基于天然辉钼矿制备的少层MoS2纳米片及其超电容性能研究

陈浩然, 齐慧强, 陈一人, 夏开胜, 李珍. 基于天然辉钼矿制备的少层MoS2纳米片及其超电容性能研究[J]. 矿产保护与利用, 2022, 42(4): 22-29. doi: 10.13779/j.cnki.issn1001-0076.2022.04.003
引用本文: 陈浩然, 齐慧强, 陈一人, 夏开胜, 李珍. 基于天然辉钼矿制备的少层MoS2纳米片及其超电容性能研究[J]. 矿产保护与利用, 2022, 42(4): 22-29. doi: 10.13779/j.cnki.issn1001-0076.2022.04.003
CHEN Haoran, QI Huiqiang, CHEN Yiren, XIA Kaisheng, LI Zhen. Preparation of Few-layer MoS2 Nanosheets Based on Natural Molybdenite and Its Supercapacitor Properties[J]. Conservation and Utilization of Mineral Resources, 2022, 42(4): 22-29. doi: 10.13779/j.cnki.issn1001-0076.2022.04.003
Citation: CHEN Haoran, QI Huiqiang, CHEN Yiren, XIA Kaisheng, LI Zhen. Preparation of Few-layer MoS2 Nanosheets Based on Natural Molybdenite and Its Supercapacitor Properties[J]. Conservation and Utilization of Mineral Resources, 2022, 42(4): 22-29. doi: 10.13779/j.cnki.issn1001-0076.2022.04.003

基于天然辉钼矿制备的少层MoS2纳米片及其超电容性能研究

  • 基金项目:
    国家自然科学基金面上项目(21975228)
详细信息
    作者简介: 陈浩然(1998—),男,湖南岳阳人,硕士研究生,主要从事储能材料研究。E-mail: 2910675253@qq.com; 夏开胜(1980—),男,湖北浠水人,中国地质大学(武汉)教授、博士生导师,入选湖北省人才计划、地大学者“青年拔尖人才”计划。2005年毕业于中国地质大学(武汉),获材料学硕士学位,2008年毕业于中国科学院上海硅酸盐研究所,获材料物理与化学博士学位,先后在华南理工大学、加拿大蒙克顿大学从事博士后研究。长期从事碳基储能材料、矿物材料的设计与应用研究,主持了国家自然科学基金面上项目、浙江省自然科学基金—青山湖联合基金项目、湖北省自然科学基金面上项目等10项,参与国家自然科学基金重点项目1项,发表SCI论文40余篇(ESI高被引论文2篇),授权国家发明专利5件。担任湖北省线上线下混合式一流本科课程《材料物理》负责人,曾获湖北省技术发明二等奖、第五届朱训青年教师教育奖励基金
    通讯作者: 夏开胜(1980—),男,湖北浠水人,博士,教授,主要从事能源及矿物材料研究。E-mail: kaishengxia@cug.edu.cn
  • 中图分类号: TD985;TB34;TM53

Preparation of Few-layer MoS2 Nanosheets Based on Natural Molybdenite and Its Supercapacitor Properties

More Information
  • 以天然辉钼矿为原料,采用Na+离子辅助液相剥离法制备了一种少层的MoS2纳米片(F-MoS2)。分析结果表明,剥离得到的F-MoS2纳米片厚度约为1.1~1.5 nm,对应为2~3层MoS2。电化学性能测试发现,F-MoS2在0.25 A/g的电流密度下质量比容量可达到73.7 F/g,远高于未剥离的辉钼矿(9.2 F/g)和商品MoS2(19.6 F/g),F-MoS2显著提升的电容量主要归因于其充分暴露的活性表面。本研究证实了通过Na+离子辅助液相剥离法制备的F-MoS2是一类非常有应用前景的储能材料。

  • 加载中
  • 图 1  MoS2的结构[10](a)及三种晶体构型(b)

    Figure 1. 

    图 2  辉钼矿制备F-MoS2分散液流程示意图

    Figure 2. 

    图 3  原始辉钼矿的SEM照片

    Figure 3. 

    图 4  高纯辉钼矿精粉XRD谱图

    Figure 4. 

    图 5  F-MoS2及原始辉钼矿的XRD对比图

    Figure 5. 

    图 6  F-MoS2的SEM照片(a, b)及TEM照片(c, d)

    Figure 6. 

    图 7  F-MoS2在洗涤前(a)后(b)的AFM照片

    Figure 7. 

    图 8  天然辉钼矿、F-MoS2和商品MoS2电极材料的CV曲线:5 mV/s(a),50 mV/s(b)

    Figure 8. 

