The Analysis of Influence Factors on Electron Spin Resonance Signal Intensity in Dating of Quartz in Fault Lines
-
摘要: 电子自旋共振(ESR)是一种利用矿物在地质环境中的累计辐射能进行测年的技术方法,它采用的测年矿物石英广泛分布,并具有记录断层作用良好的计时零点,是同位素测年的重要补充。ESR信号强度是决定ESR年龄精确度的关键因素,但是各种参数条件对测量结果的影响方式及其程度缺乏系统研究。本文以取自断层带石英的一种顺磁中心——E'心为研究对象,运用单因素重复性实验方法,分析石英ESR定年中5种影响因素与ESR信号强度的相关关系。结果表明,微波功率、调制幅度、扫描宽度是影响ESR信号强度的主控因素,样品管方位及直径对测量结果影响不大。微波功率0.02~0.1 mW、调制幅度0.25~0.4 Gs可作为精确测量断层泥石英E'心普适性的参数区间,过大或过小的扫描宽度均不利于ESR测量,可利用在大扫描宽度条件下先预扫描再精细扫描的方法确定合适的扫描宽度,重复测量后求取平均值可有效降低测量误差。利用本文提出的参数区间及其确定的方法测量断层泥石英的E'心信号强度,能显著提高ESR测量精度。
-
关键词:
- 断层定年 /
- 电子自旋共振信号强度 /
- 微波功率 /
- 调制幅度 /
- 扫描宽度
Abstract: Electron Spin Resonance (ESR) is a dating technique using the accumulated irradiation energy in minerals under geological environments as the target. The quartz used for isotopic dating is widely distributed, and has an excellent time starting point to record fault deformation. This implies that ESR will become a valuable supplement to isotopic dating. ESR signal intensity is the key factor affecting the accuracy of ESR age, but the influence pattern and degree of different parameters on ESR signal intensity remains unknown. A paramagnetic E' center in quartz from fault zones was taken as the main investigation object. By single factor repeated experimental method, the relationship between 5 parameters of ESR dating and ESR signal intensity was analyzed. The results indicate that microwave power, field modulation amplitude, and scan width are the most important factors affecting ESR signal intensity, however the inserted direction and diameter of the sample tube had a slight influence on measuring the data. The microwave power from 0.02 mW to 0.1 mW (in Fig.1), and the field modulation amplitude from 0.25 Gs to 0.4 Gs can be used as a universal parameter range to precisely measure E' center in fault clay quartz (in Fig.3). Improper scan width was unsuitable for ESR measuring. Before the fine scanning, the pre-scan should be performed under wider scan width and then the proper scan width can be identified. Calculating the average value based on repeated measuring data can help to decrease measurement error effectively. When the proposed parameter range and measuring method are used to measure the E' center signal intensity of fault clay quartz, the ESR measurement precision can be improved remarkably. -
-
表 1 石英提纯前后全岩矿物X射线衍射定量分析数据
Table 1. The whole rock quantitative analysis data of X-ray diffraction before and after the quartz purification
样品
编号样品
状态矿物含量 (%) 石英 钾长石 斜长石 方解石 赤铁矿 黏土矿物 样品Ⅰ 提纯前 85.2 2.6 5.2 - - 7 提纯后 100.0 - - - - - 样品Ⅱ 提纯前 44.7 - - 32.9 0.1 22.3 提纯后 89.5 - - 10.5 - - 表 2 样品Ⅰ的自然样品不同方位下多次测量的ESR数据比较
Table 2. Comparison of multiple measuring ESR signal intensity under different directions of natural sampleⅠ
数据类型 信号强度平均值
(a.u.)标准偏差
SD (a.u.)相对标准偏差
RSD (%)全部数据 (18个) 24567 1759 7.2 0度方位 (6个) 24451 1492 6.1 120度方位 (6个) 24475 2534 10.4 240度方位 (6个) 24776 1339 5.4 不同方位下的平均值 24567 181 0.74 -
[1] Pleuger J, Mancktelow N, Zwingmann H, et al.K-Ar dating of synkinematic clay gouges from neoalpine faults of the Central, Western and Eastern Alps[J].Tectonophysics, 2012, 550-553:1-16. doi: 10.1016/j.tecto.2012.05.001
[2] 顾尚义, 杜定全, 付勇, 等.江南造山带西南缘石英脉型金矿中毒砂Re-Os同位素定年研究[J].岩矿测试, 2016, 35(5):542-549. http://www.ykcs.ac.cn/ykcs/ch/reader/view_abstract.aspx?file_no=20160513&flag=1
Gu S Y, Du D Q, Fu Y, et al.Re-Os Isotopic dating of arsenopyrite from auriferous quartz vein-type gold deposits in the southwestern margin of Jiangnan Orogen[J].Rock and Mineral Ananlysis, 2016, 35(5):542-549. http://www.ykcs.ac.cn/ykcs/ch/reader/view_abstract.aspx?file_no=20160513&flag=1
[3] Nóbile J C, Collo G, Dávila F M, et al.Successive reactivation of older structures under variable heat flow conditions evidenced by K-Ar fault gouge dating in Sierra de Ambato, Northern Argentine broken foreland[J].Journal of South American Earth Sciences, 2015, 64:152-165. doi: 10.1016/j.jsames.2015.10.008
[4] Torgersen E, Viola G, Zwingmann H, et al.Structural and temporal evolution of a reactivated brittle-ductile fault-part Ⅱ:Timing of fault initiation and reactivation by K-Ar dating of synkinematic illite/muscovite[J].Earth & Planetary Science Letters, 2015, 410:212-224.
