Study on the Mechanism of Rutile Beneficiation by Roasting Titanium-bearing Blast Furnace Slag with Copperas
-
摘要:
含钛高炉渣和绿矾是以钒钛磁铁矿为原料经选矿后冶炼生铁和二氧化钛工艺中排出的两种主要固体废弃物, 上述两种固废的共同处置对钛铁工业的发展具有重要意义。采用含钛高炉渣和绿矾为原料, 提出了一种富集金红石的新工艺。含钛高炉渣和绿矾经过共焙烧, 其中绿矾热分解为二氧化硫和三氧化二铁, 进而二氧化硫和含钛高炉渣中的钙钛矿及含钛辉石发生硫酸化反应, 钙镁组分转化为硫酸盐, 而钛组分被富集为金红石。系统地研究了工艺参数对含钛高炉渣富集过程的影响。研究发现, 加入Na2SO4可以显著提高Ti的富集效率。在绿矾与含钛高炉渣质量比为2、硫酸钠添加量为10%、焙烧温度为650℃、保温时间4 h的最优条件下, 含钛高炉渣中钛的转化率达98%, 富集后金红石含量约为8.6%, 后续可通过浮选进一步富集。Na2SO4的加入促进了熔融Na3Fe (SO4)3的形成, 熔融物能够渗透含钛高炉渣内部进行硫酸化反应, 气液固相反应加速了钛的富集过程。
Abstract:Titanium-bearing blast furnace slag (TBFS) and copperas are two major solid wastes discharged from pig iron and titania production with vanadium-titanium magnetite ore as feedstock. Co-disposal of the above two wastes is of great importance for the development of ferrotitanium industry. In this study, a novel process for rutile beneficiation was proposed by using TBFS and copperas. TBFS and copperas were co-roasted, where copperas was thermally decomposed into sulfur dioxide and ferric oxide, and the sulfur dioxide continued to react with the CaTiO3 and titanium-bearing diopside in TBFS. During the sulfation reaction of TBFS, the calcium and magnesium was converted into corresponding sulfates, while titanium was beneficiated to rutile. The effects of process parameters on beneficiation were studied systematically. It was found that addition of Na2SO4 significantly enhanced the conversion efficiency of Ti. Under the optimal conditions, i.e. a mass ratio of copperas to TBFS of 2, Na2SO4 dosage of 10%, roasting temperature of 650℃, roasting time of 4 h, the conversion efficiency of Ti reached 98%. The content of rutile reached 8.6%, which can be further beneficiated by flotation. The addition of Na2SO4 promoted the formation of molten Na3Fe(SO4)3, which was able to penetrate inside the TBFS and proceed sulfation reaction with inner TBFS. And gas-liquid-solid phase reactions facilitated the beneficiation of titanium.
-
表 1 含钛高炉渣及绿矾化学成分
/% Table 1. Chemical composition of the titanium-bearing blast furnace slag and copperas
物质 CaO SiO2 TiO2 Al2O3 MgO SO3 Fe2O3 SO3 其他 含钛高炉渣 30.38 26.11 18.36 11.00 7.14 2.69 1.86 / 2.47 绿矾 / / 1.43 / 2.00 / 48.70 47.28 0.59 表 2 CaTiO3与FeSO4共焙烧可能发生的反应
Table 2. Possible reactions when roasting ferrous sulfate with CaTiO3
Reaction equations CaTiO3+2FeSO4→CaSO4+TiO2+Fe2O3+SO2(g) (1) Ca(Ti, Mg, Al)(Si, Al)2O6+FeSO4 →Ca/MgSO4+ Fe2O3+Al2O3+SiO2+TiO2 (2) 2FeSO4→ Fe2O3+2SO2(g)+1/2O2(g) (3) CaTiO3+SO2(g)+1/2O2(g) →CaSO4+TiO2 (4) Ca(Ti, Mg, Al)(Si, Al)2O6+SO2+O2→Ca/MgSO4+Al2O3+SiO2+TiO2 (5) -
[1] U.S. GEOLOGICAL SURVEY. Mineral commodity summaries 2022[R]. Washington, DC: U.S. Geological Survey, 2022: 202.
