中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

Iolite软件处理LA-ICP-MS线扫描数据适用性研究

朱碧, 朱志勇, 吕苗, 杨涛. Iolite软件处理LA-ICP-MS线扫描数据适用性研究[J]. 岩矿测试, 2017, 36(1): 14-21. doi: 10.15898/j.cnki.11-2131/td.2017.01.003
引用本文: 朱碧, 朱志勇, 吕苗, 杨涛. Iolite软件处理LA-ICP-MS线扫描数据适用性研究[J]. 岩矿测试, 2017, 36(1): 14-21. doi: 10.15898/j.cnki.11-2131/td.2017.01.003
Bi ZHU, Zhi-yong ZHU, Miao LÜ, Tao YANG. Application of Iolite in Data Reduction of Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry Line-scan Analysis[J]. Rock and Mineral Analysis, 2017, 36(1): 14-21. doi: 10.15898/j.cnki.11-2131/td.2017.01.003
Citation: Bi ZHU, Zhi-yong ZHU, Miao LÜ, Tao YANG. Application of Iolite in Data Reduction of Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry Line-scan Analysis[J]. Rock and Mineral Analysis, 2017, 36(1): 14-21. doi: 10.15898/j.cnki.11-2131/td.2017.01.003

Iolite软件处理LA-ICP-MS线扫描数据适用性研究

  • 基金项目:
    国家自然科学基金青年基金资助项目(41302018);教育部博士点基金“三峡地区埃迪卡拉系富有机质岩Re-Os同位素年代学研究(20130094120008);油气资源与探测国家重点实验室开放课题(PRP/open-1305)
详细信息
    作者简介: 朱碧, 博士, 助理研究员, 从事地球化学以及古海洋学研究。E-mail:njuzhubi@gmail.com
  • 中图分类号: O657.63

Application of Iolite in Data Reduction of Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry Line-scan Analysis

  • LA-ICP-MS分析技术是获取矿物/岩石内部的元素和同位素成分变化的重要手段。在利用该技术对地质样品进行线/面扫描时,仪器输出的初始数据量远远大于点分析,数据的处理和计算是一个关键问题。本文以磷质结核样品为例,阐述了利用Iolite软件进行元素线扫描数据计算的主要过程,包括背景信号的扣除、标准物质信号的拟合、线分析数据的导出等。借助软件自带的分段导出功能,对不同时间和空间分辨率下采集数据得到的结果进行了比较。研究表明Iolite能有效处理线分析数据,分析结果与前人用传统化学全岩法测定得到的元素含量范围相当。对比不同空间分辨率下(10 μm、50 μm、100 μm)获取的数据发现:相对于选用的束斑直径(40 μm),在分辨率过小(10 μm)或过大(100 μm)的条件下获得的数据存在数据波动大以及细节不足等缺陷;而当分辨率(50 μm)与选用的束斑直径接近时,数据质量得到最大优化。本研究展示了Iolite软件在处理线扫描数据方面具有很好的应用前景,通过分辨率的选取可实现数据的优化。
  • 加载中
  • 图 1  (a) 磷质结核剖面照片,红框处为线扫描区域;(b) 磷质结核线扫描区域显微照片,图中中间黑线为线扫描痕迹,绿色箭头指示扫描方向;(c) 为 (b) 中绿色框内区域放大

    Figure 1. 

    图 2  样品中P、Si、Al和Mn元素含量相关关系图解 (采用50 μm空间分辨率)

    Figure 2. 

    图 3  稀土元素PAAS标准化配分曲线图解 (PAAS数据引自文献[37])

    Figure 3. 

    图 4  各元素含量空间分布图

    Figure 4. 

    表 1  仪器分析参数

    Table 1.  Working parameters of instrument measurement

    电感耦合等离子体质谱 激光剥蚀系统
    工作参数 设定值 工作参数 设定值
    RF功率 1350 W 能量密度 22 J/cm2
    冷却气流量 15.00 L/min 输出比例 90%
    辅助气流量 1.00 L/min 束斑大小 40 μm
    载气流量 1.02 L/min He气流量 0.85 L/min
    数据模式 TRA
    检测器模式 双重模式
    测试元素 27Al, 29Si, 43Ca, 51V, 55Mn, 57Fe,
    88Sr, 89Y, 95Mo, REEs (139La~175Lu),
    208Pb, 238U
    积分时间 Al、Si、P、Fe、Mn、Sr均为1 ms;
    其他元素为1.5 ms
    下载: 导出CSV
  • [1]

