-
摘要:
为了回收某银尾矿中的锰和银,详细研究了其矿物组成以及主要矿物的嵌布特征。其中,菱铁锰矿是主要回收对象,粒度较细,多呈集合体产出,粒度主要分布在38~150 μm粒级;菱铁锰矿单体解离度为81.95%,未解离部分以富连生体为主。根据工艺矿物学性质,采用浮选—浸出的选冶联合工艺回收银尾矿中的锰资源,浮选工艺获得Mn品位17.89%、Ag品位104.1g/t、回收率分别为67.99%和55.15%的锰精矿;锰精矿在最佳浸出条件下,得到锰浸出率为98.11%的技术指标,锰综合回收率为66.70%。锰浸渣进一步氰化浸银,银浸出率为95.61%,银综合回收率为52.73%。银尾矿综合回收共伴生锰资源,不但提高了资源综合利用水平,同时提升了矿山企业的经济效益。
Abstract:In order to recover manganese and silver from silver tailings, the mineral composition and dissemination characteristics of the principal minerals were investigated. The results showed that the manganosiderite was the main mineral with fine particle size, and typically generated as aggregates with particle sizes ranging from 38 to 150 μm, and has a liberation degree of 81.95%, with rich aggregate dominating the unliberated component. A combination of flotation and leaching methods was employed based on the process mineralogical characteristics of the tailings. As a result, a manganese concentrate was obtained with an Mn grade of 17.89% with the recovery rates of 67.99%, an Ag grade of 104.1 g/t with the recovery rates of 55.15%. Under optimal leaching conditions, the manganese leaching rate reached 98.11%, with a total manganese recovery of 66.70%. The silver leaching rate from manganese leaching residue was 95.61%, with a total silver recovery rate of 52.73%. The comprehensive recovery of associated manganese resources from silver tailings not only improves the comprehensive utilization level of resources, but also improves the economic benefits of mining enterprises.
-
Key words:
- silver tailings /
- manganosiderite /
- flotation /
- leaching /
- manganese ore
-
-
表 1 样品化学多元素分析结果
Table 1. Analysis results of multi−elements of test sample
Ag Pb Zn Mn Fe S CaO MgO Al2O3 SiO2 烧失 58.5 0.055 0.048 8.15 25.43 0.20 2.87 1.00 0.87 29.30 23.72 注:除Ag的含量单位为10−6外,其余为%。 表 2 样品锰物相分析结果
Table 2. Analysis results of manganese phase of test sample
相别 碳酸锰中的锰 硅酸锰中的锰 软锰矿中的锰 相和 含量/% 7.21 0.58 0.36 8.15 分布率/% 88.50 7.13 4.37 100.00 表 3 样品主要矿物组成
Table 3. The main mineral composition of test sample
/% 矿物 菱铁锰矿 石英 云母 伊利石 高岭石 钠长石 斜长石 含量 64.67 25.89 0.38 0.84 0.64 0.59 0.35 矿物 铁白云石 角闪石 磷灰石 黄铁矿 方铅矿 闪锌矿 金红石 含量 3.27 2.85 0.11 0.08 0.01 0.01 0.01 注:菱铁锰矿包括菱铁矿−菱锰铁矿−菱铁锰矿−菱锰矿等类质同象矿物。 表 4 浮选闭路实验结果
Table 4. Experimental results of the closed−circuit flotation
产品名称 产率/% 品位 回收率 Mn /% Ag /(g·t−1) Mn /% Ag /% 锰精矿 30.98 17.89 104.1 67.99 55.15 尾矿 69.02 3.78 38.0 32.01 44.85 给矿 100.00 8.15 58.5 100.00 100.00 -
[1] SINGH V, CHAKRABORTY T, TRIPATHY S K. A review of low grade manganese ore upgradation processes[J]. Mineral Processing and Extractive Metallurgy Review, 2019(4): 1−22.
[2] 孙宏伟, 王杰, 任军平, 等. 全球锰资源现状及对我国可持续发展建议[J]. 矿产保护与利用, 2020, 40(6): 169−174.
SUN H W, WANG J, REN J P, et al . Current situation of global manganese resources and suggestions for sustainable development in China[J]. Conservation and Utilization of Mineral Resources, 2020, 40(6): 169−174.
[3] USGS. Mineral commodity summaries 2023[R]. 2023.
