Study on a New Purification Process of Quartz Sand in Sichuan Province by Removing Iron and Titanium
-
摘要:
为了去除四川某石英砂中的Fe和Ti杂质,提出“重选—浮选—酸浸”的提纯新工艺。石英砂先经重选和浮选进行预选除杂,再经两段酸浸实现精选提纯。重选采用螺旋溜槽一次粗选一次精选去除部分含Fe和Ti重矿物,浮选采用一次粗选一次扫选去除主要含Ti矿物金红石。经选矿除杂后的石英砂在70 ℃下,经一段盐酸3 mol/L+醋酸1 mol/L+氢氟酸0.5 mol/L、二段盐酸3 mol/L+硫酸1.5 mol/L各酸浸2 h得到最终石英砂精矿。精矿中SiO2含量提高到99.92%;Fe和Ti的含量分别降至0.005%和0.012%,Fe和Ti的综合去除率分别达到91.80%和71.43%。该工艺对四川某石英砂的除铁降钛、深度提纯具有显著效果,对类似石英砂矿石的高效利用具有参考价值。
Abstract:A new process of "gravity separation-flotation-acid leaching" purification was proposed for the removal of iron and titanium from a quartz sand in Sichuan. Fe and Ti were removed preliminarily from quartz sand by gravity separation and flotation, then purified by two-stage acid leaching. The gravity separation was performed by one roughing-one cleaning two-stage spiral chute to remove Fe and Ti, and the flotation was performed by one roughing- one scavenging to remove rutile mainly containing Ti mineral. Quartz sand was leached firstly with "hydrochloric acid of 3 mol/L + acetic acid of 1 mol/L + hydrofluoric acid of 0.5 mol/L" at 70 ℃ for 2 h, and secondly with "hydrochloric acid of 3 mol/L + sulfuric acid of 1.5 mol/L" to obtain the final concentrate. The content of SiO2 increased to 99.92%, Fe and Ti contents decreased to 0.005% and 0.012% respectively, and the removal rate of Fe and Ti reached 91.80% and 71.43% respectively in concentrate. The process has remarkable effect on the removal of iron and titanium in quartz sand, and has reference value for mining and utilization of similar ores.
-
Key words:
- quartz /
- purification /
- gravity separation /
- flotation /
- acid leaching /
- removing iron and titanium
-
表 1 石英砂多元素分析结果
Table 1. Multi-elements analysis of the quartz sand
/% 元素 Be Na Mg Al Si K Ca Ti Fe 含量 0.0046 0.0131 0.0013 0.0661 46.4803 0.0405 0.0204 0.0421 0.0613 表 2 石英砂的矿物组成及相对含量
Table 2. Mineral composition of the quartz sand
/% 矿物种类 石英 歪长石 红柱石 绢云母 金红石 高岭石 磁铁矿 铁橄榄石 铁铝榴石 其他矿物 含量 98.98 0.30 0.25 0.10 0.08 0.09 0.04 0.02 0.02 0.13 表 3 重选除铁和钛的效果
Table 3. Effect of gravity separation on iron and titanium removal
/% 样品名称 产率 Fe含量 Ti含量 Fe分布率 Ti分布率 精矿 84.96 0.052 0.034 72.42 68.78 尾矿 15.04 0.112 0.087 27.58 31.22 原矿 100.00 0.061 0.042 100.00 100.00 -
[1] 熊康, 裴振宇, 臧芳芳, 等. 混合酸浸出制备高纯石英工艺及机理研究[J]. 非金属矿, 2016(3): 60-62. https://www.cnki.com.cn/Article/CJFDTOTAL-FJSK201603019.htm
XIONG K, PEI Z Y, ZANG F F. Study on process and mechanism of preparing high purity quartz by mixed acid leaching[J]. Non-Metallic Mines, 2016(3): 60-62. https://www.cnki.com.cn/Article/CJFDTOTAL-FJSK201603019.htm
[2] 王华庆, 张树光, 李江山. 石英砂永磁强磁选—酸浸提纯试验研究[J]. 非金属矿, 2015, 38(3): 52-54. https://www.cnki.com.cn/Article/CJFDTOTAL-FJSK201503017.htm
WANG H Q, ZHANG S G, LI J S. Experimental study on purification of quartz sand by permanent magnet high intensity magnetic separation-acid leaching[J]. Non-Metallic Mines, 2015, 38(3): 52-54. https://www.cnki.com.cn/Article/CJFDTOTAL-FJSK201503017.htm