    Liu Y S, Hu Z C, Li M, et al.Applications of LA-ICP-MS in the elemental analyses of geological samples[J].Chinese Science Bulletin, 2013, 58:3863-3878. doi: 10.1007/s11434-013-5901-4

    [2]

    李秋立, 杨蔚, 刘宇, 等.离子探针微区分析技术及其在地球科学中的应用进展[J].矿物岩石地球化学通报, 2013:32(3):310-327. http://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201303004.htm

    Li Q L, Yang W, Liu Y, et al.Ion microprobe microanalytical techniques and their applications in earth sciences[J].Bulletin of Mineralogy, Petrology and Geochemistry, 2013, 32(3):310-327. http://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201303004.htm

    [3]

    李金华, 潘永信.透射电子显微镜在地球科学研究中的应用[J].中国科学 (地球科学), 2015, 45(9):1359-1382. doi: 10.1360/zd2015-45-09-1359

    Li J H, Pan Y X.Applications of transmission electron microscopy in the earth sciences[J].Scientia Sinica Terrae, 2015, 45(9):1359-1382. doi: 10.1360/zd2015-45-09-1359

    [4]

    秦玉娟, 张天付, 胡圆圆, 等.电子探针背散射电子图像在碳酸盐岩微区分析中的意义[J].电子显微学报, 2013, 32(6):479-484. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXV201306006.htm

    Qin Y J, Zhang T F, Hu Y Y, et al.The significance of a back-scattered electron image (of EPMA) in micro-area analyses of carbonate rocks[J].Journal of Chinese Electron Microscopy Society, 2013, 32(6):479-484. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXV201306006.htm

    [5]

    李冰, 周剑雄, 詹秀春.无机多元素现代仪器分析技术[J].地质学报, 2011, 85(11):1878-1916. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201111009.htm

    Li B, Zhou J X, Zhan X C.Modern instrumental analysis of inorganic multi-elements[J].Acta Geologica Sinica, 2011, 85(11):1878-1916. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201111009.htm

    [6]

    梁述廷, 刘玉纯, 刘瑱, 等.X射线荧光光谱微区分析在铜矿物类质同象鉴定中的应用[J].岩矿测试, 2015, 34(2):201-206. http://www.ykcs.ac.cn/ykcs/ch/reader/view_abstract.aspx?file_no=20150208&flag=1

    Liang S T, Liu Y C, Liu Z, et al.Application of in-situ micro-XRF spectrometry in the identification of copper minerals[J].Rock and Mineral Analysis, 2015, 34(2):201-206. http://www.ykcs.ac.cn/ykcs/ch/reader/view_abstract.aspx?file_no=20150208&flag=1

    [7]

    王坤阳, 徐金沙, 饶华文, 等.扫描电镜-X射线能谱仪在丹巴地区铂族矿物物相特征分析中的应用[J].岩矿测试, 2013, 32(6):924-930. http://www.ykcs.ac.cn/ykcs/ch/reader/view_abstract.aspx?file_no=20130615&flag=1

    Wang K Y, Xu J S, Rao H W, et al.Application of SEM and EDS for phase characteristics analysis of platinoid mineral in the Danba area[J].Rock and Mineral Analysis, 2013, 32(6):924-930. http://www.ykcs.ac.cn/ykcs/ch/reader/view_abstract.aspx?file_no=20130615&flag=1

    [8]

    Agangi A, Przybyłowicz W, Hofmann A.Trace element mapping of pyrite from Archean gold deposits-A comparison between PIXE and EPMA[J].Nuclear Instruments & Methods in Physics Research, 2015, 348:302-306.

    [9]

    李献华, 柳小明, 刘勇胜, 等.LA-ICPMS锆石U-Pb定年的准确度:多实验室对比分析[J].中国科学 (地球科学), 2015, 45(9):1294-1303. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201509004.htm

    Li X H, Liu X M, Liu Y S, et al.Accuracy of LA-ICPMS zircon U-Pb age determination:An inter-laboratory comparison[J].Science China (Earth Sciences), 2015, 45(9):1294-1303. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201509004.htm

    [10]

    Woodhead J D, Hellstrom J, Hergt J M, et al.Isotopic and elemental imaging of geological materials by laser ablation inductively coupled plasma-mass spectrometry[J].Geostandards and Geoanalytical Research, 2007, 31(4):331-343.