    图 9  (a) F-MoS2在不同电流密度下的充放电曲线;(b) 天然辉钼矿、F-MoS2及商品MoS2电极在0.25 A/g下的充放电曲线;(c) 各样品的倍率性能曲线;(d) 各样品的EIS曲线

    Figure 9. 

    表 1  高纯辉钼矿精粉化学成分分析 /%

    Table 1.  Chemical composition analysis of high purity molybdenite delicate powder

    成分 Mo S SiO2 Fe2O3 MgO CuO Al2O3 Zn
    含量 50.20 28.48 8.12 4.07 2.69 1.21 1.02 0.41
    成分 K Pb Bi Ti Ni As Mn W
    含量 0.41 0.29 0.16 0.10 0.09 0.08 0.07 0.04
    下载: 导出CSV
  • [1]

    国际钼协会发布: 2021年全球钼产量和消费量[J]. 中国钼业, 2022, 46(2): 24.

    International molybdenum association: Global molybdenum production and consumption in 2021[J]. China molybdenum industry, 2022, 46(2): 24.

    [2]

    黄凡, 王登红, 陈毓川, 等. 中国内生钼矿床辉钼矿的微量元素特征研究[J]. 矿床地质, 2014, 33(6): 1193-1212. doi: 10.3969/j.issn.0258-7106.2014.06.004

    HUANG F, WANG D H, CHEN Y C, et al. Characteristics of trace elements of molybdenite from endogenous molybdenum deposits in China[J]. Mineral deposits, 2014, 33(6): 1193-1212. doi: 10.3969/j.issn.0258-7106.2014.06.004

    [3]

    高源, 于新刚. 辉钼矿深加工技术及产业分析[J]. 中国资源综合利用, 2014, 32(11): 41-43. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWZS201411018.htm

    GAO Y, YU X G. Molybdenite deep processing technology and industry analysis[J]. Comprehensive utilization of resources in China, 2014, 32(11): 41-43. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWZS201411018.htm

    [4]

    徐双, 余春荣. 辉钼精矿提取冶金技术研究进展[J]. 中国钼业, 2019, 43(3): 17-23. doi: 10.13384/j.cnki.cmi.1006-2602.2019.03.004

    XU S, YU C R. Research progress in extraction and metallurgy of molybdenite concentrate[J]. China molybdenum industry, 2019, 43(3): 17-23. doi: 10.13384/j.cnki.cmi.1006-2602.2019.03.004

    [5]

    闻振乾. 辉钼矿电氧化分解过程的研究[D]. 长沙: 中南大学, 2009.

    WEN Z G. Study on electrooxidation and decomposition process of molybdenite[D]. Changsha: Central South University, 2009.

    [6]

    张文钲. 纳米级二硫化钼的研发现状[J]. 中国钼业, 2000(5): 25-28. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMY200005009.htm

    ZHANG W Z. Development status of nano-scale molybdenum disulfide[J]. China molybdenum industry, 2000(5): 25-28. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMY200005009.htm

    [7]

    刘旭恒, 陈星宇, 赵中伟, 等. 辉钼矿的造锍熔炼与吹炼[J]. 中国有色金属学报, 2014, 24(6): 1616-1622. doi: 10.19476/j.ysxb.1004.0609.2014.06.028

    LIU X H, CHEN X Y, ZHAO Z W, et al. Matte smelting and blowing of molybdenite[J]. The Chinese journal of nonferrous metals, 2014, 24(6): 1616-1622. doi: 10.19476/j.ysxb.1004.0609.2014.06.028

    [8]

    杨久流. 制备优质辉钼矿精矿的提纯技术[J]. 国外金属矿选矿, 2000(8): 22-24+27. https://www.cnki.com.cn/Article/CJFDTOTAL-JSXK200008003.htm

    YANG J L. Purification technology for preparation of high quality molybdenite concentrate[J]. Metal ore dressing abroad, 2000(8): 22-24+27. https://www.cnki.com.cn/Article/CJFDTOTAL-JSXK200008003.htm

    [9]

    FEDUSCHAK T, AKIMOV A, MOROZOV M, et al. Synthesis and characterization of mechanically activated bulky molybdenum sulphide catalysts[J]. Comptes Rendus Chimie, 2016, 19(10): 1315-1325.

    [10]

    RADISAVLJEVIC B, RADENOVIC A, BRIVIO J, et al. Single-layer MoS2 transistors[J]. Nature Nanotechnology, 2011, 6(3): 147-150.

    [11]

    THEERTHAGIRI J, SENTHIL R A, SENTHILKUMAR B, et al. Recent advances in MoS2 nanostructured materials for energy and environmental applications-A review[J]. Journal of Solid State Chemistry, 2017, 252: 43-71.