[4] 中华人民共和国自然资源部. 中国矿产资源报告[M]. 北京: 地质出版社, 2023.
[5] 王若枫, 袁帅, 刘应志, 等. 全球锰矿资源现状及选矿技术进展[J]. 矿产保护与利用, 2023, 43(1): 14−23.
WANG R F, YUAN S, LIU Y Z, et al. Present situation of global manganese ore resources and progress of beneficiation technology[J]. Conservation and Utilization of Mineral Resources, 2023, 43(1): 14−23.
[6] 我的钢铁网. 进口锰矿快讯[EB/OL]. (2024−01−22). https://www.mysteel.com/hot/11649.html.
[7] 吕子虎, 李成禄, 赵登魁, 等. 菱锰矿选冶技术研究现状[J]. 中国矿业, 2023, 32(7): 105−111.
LYU Z H, LI C LU, ZHAO D K, et al. Research status of dressing−metallurgy technology of rhodochrosite ore[J]. China Mining Magazine, 2023, 32(7): 105−111.
[8] 徐欢, 张超, 秦林, 等. 碳酸锰矿选矿技术研究进展与展望[J]. 中国锰业, 2023, 41(2): 1−6+12.
XU H, ZHANG C, QIN L, et al. A research progress and prospects of manganese carbonate ore benefication technology[J]. China Manganese Industry, 2023, 41(2): 1−6+12.
[9] 邵国强, 邹正, 朱庆山. 难选高铁软锰矿流态化磁化焙烧−磁选浸出工艺[J]. 中国粉体技术, 2024, 30(1): 36−45.
SHAO G Q, ZOU Z, ZHU Q S. Magnetic roasting via fluidized bed and leaching procedure of refractory high−iron pyrolusite[J]. China Powder Science and Technology, 2024, 30(1): 36−45.
[10] 黄冠汉, 李志新, 黄旭初, 等. X射线智能选矿在碳酸锰选矿中的应用实验研究[J]. 中国锰业, 2023, 41(2): 83−86.
HUANG G H, LI Z X, HUANG X C, et al. An experimental study onapplication of X−ray intelligent mineral progressinginmanganese carbonate mineral progressing[J]. China Manganese Industry, 2023, 41(2): 83−86.
[11] 谢美芳, 熊涛, 黄会春, 等. 云南盈江某低品位菱锰矿选矿工艺研究[J]. 矿冶工程, 2023, 43(5): 74−76+84. doi: 10.3969/j.issn.0253-6099.2023.05.017
XIE M F, XIONG T, HUANG H C, et al. Beneficiation process of low−grade manganese rhodochrosite orefrom Yingjiang County of Yunnan Province[J]. Miningand Metallurgical Engineering, 2023, 43(5): 74−76+84. doi: 10.3969/j.issn.0253-6099.2023.05.017
[12] 李少平, 郭腾博, 黄超军, 等. 碳酸锰矿浮选药剂研究进展[J]. 矿产保护与利用, 2018(1): 140−145.
LI S P, GUO T B, HUANG C J, et al. Research progress of flotation reagents for manganese carbonate ore[J]. Conservation and Utilization of Mineral Resources, 2018(1): 140−145.
[13] 覃文庆, 邹松, 刘三军, 等. 油酸钠浮选菱锰矿的溶液化学机理研究[J]. 武汉理工大学学报, 2014, 36(7): 124−129.
QIN W Q, ZOU S, LIU S J, et al. Solution chemistry mechanism of flotation of sodium oleate on rhodochrosite[J]. Journal of Wuhan University of Technology, 2014, 36(7): 124−129.
[14] 朱茂兰, 衷水平, 梁杰. 菱锰矿浸出工艺研究[J]. 有色金属(冶炼部分), 2006(5): 13−14+38.
ZHU M L, ZHONG S P, LIANG J. Study on the leaching of rhodochrosite[J]. Nonferrous Metals (Extractive Metallurgy), 2006(5): 13−14+38.
[15] 刘亮. 低品位菱锰矿两种浸出工艺综合利用实验研究[J]. 山西冶金, 2010(3): 4−6. doi: 10.3969/j.issn.1672-1152.2010.03.002
LIU L. Experimental studies on two leaching ways of low−grade rhodochrosite[J]. Shanxi Metallurgy, 2010(3): 4−6. doi: 10.3969/j.issn.1672-1152.2010.03.002
-