red Mud[J]. Conservation and Utilization of Mineral Resources, 2021, 41(6): 103-111. doi: 10.13779/j.cnki.issn1001-0076.2021.06.012

赤泥低温烧结制备长石—刚玉质复相陶瓷

  • 基金项目:
    国家重点研发计划大宗低阶固废规模化制备高值矿物材料关键技术(2018YFC1901501)
详细信息
    作者简介: 陈新义(1996-),男,河南开封人,硕士研究生,主要从事工业固体废弃物的高效利用研究,E-mail: chenxinyi521314@163.com
    通讯作者: 房明浩(1978-),男,上海人,教授,博士生导师,主要从事非金属矿物资源及工业固体废弃物的高效利用研究,E-mail: fmh@cugb.edu.cn
  • 中图分类号: TD989;TQ174.1

Low-Temperature Preparation of Feldspar-Corundum Composite Ceramics from Red Mud

More Information
  • 以拜耳法赤泥为主要原料,添加铝矾土熟料、锂瓷石在低温条件下制备长石-刚玉质复相陶瓷。利用X射线衍射仪(XRD)、扫描电镜(SEM)对陶瓷的物相组成和形貌进行分析。研究了赤泥的含量、烧结温度等对陶瓷的体积密度、收缩率、吸水率、孔隙率、抗压强度的影响。研究结果表明:当赤泥在原料中的质量分数为60%、烧结温度为1 050 ℃时,制得复相陶瓷的性能最优,其物相组成为钙长石、刚玉、赤铁矿、石英、玻璃相以及少量的莫来石相,体积密度为1.85 g/cm3,收缩率为7.34%,吸水率为19.87%,抗压强度为79.48 MPa,其有害组分的溶出试验进一步表明钠、钾、钙等有害元素均稳定固化在产物中,产品在墙体装饰、陶瓷和耐火材料等领域具有广泛的应用前景。

  • 加载中
  • 图 1  赤泥原料XRD图

    Figure 1. 

    图 2  锂瓷石(a)和铝矾土熟料(b)的XRD图

    Figure 2. 

    图 3  赤泥(a)、铝矾土熟料(b)和锂瓷石(c)的SEM图

    Figure 3. 

    图 4  赤泥在不同温度下烧结后XRD图

    Figure 4. 

    图 5  不同赤泥含量的陶瓷在不同温度下烧结后XRD图

    Figure 5. 

    图 6  赤泥含量为60%的陶瓷在不同温度下烧结后的体积密度与线收缩率

    Figure 6. 

    图 7  赤泥含量为60%在不同温度下烧结后的陶瓷吸水率与显气孔率

    Figure 7. 

    图 8  赤泥含量为60%的陶瓷在不同温度下烧结后的抗压强度

    Figure 8. 

    图 9  不同赤泥含量的陶瓷在1 050 ℃下烧结后体积密度与线收缩率变化规律

    Figure 9. 

    图 10  不同赤泥含量的陶瓷在1 050 ℃下烧结后吸水率与显气孔率变化规律

    Figure 10. 

    图 11  不同赤泥含量的陶瓷在1 050 ℃下烧结后的抗压强度

    Figure 11. 

    图 12  赤泥含量为60%的陶瓷在不同温度下烧结后的微观形貌

    Figure 12. 

    图 13  不同赤泥含量的陶瓷在1 050 ℃下烧结后的微观形貌

    Figure 13. 

    表 1  赤泥的主要化学成分

    Table 1.  Main chemical composition of red mud /%

    Chemical composition Fe2O3 Al2O3 SiO2 Na2O CaO TiO2 SO3
    percentage 33.42 20.02 19.24 10.46 8.86 4.17 1.27
    下载: 导出CSV

    表 2  锂瓷石的主要化学成分

    Table 2.  Main chemical composition of lithium porcelain stone /%

    Chemical composition SiO2 Al2O3 K2O CaO Na2O F P2O5
    percentage 65.47 20.36 3.71 3.14 2.39 2.03 1.74
    下载: 导出CSV

    表 3  铝矾土熟料的主要化学成分

    Table 3.  Main chemical composition of bauxite clinker /%

    Chemical composition Al2O3 SiO2 TiO2 Fe2O3 K2O CaO MgO P2O5
    percentage 64.50 28.70 3.04 1.67 0.86 0.47 0.24 0.15
    下载: 导出CSV

    表 4  赤泥含量60%、1 050 ℃烧结的长石-刚玉质复相陶瓷试样ICP测试结果

    Table 4.  ICP test results of feldspar-jade multiphase ceramics sintered at 1 050 ℃ with 60% red mud content

    soak time /d element content /(mg·L-1)
    1 Fe <0.01
    1 Ca <0.01
    1 Ti <0.01
    1 Na 2.68
    7 Ca 8.07
    7 K 3.28
    7 Na 12.4
    下载: 导出CSV
  • [1]