    [12]

    WANG T, CHEN S, PANG H, et al. MoS2-based nanocomposites for electrochemical energy storage[J]. Advanced Science, 2017, 4(2): 1600289.

    [13]

    XIA D, GONG F, PEI X, et al. Molybdenum and tungsten disulfides-based nanocomposite films for energy storage and conversion: A review[J]. Chemical Engineering Journal, 2018, 348: 908-928.

    [14]

    ZHANG G, LIU H, QU J, et al. Two-dimensional layered MoS2: rational design, properties and electrochemical applications[J]. Energy & Environmental Science, 2016, 9(4): 1190-1209.

    [15]

    王国栋, 蒋丽娟, 李来平, 等. 二硫化钼润滑剂应用研究进展[J]. 中国钼业, 2013, 37(5): 10-14. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMY201305005.htm

    WANG G D, JIANG L J, LI L P, et al. Progress in application of molybdenum disulfide lubricant[J]. China molybdenum industry, 2013, 37(5): 10-14. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMY201305005.htm

    [16]

    张文钲. 发掘中的二硫化钼新用途[J]. 中国钼业, 1997(Z1): 126-128. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMY7Z1.031.htm

    WHANG W Z. New uses of molybdenum disulfide in excavation[J]. China molybdenum industry, 1997(Z1): 126-128. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMY7Z1.031.htm

    [17]

    张文钲. 二硫化钼润滑剂研究进展[J]. 中国钼业, 2006(5): 3-7. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMY200605002.htm

    ZHANG W Z. Research progress of molybdenum disulfide Lubricant[J]. China molybdenum industry, 2006(5): 3-7. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMY200605002.htm

    [18]

    MAK K F, MCGill K L, PARK J, et al. The valley Hall effect in MoS2 transistors[J]. Science, 2014, 344(6191): 1489-1492.

    [19]

    LOPEZ-SANCHEZ O, LEMBKE D, KAYCI M, et al. Ultrasensitive photodetectors based on monolayer MoS2[J]. Nature Nanotechnology, 2013, 8(7): 497-501.

    [20]

    LEE J, MAK K F, SHAN J. Electrical control of the valley Hall effect in bilayer MoS2 transistors[J]. Nature Nanotechnology, 2016, 11(5): 421-425.

    [21]

    YAN Y, XIA B Y, XU Z C, et al. Recent development of molybdenum sulfides as advanced electrocatalysts for hydrogen evolution reaction[J]. ACS Catalysis, 2014, 4(6): 1693-1705.

    [22]

    WANG T, CHEN S, PANG H, et al. MoS2-based nanocomposites for electrochemical energy storage[J]. Advanced Science, 2017, 4(2): 1600289. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5323880/pdf/ADVS-4-na.pdf

    [23]

    XIA D, GONG F, PEI X, et al. Molybdenum and tungsten disulfides-based nanocomposite films for energy storage and conversion: a review[J]. Chemical Engineering Journal, 2018, 348: 908-928.

    [24]

    ZHANG G, LIU H, QU J, et al. Two-dimensional layered MoS2: rational design, properties and electrochemical applications[J]. Energy & Environmental Science, 2016, 9(4): 1190-1209.

    [25]

    BELLO I T, OLADIPO O, ADEDOKUN O, et al. Recent advances on the preparation and electrochemical analysis of MoS2-based materials for supercapacitor applications: a mini-review[J]. Materials Today Communications, 2020, 25: 101664.

    [26]

    GENG X, ZHANG Y, HAN Y, et al. Two-dimensional water-coupled metallic MoS2 with nanochannels for ultrafast supercapacitors[J]. Nano Letters, 2017, 17(3): 1825-1832.

    [27]

    WANG D, XIAO Y, LUO X, et al. Swollen ammoniated MoS2 with 1T/2H hybrid phases for high-rate electrochemical energy storage[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(3): 2509-2515.

    [28]

    LI J, GAO D, WANG J, et al. Ball-milling MoS2/carbon black hybrid material for catalyzing hydrogen evolution reaction in acidic medium[J]. Journal of Energy Chemistry, 2015, 24(5): 608-613.

    [29]

    BANG G S, NAM K W, KIM J Y, et al. Effective liquid-phase exfoliation and sodium ion battery application of MoS2 nanosheets[J]. ACS Appl Mater Interfaces, 2014, 6(10): 7084-7089.

  • 加载中

(9)

(1)

计量
  • 文章访问数:  2040
  • PDF下载数:  40
  • 施引文献:  0
出版历程
收稿日期:  2022-06-20
刊出日期:  2022-08-25

目录