淀粉及其衍生物抑制剂在矿物浮选中的应用和作用机理研究进展

田付强, 李亚超, 曹亦俊, 范桂侠. 淀粉及其衍生物抑制剂在矿物浮选中的应用和作用机理研究进展[J]. 矿产保护与利用, 2022, 42(1): 82-88. doi: 10.13779/j.cnki.issn1001-0076.2022.01.012
引用本文: 田付强, 李亚超, 曹亦俊, 范桂侠. 淀粉及其衍生物抑制剂在矿物浮选中的应用和作用机理研究进展[J]. 矿产保护与利用, 2022, 42(1): 82-88. doi: 10.13779/j.cnki.issn1001-0076.2022.01.012
TIAN Fuqiang, LI Yachao, CAO Yijun, FAN Guixia. Research Progress in Application and Mechanism of Starch and Its Derivative Depressants in Mineral Flotation[J]. Conservation and Utilization of Mineral Resources, 2022, 42(1): 82-88. doi: 10.13779/j.cnki.issn1001-0076.2022.01.012
Citation: TIAN Fuqiang, LI Yachao, CAO Yijun, FAN Guixia. Research Progress in Application and Mechanism of Starch and Its Derivative Depressants in Mineral Flotation[J]. Conservation and Utilization of Mineral Resources, 2022, 42(1): 82-88. doi: 10.13779/j.cnki.issn1001-0076.2022.01.012

淀粉及其衍生物抑制剂在矿物浮选中的应用和作用机理研究进展

  • 基金项目:
    国家自然科学基金资助项目(U1908226)
详细信息
    通讯作者: 范桂侠, 副教授, 博士, E-mail: cumtfgx@126.com
  • 中图分类号: TD923+.14

Research Progress in Application and Mechanism of Starch and Its Derivative Depressants in Mineral Flotation

More Information
  • 浮选是实现微细粒矿物高效分选的有效方法, 而高效、经济和环保型抑制剂的使用对提高浮选指标起关键性作用。淀粉作为天然高分子聚合物, 具有绿色环保、来源广泛、成本低和可生物降解等优点。近年来, 随着我国环保力度的增强, 淀粉在矿物浮选中的应用备受关注。综述了淀粉及其衍生物抑制剂的种类等因素对其抑制性能的影响, 阐述了其在浮选中的作用机理, 并展望了淀粉类抑制剂在矿物加工领域中的应用前景, 以期为淀粉类抑制剂的高效利用提供理论参考。

  • 加载中
  • 图 1  直链淀粉的分子结构

    Figure 1. 

    图 2  支链淀粉的分子结构

    Figure 2. 

    图 3  淀粉的二重处理示意图

    Figure 3. 

    图 4  两亲离子与淀粉反应示意图

    Figure 4. 

    图 5  淀粉与矿物表面的作用机理

    Figure 5. 

    图 6  分子在赤铁矿(001)表面的吸附模型:(a)淀粉;(b)水;(c)OH-[39]

    Figure 6. 

    图 7  赤铁矿-淀粉相互作用示意图[19]

    Figure 7. 

    图 8  金属氧化物与淀粉反应示意图[44]

    Figure 8. 

  • [1]

    QUAST K. An investigation of the flotation minimum in the oleate flotation of hematite under alkaline conditions [J]. Minerals Engineering, 2017, 113: 71-82. doi: 10.1016/j.mineng.2017.08.002

    [2]

    ZHU H, QIN W, CHEN C, et al. Flotation separation of fluorite from calcite using polyaspartate as depressant [J]. Minerals Engineering, 2018, 120: 80-86. doi: 10.1016/j.mineng.2018.02.016

    [3]

    FAN GX, ZHANG CF, WANG TJ, et al. New insight into surface adsorption thermodynamic, kinetic properties and adsorption mechanisms of sodium oleate on ilmenite and titanaugite [J]. Advanced Powder Technology, 2020, 31(8): 3628-3639. doi: 10.1016/j.apt.2020.07.011

    [4]

    侯华丽, 吴尚昆, 蒋芳, 等. 新时代我国绿色矿山建设规划的思考[J]. 中国矿业, 2019, 28(7): 81-85. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA201907015.htm

    HOU HL, WU SK, JIANG F, et al. Thoughts on green mine construction planning in the new era [J]. China mining magazine, 2019, 28(7): 81-85. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA201907015.htm

    [5]

    YAZID NSM, ABDULLAH N, MUHAMMAD N, et al. Application of starch and starch-based products in food industry [J]. Journal of science and technology, 2018, 10(2): 144-174.

    [6]

    MESHRAM MW, PATIL VV, MHASKE ST, et al. Graft copolymers of starch and its application in textiles [J]. Carbohydrate Polymers, 2009, 75: 71-78. doi: 10.1016/j.carbpol.2008.06.012

    [7]

    MENG Q, YUAN Z, YU L, et al. Selective depression of titanaugite in the ilmenite flotation with carboxymethyl starch [J]. Applied Surface Science, 2018, 440: 955-962. doi: 10.1016/j.apsusc.2018.01.234

    [8]

    DONG A, XIE J, WANG W, et al. A novel method for amino starch preparation and its adsorption for Cu(Ⅱ) and Cr(Ⅵ) [J]. J Hazard Mater, 2010, 181(1/2/3): 448-454.