    LI S, KANG Z, LIU W, et al. Reduction behavior and direct reduction kinetics of red mud-biomass composite pellets[J]. Journal of Sustainable Metallurgy, 2021, 7(1): 126-135. doi: 10.1007/s40831-020-00326-y

    [2]

    ZHANG X, ZHOU K, LEI Q, et al. Selective removal of iron from acid leachate of red mud by aliquat 336[J]. Jom, 2019, 71(12): 4608-4615. doi: 10.1007/s11837-019-03801-4

    [3]

    LIU Y, QIN Z, CHEN B. Experimental research on magnesium phosphate cements modified by red mud[J]. Construction and Building Materials, 2020, 231: 117131. doi: 10.1016/j.conbuildmat.2019.117131

    [4]

    ZHAO H, GOU H. Unfired bricks prepared with red mud and calcium sulfoaluminate cement: Properties and environmental impact[J]. Journal of Building Engineering, 2021, 38: 102238. doi: 10.1016/j.jobe.2021.102238

    [5]

    LIU X, HAN Y, HE F, et al. Characteristic, hazard and iron recovery technology of red mud - A critical review[J]. J Hazard Mater., 2021, 420: 126542. doi: 10.1016/j.jhazmat.2021.126542

    [6]

    MONNIN C, BOUSSOUGOU A L K, OLIVA P, et al. Characterization of the submarine disposal of a Bayer effluent (Gardanne alumina plant, southern France): Ⅱ. Chemical composition of the clarified effluent and mineralogical composition of the concretions formed by its discharge in the Mediterranean Sea[J]. Environmental Advances, 2021, 5: 100087. doi: 10.1016/j.envadv.2021.100087

    [7]

    ARCHAMBO M S, KAWATRA S K. Utilization of bauxite residue: recovering Iron values using the iron nugget process[J]. Mineral Processing and Extractive Metallurgy Review, 2020, 42(4): 222-230.

    [8]

    ARROYO F, LUNA-GALIANO Y, LEIVA C, et al. Environmental risks and mechanical evaluation of recycling red mud in bricks[J]. Environ Res., 2020, 186: 109537. doi: 10.1016/j.envres.2020.109537

    [9]

    AGRAWAL S, DHAWAN N. Evaluation of red mud as a polymetallic source-A review[J]. Minerals Engineering, 2021, 171: 107084. doi: 10.1016/j.mineng.2021.107084

    [10]

    廖仕臻, 杨金林, 马少健. 赤泥综合利用研究进展[J]. 矿产保护与利用, 2019, 39(3): 21-27. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=228b5218-080b-4823-b701-1dec0629275e

    [11]

    曾华, 吕斐, 胡广艳, 等. 拜耳法赤泥脱碱新工艺及其土壤化研究[J]. 矿产保护与利用, 2019, 39(3): 1-7. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=d3743b25-33ca-47c2-ac57-e4a957c51cf0

    [12]

    RAI S, BAHADURE S, CHADDHA MJ, et al. Disposal practices and utilization of red mud (Bauxite Residue)a review in indian context and abroad[J]. Journal of Sustainable Metallurgy, 2020, 6(4): 1-8.

    [13]

    AGRAWAL S, RAYAPUDI V, DHAWAN N. Comparison of microwave and conventional carbothermal reduction of red mud for recovery of iron values[J]. Minerals Engineering, 2019, 132: 202-210. doi: 10.1016/j.mineng.2018.12.012

    [14]

    KUMAR A, SARAVANAN T J, BISHT K, et al. A review on the utilization of red mud for the production of geopolymer and alkali activated concrete[J]. Construction and Building Materials, 2021, 302: 124170. doi: 10.1016/j.conbuildmat.2021.124170

    [15]

    COLLIN G, YUN H, VIGNESWAR K, et al. Application of modified red mud in environmentally-benign applications: A review paper[J]. Environmental Engineering Research: Environmental Engineering Research, 2020, 25(6): 795-806.

    [16]

    KHAIRUL M A, ZANGANEH J, MOGHTADERI B. The composition, recycling and utilisation of Bayer red mud[J]. Resources, Conservation and Recycling, 2019, 141: 483-498. doi: 10.1016/j.resconrec.2018.11.006

    [17]

    GAO F, ZHANG J, DENG X, et al. Comprehensive Recovery of Iron and Aluminum from Ordinary Bayer Red Mud by Reductive Sintering-Magnetic Separation-Digesting Process[J]. Jom, 2019, 71(9): 2936-2943. doi: 10.1007/s11837-018-3311-4

    [18]

    WANG S, JIN H, DENG Y, et al. Comprehensive utilization status of red mud in China: A critical review[J]. Journal of Cleaner Production, 2021, 289: 125136. doi: 10.1016/j.jclepro.2020.125136