[2] 刘帅, 张宗旺, 张建良, 等. 高钛型高炉渣钛提取工艺研究现状及发展展望[J]. 中国冶金, 2020, 30(3): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYE202003001.htm
LIU S, ZHANG Z, ZHANG J, et al. Research status and development prospect of titanium extraction from high titanium blast furnace slag, China Metallurgy[J]. 2020, 30(3): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYE202003001.htm
[3] ZHANG G, WANG K. Preparation of Ti5Si3 by silicothermic reduction of titanium-bearing blast furnace slag[J]. Canadian Metallurgical Quarterly, 2017, 57(1): 80-88.
[4] LEI Y, SUN L, MA W, et al. An approach to employ titanium-bearing blast-furnace slag to prepare Ti and Al-Si alloys[J]. Journal of Alloys and Compounds, 2018, 769: 983-990. doi: 10.1016/j.jallcom.2018.08.077
[5] WANG C, LEI Y, MA W, et al. An approach for simultaneous treatments of diamond wire saw silicon kerf and Ti-bearing blast furnace slag[J]. Journal of Hazardous Materials, 2021, 401: 123446. doi: 10.1016/j.jhazmat.2020.123446
[6] 熊瑶, 李春, 梁斌, 等. 盐酸浸出自然冷却含钛高炉渣[J]. 中国有色金属学报, 2008, 18(3): 557-563. doi: 10.3321/j.issn:1004-0609.2008.03.030
LIU S, ZHANG Z, ZHANG J, et al. Research status and development prospect of titanium extraction from high titanium blast furnace slag[J]. Chinese Journal of Nonferrous Metals. 2008, 18(3): 557-563. doi: 10.3321/j.issn:1004-0609.2008.03.030
[7] 李小英, 彭建蓉, 翟忠标, 等. 含钛高炉渣回收钛的工艺研究[J]. 云南冶金, 2018, 47(6): 45-48. https://www.cnki.com.cn/Article/CJFDTOTAL-YNYJ201806012.htm
LI X, PENG J, ZHAI Z, et al. The technical study on titanium recovery from Ti-bearing blast furnace Slag[J]. Yunnan Metallurgy, 2018, 47(6): 45-48. https://www.cnki.com.cn/Article/CJFDTOTAL-YNYJ201806012.htm
[8] 何思祺, 孙红娟, 彭同江, 等. 碱法处理含钛高炉渣的矿相变化及工艺条件探索[J]. 钢铁钒钛, 2015, 36(6): 44-50. https://www.cnki.com.cn/Article/CJFDTOTAL-GTFT201506010.htm
HE S, SUN H, PENG T, et al. Technological conditions and mineralogical changes of alkaline treatment on Ti-bearing blast furnace slag[J]. Iron Steel vanadium titanium, 2015, 36(6): 44-50. https://www.cnki.com.cn/Article/CJFDTOTAL-GTFT201506010.htm
[9] SUI L, ZHAI Y. Reaction kinetics of roasting high-titanium slag with concentrated sulfuric acid[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(3): 848-853. doi: 10.1016/S1003-6326(14)63134-4
[10] BIAN Z, FENG Y, LI H. Extraction of valuable metals from Ti-bearing blast furnace slag using ammonium sulfate pressurized pyrolysis-acid leaching processes[J]. Transactions of Nonferrous Metals Society of China. 2020, 30(10): 2836-2847. doi: 10.1016/S1003-6326(20)65425-5
[11] VALIGHAZVINI F, RASHCHI F, KHAYYAM NEKOUEI R. Recovery of Titanium from Blast Furnace Slag[J]. Industrial&Engineering Chemistry Research, 2013, 52(4): 1723-1730.
