Research Progress in Application and Mechanism of Starch and Its Derivative Depressants in Mineral Flotation
-
摘要:
浮选是实现微细粒矿物高效分选的有效方法, 而高效、经济和环保型抑制剂的使用对提高浮选指标起关键性作用。淀粉作为天然高分子聚合物, 具有绿色环保、来源广泛、成本低和可生物降解等优点。近年来, 随着我国环保力度的增强, 淀粉在矿物浮选中的应用备受关注。综述了淀粉及其衍生物抑制剂的种类等因素对其抑制性能的影响, 阐述了其在浮选中的作用机理, 并展望了淀粉类抑制剂在矿物加工领域中的应用前景, 以期为淀粉类抑制剂的高效利用提供理论参考。
Abstract:Flotation is an effective method to achieve efficient separation of fine minerals. The efficient, economic and environmental protection depressants play a critical role in improving flotation index. Starch, as a natural polymer, has the advantages of environmental protection, wide source, low cost and biodegradability. In recent years, with the enhancement of environmental protection, the application of starch in mineral flotation has attracted much attention. In this paper, the effects of starch types and its derivatives depressants on its inhibitory properties were reviewed. The mechanism of starch depressants in flotation was described. The application prospect of starch depressants in mineral flotation was prospected to provide theoretical reference for the efficient use of starch depressants.
-
Key words:
- starch /
- flotation /
- depressant /
- application /
- mechanism
-
图 6 分子在赤铁矿(001)表面的吸附模型:(a)淀粉;(b)水;(c)OH-[39]
Figure 6.
图 7 赤铁矿-淀粉相互作用示意图[19]
Figure 7.
图 8 金属氧化物与淀粉反应示意图[44]
Figure 8.
-
[1] QUAST K. An investigation of the flotation minimum in the oleate flotation of hematite under alkaline conditions [J]. Minerals Engineering, 2017, 113: 71-82. doi: 10.1016/j.mineng.2017.08.002
[2] ZHU H, QIN W, CHEN C, et al. Flotation separation of fluorite from calcite using polyaspartate as depressant [J]. Minerals Engineering, 2018, 120: 80-86. doi: 10.1016/j.mineng.2018.02.016
[3] FAN GX, ZHANG CF, WANG TJ, et al. New insight into surface adsorption thermodynamic, kinetic properties and adsorption mechanisms of sodium oleate on ilmenite and titanaugite [J]. Advanced Powder Technology, 2020, 31(8): 3628-3639. doi: 10.1016/j.apt.2020.07.011
[4] 侯华丽, 吴尚昆, 蒋芳, 等. 新时代我国绿色矿山建设规划的思考[J]. 中国矿业, 2019, 28(7): 81-85. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA201907015.htm
HOU HL, WU SK, JIANG F, et al. Thoughts on green mine construction planning in the new era [J]. China mining magazine, 2019, 28(7): 81-85. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA201907015.htm
[5] YAZID NSM, ABDULLAH N, MUHAMMAD N, et al. Application of starch and starch-based products in food industry [J]. Journal of science and technology, 2018, 10(2): 144-174.
[6] MESHRAM MW, PATIL VV, MHASKE ST, et al. Graft copolymers of starch and its application in textiles [J]. Carbohydrate Polymers, 2009, 75: 71-78. doi: 10.1016/j.carbpol.2008.06.012
[7] MENG Q, YUAN Z, YU L, et al. Selective depression of titanaugite in the ilmenite flotation with carboxymethyl starch [J]. Applied Surface Science, 2018, 440: 955-962. doi: 10.1016/j.apsusc.2018.01.234
[8] DONG A, XIE J, WANG W, et al. A novel method for amino starch preparation and its adsorption for Cu(Ⅱ) and Cr(Ⅵ) [J]. J Hazard Mater, 2010, 181(1/2/3): 448-454.
