Preparation of Few-layer MoS2 Nanosheets Based on Natural Molybdenite and Its Supercapacitor Properties
-
摘要:
以天然辉钼矿为原料,采用Na+离子辅助液相剥离法制备了一种少层的MoS2纳米片(F-MoS2)。分析结果表明,剥离得到的F-MoS2纳米片厚度约为1.1~1.5 nm,对应为2~3层MoS2。电化学性能测试发现,F-MoS2在0.25 A/g的电流密度下质量比容量可达到73.7 F/g,远高于未剥离的辉钼矿(9.2 F/g)和商品MoS2(19.6 F/g),F-MoS2显著提升的电容量主要归因于其充分暴露的活性表面。本研究证实了通过Na+离子辅助液相剥离法制备的F-MoS2是一类非常有应用前景的储能材料。
Abstract:A few-layer of MoS2 nanosheets (F-MoS2) was prepared from natural molybdenite by Na+ ion-assisted liquid phase peeling method. The results showed that the thickness of F-MoS2 nanosheets obtained by peeling was about 1.1-1.5 nm, the number of layers corresponding to MoS2 was 2-3 layers. It was confirmed by electrochemical performance tests that the specific capacitance of F-MoS2 was 73.7 F/g at a current density of 0.25 A/g, which was much higher than that of unstripped molybdenite (9.2 F/g) and commercial MoS2 (19.6 F/g), the significantly increased capacitance of F-MoS2 was mainly attributed to its fully exposed active surface. This research confirms that F-MoS2 obtained through Na+ ion-assisted liquid phase peeling method was a very promising class of energy storage materials.
-
Key words:
- natural molybdenite /
- molybdenum disulfide /
- supercapacitors /
- liquid phase peeling
-
图 1 MoS2的结构[10](a)及三种晶体构型(b)
Figure 1.
表 1 高纯辉钼矿精粉化学成分分析
/% Table 1. Chemical composition analysis of high purity molybdenite delicate powder
成分 Mo S SiO2 Fe2O3 MgO CuO Al2O3 Zn 含量 50.20 28.48 8.12 4.07 2.69 1.21 1.02 0.41 成分 K Pb Bi Ti Ni As Mn W 含量 0.41 0.29 0.16 0.10 0.09 0.08 0.07 0.04 -
[1] 国际钼协会发布: 2021年全球钼产量和消费量[J]. 中国钼业, 2022, 46(2): 24.
International molybdenum association: Global molybdenum production and consumption in 2021[J]. China molybdenum industry, 2022, 46(2): 24.
[2] 黄凡, 王登红, 陈毓川, 等. 中国内生钼矿床辉钼矿的微量元素特征研究[J]. 矿床地质, 2014, 33(6): 1193-1212. doi: 10.3969/j.issn.0258-7106.2014.06.004
HUANG F, WANG D H, CHEN Y C, et al. Characteristics of trace elements of molybdenite from endogenous molybdenum deposits in China[J]. Mineral deposits, 2014, 33(6): 1193-1212. doi: 10.3969/j.issn.0258-7106.2014.06.004
[3] 高源, 于新刚. 辉钼矿深加工技术及产业分析[J]. 中国资源综合利用, 2014, 32(11): 41-43. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWZS201411018.htm
GAO Y, YU X G. Molybdenite deep processing technology and industry analysis[J]. Comprehensive utilization of resources in China, 2014, 32(11): 41-43. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWZS201411018.htm
[4] 徐双, 余春荣. 辉钼精矿提取冶金技术研究进展[J]. 中国钼业, 2019, 43(3): 17-23. doi: 10.13384/j.cnki.cmi.1006-2602.2019.03.004
XU S, YU C R. Research progress in extraction and metallurgy of molybdenite concentrate[J]. China molybdenum industry, 2019, 43(3): 17-23. doi: 10.13384/j.cnki.cmi.1006-2602.2019.03.004
[5] 闻振乾. 辉钼矿电氧化分解过程的研究[D]. 长沙: 中南大学, 2009.
WEN Z G. Study on electrooxidation and decomposition process of molybdenite[D]. Changsha: Central South University, 2009.
[6] 张文钲. 纳米级二硫化钼的研发现状[J]. 中国钼业, 2000(5): 25-28. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMY200005009.htm
ZHANG W Z. Development status of nano-scale molybdenum disulfide[J]. China molybdenum industry, 2000(5): 25-28. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMY200005009.htm
[7] 刘旭恒, 陈星宇, 赵中伟, 等. 辉钼矿的造锍熔炼与吹炼[J]. 中国有色金属学报, 2014, 24(6): 1616-1622. doi: 10.19476/j.ysxb.1004.0609.2014.06.028
LIU X H, CHEN X Y, ZHAO Z W, et al. Matte smelting and blowing of molybdenite[J]. The Chinese journal of nonferrous metals, 2014, 24(6): 1616-1622. doi: 10.19476/j.ysxb.1004.0609.2014.06.028
[8] 杨久流. 制备优质辉钼矿精矿的提纯技术[J]. 国外金属矿选矿, 2000(8): 22-24+27. https://www.cnki.com.cn/Article/CJFDTOTAL-JSXK200008003.htm
YANG J L. Purification technology for preparation of high quality molybdenite concentrate[J]. Metal ore dressing abroad, 2000(8): 22-24+27. https://www.cnki.com.cn/Article/CJFDTOTAL-JSXK200008003.htm
[9] FEDUSCHAK T, AKIMOV A, MOROZOV M, et al. Synthesis and characterization of mechanically activated bulky molybdenum sulphide catalysts[J]. Comptes Rendus Chimie, 2016, 19(10): 1315-1325.