[3] 米宏成, 陈运双, 高淑玲, 等. 细粒石英的相对润湿性及其浮选行为研究[J]. 矿产保护与利用, 2018(9): 3-9. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=21b6dc10-fa15-452d-9818-b8f90e22d28d
MI H C, CHEN Y S, GAO S L, et al. Study on the relative wettability and flotation behavior of fine quartz[J]. Conservation and Utilization of Mineral Resources, 2018(9): 3-9. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=21b6dc10-fa15-452d-9818-b8f90e22d28d
[4] 丛龙斐, 罗嘉靖, 古缘, 等. 某锂辉石矿石重介质分选—浮选工艺优化研究[J]. 矿产保护与利用, 2021(5): 25-29. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=1cdb233a-8259-42e4-b405-8afa3632c7bd
CONG L F, LUO J J, GU Y, et al. Optimization of heavy medium separation-flotation process for spodumene ore[J]. Conservation and Utilization of Mineral Resources, 2021(5): 25-29. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=1cdb233a-8259-42e4-b405-8afa3632c7bd
[5] 赵雪淞, 刘鑫, 李彩霞, 等. 混酸提纯制备高纯石英砂及浸出动力学分析[J]. 硅酸盐学报, 2021, 49(3): 581-589. https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB202103020.htm
ZHAO X S, LIU X, LI C X, et al. Preparation of high-purity quartz sand by leaching with mixed acids[J]. Journal of The Chinese Ceramic Society, 2021, 49(3): 581-589. https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB202103020.htm
[6] 杨文, 周迎春, 侯军发, 等. 超白石英砂尾砂除钛和降细粒级砂的试验研究[J]. 非金属矿, 2020, 43(6): 64-66. https://www.cnki.com.cn/Article/CJFDTOTAL-FJSK202006019.htm
YANG W, ZHOU Y C, HOU J F, et al. Experimental study on titanium removal and fine-grained sand from ultra-white quartz tailings[J]. Non-Metallic Mines, 2020, 43(6): 64-66. https://www.cnki.com.cn/Article/CJFDTOTAL-FJSK202006019.htm
[7] 闫勇, 卢义飞, 郑翠红, 等. 石英砂除铁钛杂质的新工艺研究[J]. 矿产综合利用, 2009(2): 16-19. https://www.cnki.com.cn/Article/CJFDTOTAL-KCZL200901006.htm
YAN Y, LU Y F, ZHENG C H, et al. Study on new technology of removing iron and titanium impurities with quartz sand[J]. Multipurpose Utilization of Mineral Resources, 2009(2): 16-19. https://www.cnki.com.cn/Article/CJFDTOTAL-KCZL200901006.htm
[8] MA J, ZHANG Y, QIN Y. The leaching kinetics of K-feldspar in sulfuric acid with the aid of ultrasound[J]. Ultrasonics Sonochemistry, 2017: 304-312. https://www.sciencedirect.com/science/article/pii/S1350417716303455
[9] 朱诗曼, 李怡霏, 张喆怡, 等. 羟肟酸类捕收剂浮选金红石特性及其机理[J]. 矿产保护与利用, 2021(4): 59-63. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=413f7969-972f-4776-8c76-2b7f21d5000e
ZHU S M, LI Y F, ZHANG Z Y, et al. Characteristics and mechanism of hydroxamic acid collector flotation of rutile[J]. Conservation and Utilization of Mineral Resources, 2021(4): 59-63. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=413f7969-972f-4776-8c76-2b7f21d5000e
[10] VIDYAHAR K, HANUMANTHA R. Adsorption mechanism of mixed cationic/anionic collectors in feldspar-quartz flotation system[J]. Journal of Colloid and Interface Science 2007, 306: 195-204. https://www.sciencedirect.com/science/article/pii/S0892687514001010