    [11]

    Jackson S E, Pearson N J, Griffin W L, et al.The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology[J].Chemical Geology, 2004, 211(1-2):47-69. doi: 10.1016/j.chemgeo.2004.06.017

    [12]

    Halter W E, Pettke T, Heinrich C A, et al.Major to trace element analysis of melt inclusions by laser-ablation ICP-MS:Methods of quantification[J].Chemical Geology, 2002, 183(1-4):63-86. doi: 10.1016/S0009-2541(01)00372-2

    [13]

    徐伟彪.离子探针测试方法及其在矿物微区微量元素和同位素分析中的应用[J].高校地质学报, 2005, 11(2):239-252. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200502011.htm

    Xu W B.Ion microprobe:Techniques and applications in cosmochemistry and geochemistry[J].Geological Journal of China Universities, 2005, 11(2):239-252. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200502011.htm

    [14]

    Riches A J V, Ickert R B, Pearson D G, et al.In situ oxygen-isotope, major-, and trace-element constraints on the metasomatic modification and crustal origin of a diamondiferous eclogite from roberts victor, Kaapvaal craton[J].Geochimica et Cosmochimica Acta, 2016, 174(4):345-359.

    [15]

    Liu Y, Li Q L, Tang G Q, et al.Towards higher precision SIMS U-Pb zircon geochronology via dynamic multi-collector analysis[J].Journal of Analytical Atomic Spectrometry, 2015, 30(4):979-985. doi: 10.1039/C4JA00459K

    [16]

    袁静, 罗立强.同步辐射微区X射线荧光和吸收谱技术在大气、土壤和动植物分析中的应用[J].核技术, 2014, 37(8):1-11. http://www.cnki.com.cn/Article/CJFDTOTAL-HJSU201408001.htm

    Yuan J, Luo L Q.Synchrotron P-XRF and XAFS in element distribution and speciation of air, soil and biological samples[J].Nuclear Techniques, 2014, 37(8):1-11. http://www.cnki.com.cn/Article/CJFDTOTAL-HJSU201408001.htm

    [17]

    Chang Z, Vervoort J D, Mcclelland W C, et al.U-Pb dating of zircon by LA-ICP-MS[J].Geochemistry, Geophysics, Geosystems, 2006, 7(5):145-162.

    [18]

    Yuan H L, Gao S, Dai M N, et al.Simultaneous determinations of U-Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICP-MS[J].Chemical Geology, 2008, 247(1-2):100-118. doi: 10.1016/j.chemgeo.2007.10.003

    [19]

    Frei D, Gerdes A.Precise and accurate in situ U-Pb dating of zircon with high sample throughput by automated LA-SF-ICP-MS[J].Chemical Geology, 2009, 261(3-4):261-270. doi: 10.1016/j.chemgeo.2008.07.025

    [20]

    Solari L A, Gómez-Tuena A, Bernal J P, et al.U-Pb zircon geochronology with an integrated LA-ICP-MS microanalytical workstation:Achievements in precision and accuracy[J].Geostandards & Geoanalytical Research, 2010, 34(34):5-18. https://www.researchgate.net/publication/230412526_U-Pb_Zircon_Geochronology_with_an_Integrated_LA-ICP-MS_Microanalytical_Workstation_Achievements_in_Precision_and_Accuracy

    [21]

    Woodhead J, Hergt J, Meffre S, et al.In situ Pb-isotope analysis of pyrite by laser ablation (multi-collector and quadrupole) ICPMS[J].Chemical Geology, 2009, 262(3-4):344-354. doi: 10.1016/j.chemgeo.2009.02.003

    [22]

    Lee S, Bi X, Reed R B, et al.Nanoparticle size detection limits by single particle ICP-MS for 40 elements[J].Environmental Science & Technology, 2014, 48(17):10291-10300.

    [23]

    George L, Cook N J, Ciobanu C L, et al.Trace and minor elements in galena:A reconnaissance LA-ICP-MS study[J].American Mineralogist, 2015, 100(2-3):548-569. doi: 10.2138/am-2015-4862

    [24]

    Liu P P, Zhou M F, Chen W T, et al.In-situ LA-ICP-MS trace elemental analyses of magnetite:Fe-Ti-(Ⅴ) oxide-bearing mafic-ultramafic layered intrusions of the Emeishan large igneous province, SW China[J].Ore Geology Reviews, 2015, 65(4):853-871. https://www.researchgate.net/publication/272182954_In-situ_LA-ICP-MS_trace_elemental_analyses_of_magnetite_Fe-Ti-V_oxide-bearing_mafic-ultramafic_layered_intrusions_of_the_Emeishan_Large_Igneous_Province_SW_China

    [25]