[10] RADISAVLJEVIC B, RADENOVIC A, BRIVIO J, et al. Single-layer MoS2 transistors[J]. Nature Nanotechnology, 2011, 6(3): 147-150.
[11] THEERTHAGIRI J, SENTHIL R A, SENTHILKUMAR B, et al. Recent advances in MoS2 nanostructured materials for energy and environmental applications-A review[J]. Journal of Solid State Chemistry, 2017, 252: 43-71.
[12] WANG T, CHEN S, PANG H, et al. MoS2-based nanocomposites for electrochemical energy storage[J]. Advanced Science, 2017, 4(2): 1600289.
[13] XIA D, GONG F, PEI X, et al. Molybdenum and tungsten disulfides-based nanocomposite films for energy storage and conversion: A review[J]. Chemical Engineering Journal, 2018, 348: 908-928.
[14] ZHANG G, LIU H, QU J, et al. Two-dimensional layered MoS2: rational design, properties and electrochemical applications[J]. Energy & Environmental Science, 2016, 9(4): 1190-1209.
[15] 王国栋, 蒋丽娟, 李来平, 等. 二硫化钼润滑剂应用研究进展[J]. 中国钼业, 2013, 37(5): 10-14. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMY201305005.htm
WANG G D, JIANG L J, LI L P, et al. Progress in application of molybdenum disulfide lubricant[J]. China molybdenum industry, 2013, 37(5): 10-14. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMY201305005.htm
[16] 张文钲. 发掘中的二硫化钼新用途[J]. 中国钼业, 1997(Z1): 126-128. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMY7Z1.031.htm
WHANG W Z. New uses of molybdenum disulfide in excavation[J]. China molybdenum industry, 1997(Z1): 126-128. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMY7Z1.031.htm
[17] 张文钲. 二硫化钼润滑剂研究进展[J]. 中国钼业, 2006(5): 3-7. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMY200605002.htm
ZHANG W Z. Research progress of molybdenum disulfide Lubricant[J]. China molybdenum industry, 2006(5): 3-7. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMY200605002.htm
[18] MAK K F, MCGill K L, PARK J, et al. The valley Hall effect in MoS2 transistors[J]. Science, 2014, 344(6191): 1489-1492.
[19] LOPEZ-SANCHEZ O, LEMBKE D, KAYCI M, et al. Ultrasensitive photodetectors based on monolayer MoS2[J]. Nature Nanotechnology, 2013, 8(7): 497-501.
[20] LEE J, MAK K F, SHAN J. Electrical control of the valley Hall effect in bilayer MoS2 transistors[J]. Nature Nanotechnology, 2016, 11(5): 421-425.
[21] YAN Y, XIA B Y, XU Z C, et al. Recent development of molybdenum sulfides as advanced electrocatalysts for hydrogen evolution reaction[J]. ACS Catalysis, 2014, 4(6): 1693-1705.
[22] WANG T, CHEN S, PANG H, et al. MoS2-based nanocomposites for electrochemical energy storage[J]. Advanced Science, 2017, 4(2): 1600289. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5323880/pdf/ADVS-4-na.pdf
[23] XIA D, GONG F, PEI X, et al. Molybdenum and tungsten disulfides-based nanocomposite films for energy storage and conversion: a review[J]. Chemical Engineering Journal, 2018, 348: 908-928.
[24] ZHANG G, LIU H, QU J, et al. Two-dimensional layered MoS2: rational design, properties and electrochemical applications[J]. Energy & Environmental Science, 2016, 9(4): 1190-1209.
[25] BELLO I T, OLADIPO O, ADEDOKUN O, et al. Recent advances on the preparation and electrochemical analysis of MoS2-based materials for supercapacitor applications: a mini-review[J]. Materials Today Communications, 2020, 25: 101664.
[26] GENG X, ZHANG Y, HAN Y, et al. Two-dimensional water-coupled metallic MoS2 with nanochannels for ultrafast supercapacitors[J]. Nano Letters, 2017, 17(3): 1825-1832.
[27] WANG D, XIAO Y, LUO X, et al. Swollen ammoniated MoS2 with 1T/2H hybrid phases for high-rate electrochemical energy storage[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(3): 2509-2515.
[28] LI J, GAO D, WANG J, et al. Ball-milling MoS2/carbon black hybrid material for catalyzing hydrogen evolution reaction in acidic medium[J]. Journal of Energy Chemistry, 2015, 24(5): 608-613.
[29] BANG G S, NAM K W, KIM J Y, et al. Effective liquid-phase exfoliation and sodium ion battery application of MoS2 nanosheets[J]. ACS Appl Mater Interfaces, 2014, 6(10): 7084-7089.