    [9]

    KHOSO SA, HU Y, TIAN M, et al. Evaluation of green synthetic depressants for sulfide flotation: synthesis, characterization and floatation performance to pyrite and chalcopyrite [J]. Separation and purification technology, 2021, 259: 118138. doi: 10.1016/j.seppur.2020.118138

    [10]

    KHOSO SA, GAO Z, TIAN M, et al. Adsorption and depression mechanism of an environmentally friendly reagent in differential flotation of Cu-Fe sulphides [J]. Journal of materials research and technology, 2019, 8(6): 5422-5431. doi: 10.1016/j.jmrt.2019.09.009

    [11]

    YU XY, WANG H, WANG QQ, et al. Flotation of low-grade bauxite using organosilicon cationic collector and starch depressant [J]. Transactions of nonferrous metals society of china, 2016, 26: 1112-1117. doi: 10.1016/S1003-6326(16)64209-7

    [12]

    FLETCHER B, CHIMONYO W, PENG Y. A comparison of native starch, oxidized starch and CMC as copper-activated pyrite depressants [J]. Minerals Engineering, 2020, 156: 106532. doi: 10.1016/j.mineng.2020.106532

    [13]

    YANG S, WANG L. Structural and functional insights into starches as depressant for hematite flotation [J]. Minerals Engineering, 2018, 124: 149-157. doi: 10.1016/j.mineng.2018.05.022

    [14]

    YANG S, LI C, WANG L. Dissolution of starch and its role in the flotation separation of quartz from hematite [J]. Powder Technology, 2017, 320: 346-357. doi: 10.1016/j.powtec.2017.07.061

    [15]

    YANG S, WANG L. Measurement of froth zone and collection zone recoveries with various starch depressants in anionic flotation of hematite and quartz [J]. Minerals Engineering, 2019, 138: 31-42. doi: 10.1016/j.mineng.2019.04.027

    [16]

    WEISSENBORN P. Behaviour of amylopectin and amylose components of starch in the selective flocculation of ultrafine iron ore [J]. International Journal of Mineral Processing, 1996, 47: 197-211. doi: 10.1016/0301-7516(95)00096-8

    [17]

    PAVLOVIC S, BRANDAO PRG. Adsorption of starch, amylose, amylopectin and glucose monomer and their effect on the flotation of hematite and quartz [J]. Minerals Engineering, 2003, 16: 1117-1122. doi: 10.1016/j.mineng.2003.06.011

    [18]

    NING S, LI G, SHEN P, et al. Selective separation of chalcopyrite and talc using pullulan as a new depressant [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 623: 126764. doi: 10.1016/j.colsurfa.2021.126764

    [19]

    KAR B, SAHOO H, RATH SS, et al. Investigations on different starches as depressants for iron ore flotation [J]. Minerals Engineering, 2013, 49: 1-6. doi: 10.1016/j.mineng.2013.05.004

    [20]

    SILVA AC, SOUSA DN, SILVA EMS. Hematite and quartz microflotation using millet starch as depressant [J]. REM-International Engineering Journal, 2021, 74(1): 107-116.

    [21]

    PERES A, CORREA M. Depression of iron oxides with corn starches [J]. Minerals Engineering, 1996, 9(12): 1227-1234. doi: 10.1016/S0892-6875(96)00118-5

    [22]

    BAI S, DING Z, FU X, et al. Investigations on soluble starch as the depressant of hematite during flotation separation of apatite [J]. Physicochemical Problems of Mineral Processing, 2019, 55(1): 38-48.

    [23]

    ZVERLOV VV, BEREZINA O, VELIKODVORSKAYA GA, et al. Bacterial acetone and butanol production by industrial fermentation in the Soviet Union: use of hydrolyzed agricultural waste for biorefinery [J]. Applied Microbiology and Biotechnology, 2006, 71(5): 587-597. doi: 10.1007/s00253-006-0445-z

    [24]

    SHRIMALI K, MILLER JD. Polysaccharide depressants for the reverse flotation of iron ore [J]. Transactions of the Indian Institute of Metals, 2016, 69(1): 83-95. doi: 10.1007/s12666-015-0708-4

    [25]

    DONG J, LIU Q, SUBHONQULOV SH. Effect of dextrin on flotation separation and surface properties of chalcopyrite and arsenopyrite [J]. Water Science & Technology, 2021, 83(1): 152-161.