    [19]

    LIU Y, LI X, ZHANG W, et al. Effect and mechanisms of red mud catalyst on pyrolysis remediation of heavy hydrocarbons in weathered petroleum-contaminated soil[J]. Journal of Environmental Chemical Engineering, 2021, 9: 106090. doi: 10.1016/j.jece.2021.106090

    [20]

    MUKIZA E, ZHANG L, LIU X, et al. Utilization of red mud in road base and subgrade materials: A review[J]. Resources, Conservation and Recycling, 2019, 141: 187-199. doi: 10.1016/j.resconrec.2018.10.031

    [21]

    SUTAR H, MISHRA S C, SAHOO S K, et al. Progress of red mud utilization: an overview[J]. American Chemical Science Journal, 2014, 4(3): 255-279. doi: 10.9734/ACSJ/2014/7258

    [22]

    PANDA S, COSTA R B, SHAH S S, et al. Biotechnological trends and market impact on the recovery of rare earth elements from bauxite residue (red mud) - A review[J]. Resources, Conservation and Recycling, 2021, 171: 105645. doi: 10.1016/j.resconrec.2021.105645

    [23]

    ZONG Y B, CHEN W H, FAN Y, et al. Complementation in the composition of steel slag and red mud for preparation of novel ceramics[J]. International Journal of Minerals, Metallurgy, and Materials, 2018, 25(9): 1010-1017. doi: 10.1007/s12613-018-1651-2

    [24]

    柳佳建, 陈伟, 周康根, 等. 赤泥中铁的回收利用研究进展[J]. 矿产保护与利用, 2021, 41(3): 70-75. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=2f07004c-acb5-4bac-b639-e2f798b8d4b0

    [25]

    雷清源, 周康根, 何德文, 等. 赤泥中钪和钛的回收研究进展[J]. 矿产保护与利用, 2019, 39(3): 15-20. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=3b6acf78-e474-4117-8251-9502830cdeef

    [26]

    LOPES D V, DURANA E, CESCONETO F R, et al. Direct processing of cellular ceramics from a single red mud precursor[J]. Ceramics International, 2020, 46(10): 16700-16707. doi: 10.1016/j.ceramint.2020.03.244

    [27]

    曾超, 何维. 赤泥物相的X射线粉末衍射Rietveld法定量分析研究[J]. 冶金分析, 2014, 34(8): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201408001.htm

    [28]

    童思意, 刘长淼, 刘玉林, 等. 我国固体废弃物制备陶粒的研究进展[J]. 矿产保护与利用, 2019, 39(3): 140-150. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=af60f117-a7db-445e-8ba8-5595841f4873

    [29]

    邢芩瑞, 马远, 李宇. 不同CaO源固废对钙长石全固废陶瓷矿相和性能的影响[J]. 有色金属科学与工程, 2021, 12(1): 39-48. https://www.cnki.com.cn/Article/CJFDTOTAL-JXYS202101007.htm

    [30]

    张伟国, 马小娥, 魏红姗, 等. 拜耳法赤泥基轻质保温陶瓷的中试生产[J]. 轻金属, 2020(11): 11-15. https://www.cnki.com.cn/Article/CJFDTOTAL-QJSS202011004.htm

    [31]

    魏红姗, 马小娥, 管学茂, 等. 拜耳法赤泥基轻质保温陶瓷的制备[J]. 硅酸盐通报, 2019, 38(3): 749-751. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201903026.htm

    [32]

    张辉, 李安林, 曾小州, 等. 以赤泥为助熔剂制备长石质发泡陶瓷[J]. 硅酸盐通报, 2019, 38(12): 4002-4006. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201912045.htm

    [33]

    王清涛, 李森, 于华芹, 等. 利用赤泥制备轻质高强保温装饰一体化建筑材料[J]. 硅酸盐通报, 2018, 37(4): 1393-1398. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201804045.htm

    [34]

    王清涛, 李森, 李峰芝, 等. 赤泥掺加量对保温装饰建筑陶瓷性能的影响[J]. 非金属矿, 2017, 40(5): 41-44. https://www.cnki.com.cn/Article/CJFDTOTAL-FJSK201705013.htm

    [35]

    李勇冲, 刘永杰, 孙杰璟, 等. 利用赤泥制备闭孔超轻质泡沫陶瓷的研究[J]. 新型建筑材料, 2017, 44(11): 113-116. https://www.cnki.com.cn/Article/CJFDTOTAL-XXJZ201711034.htm

  • 加载中

(13)

(4)

计量
  • 文章访问数:  1196
  • PDF下载数:  16
  • 施引文献:  0
出版历程
收稿日期:  2021-11-15
刊出日期:  2021-12-25

目录