[9] KHOSO SA, HU Y, TIAN M, et al. Evaluation of green synthetic depressants for sulfide flotation: synthesis, characterization and floatation performance to pyrite and chalcopyrite [J]. Separation and purification technology, 2021, 259: 118138. doi: 10.1016/j.seppur.2020.118138
[10] KHOSO SA, GAO Z, TIAN M, et al. Adsorption and depression mechanism of an environmentally friendly reagent in differential flotation of Cu-Fe sulphides [J]. Journal of materials research and technology, 2019, 8(6): 5422-5431. doi: 10.1016/j.jmrt.2019.09.009
[11] YU XY, WANG H, WANG QQ, et al. Flotation of low-grade bauxite using organosilicon cationic collector and starch depressant [J]. Transactions of nonferrous metals society of china, 2016, 26: 1112-1117. doi: 10.1016/S1003-6326(16)64209-7
[12] FLETCHER B, CHIMONYO W, PENG Y. A comparison of native starch, oxidized starch and CMC as copper-activated pyrite depressants [J]. Minerals Engineering, 2020, 156: 106532. doi: 10.1016/j.mineng.2020.106532
[13] YANG S, WANG L. Structural and functional insights into starches as depressant for hematite flotation [J]. Minerals Engineering, 2018, 124: 149-157. doi: 10.1016/j.mineng.2018.05.022
[14] YANG S, LI C, WANG L. Dissolution of starch and its role in the flotation separation of quartz from hematite [J]. Powder Technology, 2017, 320: 346-357. doi: 10.1016/j.powtec.2017.07.061
[15] YANG S, WANG L. Measurement of froth zone and collection zone recoveries with various starch depressants in anionic flotation of hematite and quartz [J]. Minerals Engineering, 2019, 138: 31-42. doi: 10.1016/j.mineng.2019.04.027
[16] WEISSENBORN P. Behaviour of amylopectin and amylose components of starch in the selective flocculation of ultrafine iron ore [J]. International Journal of Mineral Processing, 1996, 47: 197-211. doi: 10.1016/0301-7516(95)00096-8
[17] PAVLOVIC S, BRANDAO PRG. Adsorption of starch, amylose, amylopectin and glucose monomer and their effect on the flotation of hematite and quartz [J]. Minerals Engineering, 2003, 16: 1117-1122. doi: 10.1016/j.mineng.2003.06.011
[18] NING S, LI G, SHEN P, et al. Selective separation of chalcopyrite and talc using pullulan as a new depressant [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 623: 126764. doi: 10.1016/j.colsurfa.2021.126764
[19] KAR B, SAHOO H, RATH SS, et al. Investigations on different starches as depressants for iron ore flotation [J]. Minerals Engineering, 2013, 49: 1-6. doi: 10.1016/j.mineng.2013.05.004
[20] SILVA AC, SOUSA DN, SILVA EMS. Hematite and quartz microflotation using millet starch as depressant [J]. REM-International Engineering Journal, 2021, 74(1): 107-116.
[21] PERES A, CORREA M. Depression of iron oxides with corn starches [J]. Minerals Engineering, 1996, 9(12): 1227-1234. doi: 10.1016/S0892-6875(96)00118-5
[22] BAI S, DING Z, FU X, et al. Investigations on soluble starch as the depressant of hematite during flotation separation of apatite [J]. Physicochemical Problems of Mineral Processing, 2019, 55(1): 38-48.
[23] ZVERLOV VV, BEREZINA O, VELIKODVORSKAYA GA, et al. Bacterial acetone and butanol production by industrial fermentation in the Soviet Union: use of hydrolyzed agricultural waste for biorefinery [J]. Applied Microbiology and Biotechnology, 2006, 71(5): 587-597. doi: 10.1007/s00253-006-0445-z
[24] SHRIMALI K, MILLER JD. Polysaccharide depressants for the reverse flotation of iron ore [J]. Transactions of the Indian Institute of Metals, 2016, 69(1): 83-95. doi: 10.1007/s12666-015-0708-4
[25] DONG J, LIU Q, SUBHONQULOV SH. Effect of dextrin on flotation separation and surface properties of chalcopyrite and arsenopyrite [J]. Water Science & Technology, 2021, 83(1): 152-161.
[26] CHEN Y, FENG B, YAN H, et al. Adsorption and depression mechanism of an eco-friendly depressant dextrin onto fluorite and calcite for the efficiency flotation separation [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 635: 127987. doi: 10.1016/j.colsurfa.2021.127987
[27] 戴思行, 王欠欠, 刘诚, 等. 淀粉类调整剂在矿物浮选中的应用和作用机理研究进展[J]. 矿产综合利用, 2021(4): 73-79. doi: 10.3969/j.issn.1000-6532.2021.04.011
Dai SX, Wang QQ, Liu C, et al. Research progress of application and interaction mechanism of starch-based regulators in mineral flotation [J]. Multipurpose utilization of mineral resources, 2021(4): 73-79. doi: 10.3969/j.issn.1000-6532.2021.04.011
[28] LI W, SHI D, HAN Y. A selective flotation of fluorite from dolomite using caustic cassava starch and its adsorption mechanism: an experimental and DFT Study [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 633: 127876. doi: 10.1016/j.colsurfa.2021.127876
[29] TANG M, LIU Q. The acidity of caustic digested starch and its role in starch adsorption on mineral surfaces [J]. International Journal of Mineral Processing, 2012, 112: 94-100.