    [26]

    CHEN Y, FENG B, YAN H, et al. Adsorption and depression mechanism of an eco-friendly depressant dextrin onto fluorite and calcite for the efficiency flotation separation [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 635: 127987. doi: 10.1016/j.colsurfa.2021.127987

    [27]

    戴思行, 王欠欠, 刘诚, 等. 淀粉类调整剂在矿物浮选中的应用和作用机理研究进展[J]. 矿产综合利用, 2021(4): 73-79. doi: 10.3969/j.issn.1000-6532.2021.04.011

    Dai SX, Wang QQ, Liu C, et al. Research progress of application and interaction mechanism of starch-based regulators in mineral flotation [J]. Multipurpose utilization of mineral resources, 2021(4): 73-79. doi: 10.3969/j.issn.1000-6532.2021.04.011

    [28]

    LI W, SHI D, HAN Y. A selective flotation of fluorite from dolomite using caustic cassava starch and its adsorption mechanism: an experimental and DFT Study [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 633: 127876. doi: 10.1016/j.colsurfa.2021.127876

    [29]

    TANG M, LIU Q. The acidity of caustic digested starch and its role in starch adsorption on mineral surfaces [J]. International Journal of Mineral Processing, 2012, 112: 94-100.

    [30]

    LIA L, ZHANGA C, YUANA Z, et al. AFM and DFT study of depression of hematite in oleate-starch-hematite flotation system [J]. Applied Surface Science, 2019, 480: 749-758. doi: 10.1016/j.apsusc.2019.02.224

    [31]

    TANG M, WEN S. Adsorption characteristics of starch digested with alkali on fine hematite particles [J]. Journal of Mining Science, 2019, 55(3): 469-477. doi: 10.1134/S1062739119035806

    [32]

    MOREIRA GF, PEANHA ER, MONTEA M B M, et al. XPS study on the mechanism of starch-hematite surface chemical complexation [J]. Minerals Engineering, 2017, 110: 96-103. doi: 10.1016/j.mineng.2017.04.014

    [33]

    YUE T, WU X. Depressing iron mineral by metallic-starch complex (MSC) in reverse flotation and its mechanism [J]. Minerals, 2018, 8: 85-96.

    [34]

    NEITZKE PRDMC, DANTAS TNC, MOURA MCPA, et al. Depressants in nanoemulsion systems applied to quartz and hematite microflotation [J]. Journal of Materials Research and Technology, 2019, 8(6): 5529 -5535. doi: 10.1016/j.jmrt.2019.09.021

    [35]

    SHI W, TAN W, WANG L, et al. Removal of Microcystis aeruginosa using cationic starch modified soils [J]. Water Research, 2016, 97: 19-25. doi: 10.1016/j.watres.2015.06.029

    [36]

    CRUNDWELL FK. On the mechanism of the flotation of oxides and silicates [J]. Minerals Engineering, 2016, 95: 185-196. doi: 10.1016/j.mineng.2016.06.017

    [37]

    LI H, ZHANG SS, HAO J, et al. Effect of degree of substitution of carboxymethyl starch on diaspore depression in reverse flotation [J]. Transactions of Nonferrous Metals Society of China, 2011, 21: 1868-1873. doi: 10.1016/S1003-6326(11)60943-6

    [38]

    LI H, ZHANG S, HAO J, et al. Effect of modified starches on depression of diaspore [J]. Transactions of Nonferrous Metals Society of China, 2010, 20(8): 1494-1499. doi: 10.1016/S1003-6326(09)60327-7

    [39]

    张行荣, 郑桂兵, 艾晶, 等. 赤铁矿反浮选淀粉抑制作用第一性原理[J]. 中国有色金属学报, 2016, 26(2): 465-470. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201602026.htm

    ZHANG X R, ZHENG G B, AI J, et al. First—principIes of depressing mechanism of starch inrevers flotation of hematite [J]. The Chinese Journal of Nonferrous Metals, 2016, 26(2): 465-470. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201602026.htm

    [40]

    BULATOVIC SM. Handbook of flotation reagents: chemistry, theory and practice [J]. Flotation of Sulphide ores, 2008, 16(5): 1.

    [41]

    HAO H, FAN G, YU J, et al. Adsorption changes of starch on minerals in carbonate-containing iron ore flotation by introducing amino radicals [J]. Journal of Molecular Liquids, 2021, 343: 117511. doi: 10.1016/j.molliq.2021.117511

    [42]

    XIA L, ZHONG H, LIU G, et al. Flotation separation of the aluminosilicates from diaspore by a gemini cationic collector [J]. International Journal of Mineral Processing, 2009, 92(1): 74-83.

    [43]

    MU Y, PENG Y, LAUTEN RA. The depression of copper-activated pyrite in flotation by biopolymers with different compositions [J]. Minerals Engineering, 2016, 96/97: 113-122. doi: 10.1016/j.mineng.2016.06.011

    [44]

    LIU Q, LASKOWSK JS. The Interactions between Dextrin and Metal Hydroxides in Aqueous Solutions[J]. Journal of Colloid and lnterface Science, 1989, 130(1): 101-111. doi: 10.1016/0021-9797(89)90081-7

    [45]

    LIU Q, ZHANG Y, LASKOWSKI JS. The adsorption of polysaccharides onto mineral surfaces: an acidrbase interaction [J]. International Journal of Mineral Processing, 2000, 60: 229-245.

  • 加载中

(8)

计量
  • 文章访问数:  1828
  • PDF下载数:  79
  • 施引文献:  0
出版历程
收稿日期:  2022-02-19
刊出日期:  2022-02-25

目录