    Wohlgemuth-Ueberwasser C C, Viljoen F, Petersen S, et al.Distribution and solubility limits of trace elements in hydrothermal black smoker sulfides:An in-situ LA-ICP-MS study[J].Geochimica et Cosmochimica Acta, 2015, 159:16-41. doi: 10.1016/j.gca.2015.03.020

    [26]

    Chen L, Li X H, Li J W, et al.Extreme variation of sulfur isotopic compositions in pyrite from the Qiuling sediment-hosted gold deposit, West Qinling orogen, Central China:An in situ SIMS study with implications for the source of sulfur[J].Mineralium Deposita, 2015, 50(6):643-656. doi: 10.1007/s00126-015-0597-9

    [27]

    Chirinos J R, Oropeza D D, Gonzalez J J, et al.Simultaneous 3-dimensional elemental imaging with Libs and LA-ICP-MS[J].Journal of Analytical Atomic Spectrometry, 2014, 29(7):1292-1298. doi: 10.1039/c4ja00066h

    [28]

    Gao J F, Jackson S E, Dubé B, et al.Genesis of the Canadian Malartic, Côté Gold, and Musselwhite Gold Deposits:Insights from LA-ICP-MS Element Mapping of Pyrite[M].Targeted Geoscience Initiative 4:Contributions to the Understanding of Precambrian Iode Gold Deposits and Implications for Exploration (Dubé B, Mercier-Langevin P), Natural Resources Canada/Ressources naturelles Canada, 2015:157-175.

    [29]

    Becker J S, Matusch A, Bei W.Bioimaging mass spectro-metry of trace elements-Recent advance and applications of LA-ICP-MS:A review[J].Analytica Chimica Acta, 2014, 835(16):1-18.

    [30]

    Liu Y, Hu Z, Gao S, et al.In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J].Chemical Geology, 2008, 257(1-2):34-43. doi: 10.1016/j.chemgeo.2008.08.004

    [31]

    Rittner M, Müller W.2D mapping of LA-ICPMS trace element distributions using R[J].Computers & Geosciences, 2012, 42:152-161.

    [32]

    Paton C, Hellstrom J, Paul B, et al.Iolite:Freeware for the visualisation and processing of mass spectrometric data[J].Journal of Analytical Atomic Spectrometry, 2011, 26(12):2508-2518. doi: 10.1039/c1ja10172b

    [33]

    Paul B, Paton C, Norris A, et al.Cellspace:A module for creating spatially registered laser ablation images within the iolite freeware environment[J].Journal of Analytical Atomic Spectrometry, 2012, 27(4):700-706. doi: 10.1039/c2ja10383d

    [34]

    Zhu B, Jiang S Y, Yang J H, et al.Rare earth element and Sr-Nd isotope geochemistry of phosphate nodules from the lower Cambrian niutitang formation, NW Hunan Province, South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 398(3):132-143.

    [35]

    Jiang S Y, Zhao H X, Chen Y Q, et al.Trace and rare earth element geochemistry of phosphate nodules from the lower Cambrian black shale sequence in the Mufu Mountain of Nanjing, Jiangsu Province, China[J].Chemical Geology, 2007, 244(3):584-604.

    [36]

    Bian X P, Yang T, Lin A J, et al.Rapid and high-precision measurement of sulfur isotope and sulfur concentration in sediment pore water by multi-collector inductively coupled plasma mass spectrometry[J].Talanta, 2015, 132:8-14. doi: 10.1016/j.talanta.2014.08.053

    [37]

    Mclennan S M.Rare-earth elements in sedimentary rocks:Influence of provenance and sedimentary processes[J].Reviews in Mineralogy, 1989, 21(8):169-200.

    [38]

    赵伦山, 张本仁编著.地球化学[M].北京:地质出版社, 1987:41-43.

    Zhao L S, Zhang B R.Geochemistry[M].Beijing:Geology Publishing House, 1987:41-43.

    [39]

    Woodhead J D, Hellstrom J, Hergt J M, et al.Isotopic and elemental imaging of geological materials by laser ablation inductively coupled plasma-mass spectrometry[J].Geostandards & Geoanalytical Research, 2007, 31(4):331-343.

    [40]

    Zhu Z, Cook N, Yang T, et al.Mapping of sulfur isotopes and trace elements in sulfides by LA-(MC)-ICP-MS:Potential analytical problems, improvements and implications[J].Minerals, 2016, 6(4):110. doi: 10.3390/min6040110

  • 加载中

(4)

(1)

计量
  • 文章访问数:  6102
  • PDF下载数:  103
  • 施引文献:  0
出版历程
收稿日期:  2016-08-08
修回日期:  2016-12-31
录用日期:  2017-01-18

目录