[30] LIA L, ZHANGA C, YUANA Z, et al. AFM and DFT study of depression of hematite in oleate-starch-hematite flotation system [J]. Applied Surface Science, 2019, 480: 749-758. doi: 10.1016/j.apsusc.2019.02.224
[31] TANG M, WEN S. Adsorption characteristics of starch digested with alkali on fine hematite particles [J]. Journal of Mining Science, 2019, 55(3): 469-477. doi: 10.1134/S1062739119035806
[32] MOREIRA GF, PEANHA ER, MONTEA M B M, et al. XPS study on the mechanism of starch-hematite surface chemical complexation [J]. Minerals Engineering, 2017, 110: 96-103. doi: 10.1016/j.mineng.2017.04.014
[33] YUE T, WU X. Depressing iron mineral by metallic-starch complex (MSC) in reverse flotation and its mechanism [J]. Minerals, 2018, 8: 85-96.
[34] NEITZKE PRDMC, DANTAS TNC, MOURA MCPA, et al. Depressants in nanoemulsion systems applied to quartz and hematite microflotation [J]. Journal of Materials Research and Technology, 2019, 8(6): 5529 -5535. doi: 10.1016/j.jmrt.2019.09.021
[35] SHI W, TAN W, WANG L, et al. Removal of Microcystis aeruginosa using cationic starch modified soils [J]. Water Research, 2016, 97: 19-25. doi: 10.1016/j.watres.2015.06.029
[36] CRUNDWELL FK. On the mechanism of the flotation of oxides and silicates [J]. Minerals Engineering, 2016, 95: 185-196. doi: 10.1016/j.mineng.2016.06.017
[37] LI H, ZHANG SS, HAO J, et al. Effect of degree of substitution of carboxymethyl starch on diaspore depression in reverse flotation [J]. Transactions of Nonferrous Metals Society of China, 2011, 21: 1868-1873. doi: 10.1016/S1003-6326(11)60943-6
[38] LI H, ZHANG S, HAO J, et al. Effect of modified starches on depression of diaspore [J]. Transactions of Nonferrous Metals Society of China, 2010, 20(8): 1494-1499. doi: 10.1016/S1003-6326(09)60327-7
[39] 张行荣, 郑桂兵, 艾晶, 等. 赤铁矿反浮选淀粉抑制作用第一性原理[J]. 中国有色金属学报, 2016, 26(2): 465-470. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201602026.htm
ZHANG X R, ZHENG G B, AI J, et al. First—principIes of depressing mechanism of starch inrevers flotation of hematite [J]. The Chinese Journal of Nonferrous Metals, 2016, 26(2): 465-470. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201602026.htm
[40] BULATOVIC SM. Handbook of flotation reagents: chemistry, theory and practice [J]. Flotation of Sulphide ores, 2008, 16(5): 1.
[41] HAO H, FAN G, YU J, et al. Adsorption changes of starch on minerals in carbonate-containing iron ore flotation by introducing amino radicals [J]. Journal of Molecular Liquids, 2021, 343: 117511. doi: 10.1016/j.molliq.2021.117511
[42] XIA L, ZHONG H, LIU G, et al. Flotation separation of the aluminosilicates from diaspore by a gemini cationic collector [J]. International Journal of Mineral Processing, 2009, 92(1): 74-83.
[43] MU Y, PENG Y, LAUTEN RA. The depression of copper-activated pyrite in flotation by biopolymers with different compositions [J]. Minerals Engineering, 2016, 96/97: 113-122. doi: 10.1016/j.mineng.2016.06.011
[44] LIU Q, LASKOWSK JS. The Interactions between Dextrin and Metal Hydroxides in Aqueous Solutions[J]. Journal of Colloid and lnterface Science, 1989, 130(1): 101-111. doi: 10.1016/0021-9797(89)90081-7
[45] LIU Q, ZHANG Y, LASKOWSKI JS. The adsorption of polysaccharides onto mineral surfaces: an acidrbase interaction [J]. International Journal of Mineral Processing, 2000, 60: 229-245.