[12] 黄家旭, 杨仰军, 陆平, 等. 攀钢碳化高炉渣低温氯化试验研究[J]. 钢铁钒钛, 2011, 32(4): 12-15. https://www.cnki.com.cn/Article/CJFDTOTAL-GTFT201104004.htm
HUANG J, YANG Y, LU P, et al. Research on low-temperature chlorination process of pangang carbonized slag[J]. Iron Steel Vanadium Titanium, 2011, 32(4): 12-15. https://www.cnki.com.cn/Article/CJFDTOTAL-GTFT201104004.htm
[13] LI L, JIANG T, CHEN B, et al. Overall utilization of Ti-extraction blast furnace slag as a raw building material: removal of chlorine from slag by water washing and sintering[J]. Journal of Sustainable Metallurgy, 2021, 7(3): 1116-1127. doi: 10.1007/s40831-021-00409-4
[14] LIU XH, GAI GS, YANG YF, et al. Kinetics of the leaching of TiO2 from Ti-bearing blast furnace slag[J]. Journal of China University of Mining and Technology, 2008, 18(2): 275-278.
[15] 李玉海, 娄太平, 隋智通. 含钛高炉渣中钛组分选择性富集及钙钛矿结晶行为[J]. 中国有色金属学报, 2000, 10(5): 719-722. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ200005022.htm
LI Y, LOU T, SUI Z, et al. Selective enrichment of Ti component in Ti-bearing blast furnace slag and precipitation behavior of perovskite phase[J]. The Chinese Journal of Nonferrous Metals, 2000, 10(5): 719-722. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ200005022.htm
[16] 常田仓, 章晓林, 赵文迪, 等. 金红石选矿技术研究综述[J]. 矿产保护与利用, 2019, 39(5): 167-173. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=21be3a0d-bda3-4e66-94fa-a65170a13534
CHANG T, ZHANG X, ZHAO W, et al. Research progress on the mineral processing technology of rutile ore[J]. Conservation and Utilization of Mineral Resources, 2019, 39(5): 167-173. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=21be3a0d-bda3-4e66-94fa-a65170a13534
[17] 朱诗曼, 李怡霏, 张喆怡, 等. 羟肟酸类捕收剂浮选金红石特性及其机理[J]. 矿产保护与利用, 2021, 41(4): 59-63. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=413f7969-972f-4776-8c76-2b7f21d5000e
ZHU S, LI Y, ZHANG Z, et al. Flotation characteristics and mechanism of rutile with hydroxamic acid col-lectors[J]. Conservation and Utilization of Mineral Resources, 2021, 41(4): 59-63. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=413f7969-972f-4776-8c76-2b7f21d5000e
[18] 隋智通, 郭振中, 张力, 等. 含钛高炉渣中钛组分的绿色分离技术[J]. 材料与冶金学报, 2006, 5(2): 93-97. https://www.cnki.com.cn/Article/CJFDTOTAL-HUJI200602003.htm
SUI Z, GUO Z, ZHANG L, et al. Green separation technique of Ti component from Ti-bearing blast furnace slag[J]. Journal of Materials and Metallurgy, 2006, 5(2): 93-97. https://www.cnki.com.cn/Article/CJFDTOTAL-HUJI200602003.htm
[19] LI J, ZHANG Z T, LIU L L, et al. Influence of basicity and TiO2 content on the precipitation behavior of the Ti-bearing blast furnace slags[J]. ISIJ International, 2013, 53(10): 1696-1703.
[20] WU L, WANG Z, LI X, et al. Cation-substituted LiFePO4 prepared from the FeSO4·7H2O waste slag as a potential Li battery cathode material[J]. Journal of Alloys and Compounds, 2010, 497(1/2): 278-284.
[21] 纪利春. 硫酸法钛白副产物绿矾的资源化利用现状[J]. 无机盐工业, 2020(5): 11-17. https://www.cnki.com.cn/Article/CJFDTOTAL-WJYG202005004.htm
JI L C. Present status of resource utilization of by-product green vitriol from titanium dioxide production by sulfuric acid method[J]. Inorganic Chemicals Industry, 2020(5): 11-17. https://www.cnki.com.cn/Article/CJFDTOTAL-WJYG202005004.htm
[22] XU X, LIU W, CHU G, et al. Energy-efficient mineral carbonation of CaSO4 derived from wollastonite via a roasting-leaching route[J]. Hydrometallurgy, 2019, 184: 151-161.