[5] Vincenzo G D, Grande A, Prosser G, et al.40Ar-39Ar laser dating of ductile shear zones from central Corsica (France):Evidence of Alpine (Middle to Late Eocene) syn-burial shearing in Variscan Granitoids[J].Lithos, 2016, 262:369-383. doi: 10.1016/j.lithos.2016.07.022
[6] 吴元保, 郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报, 2004, 49(16):1589-1604. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200416001.htm
Wu Y B, Zheng Y F.The genetic mineralogy research of zircon and its constraints on the interpretation of U-Pb age[J].Chinese Science Bulletin, 2004, 49(16):1589-1604. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200416001.htm
[7] 宋彪.用SHRIMP测定锆石U-Pb年龄的工作方法[J].地质通报, 2015, 34(10):1777-1788. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201510001.htm
Song B.SHRIMP zircon U-Pb age measurement:Sample preparation, measurement, data processing and explanation[J].Geological Bulletin of China, 2015, 34(10):1777-1788. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201510001.htm
[8] 杨坤光, 梁兴中, 谢建磊, 等.ESR定年:一种确定脆性断层活动年龄的方法原理与应用[J].地球科学进展, 2006, 21(4):430-435. http://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200604013.htm
Yang K G, Liang X Z, Xie J L, et al.ESR dating, the principle and application of a method to determine active ages of brittle faults[J].Advances in Earth Science, 2006, 21(4):430-435. http://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200604013.htm
[9] Lee H K, Yang J S.ESR dating of the wangsan fault, South Korea[J].Quaternary Science Reviews, 2003, 22(10-13):1339-1343. doi: 10.1016/S0277-3791(03)00018-0
[10] Toyoda S.Paramagnetic lattice defects in quartz for applications to ESR dating[J].Quaternary Geochronology, 2015, 30:498-505. doi: 10.1016/j.quageo.2015.05.010
[11] Ren S L, Song C Z, Li J H.Application of electron spin resonance (ESR) dating to ductile shearing:Examples from the Qinling Orogenic Belt, China[J].Journal of Structural Geology, 2016, 85:12-17. doi: 10.1016/j.jsg.2016.02.002
[12] 任升莲, 宋传中, Lin S F, 等.伏牛山构造带变质流体脉变形特征及构造意义[J].地质科学, 2013, 48(3):626-637. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKX201303004.htm
Ren S L, Song C Z, Lin S F, et al.The deformation characteristics of metamorphic fluid veins and its tectonic significance in Funiushan Tectonic Belt[J].Chinese Journal of Geology, 2013, 48(3):626-637. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKX201303004.htm
[13] Lee H K, Henry P S.ESR Dating of the subsidiary faults in the Yangsan Fault system, Korea[J].Quaternary Science Reviews, 2001, 20(5):999-1003. https://www.researchgate.net/publication/248479584_ESR_dating_of_the_subsidiary_faults_in_the_Yangsan_fault_system_Korea
[14] Voinchet P, Despriée J, Tissoux H, et al.ESR chronology of Alluvial deposits and first human settlements of the Middle Loire Basin (Region Centre, France)[J].Quatemary Geochronology, 2010, 5(5):381-384. https://www.researchgate.net/publication/229305326_ESR_chronology_of_alluvial_deposits_and_first_human_settlements_of_the_Middle_Loire_Basin_Region_Centre_France
[15] Blackwell B A B, Skinner A R, Blickstein J I B, et al.ESR in the 21st Century:From buried valleys and deserts to the deep ocean and tectonic uplift[J].Earth-Science Reviews, 2016, 158:125-159. doi: 10.1016/j.earscirev.2016.01.001
[16] Grün R, Tani A, Gurbanov A, et al.A new method for the estimation of cooling and denudation rates using paramagnetics centers in quartz:A case study on the eldzhurtinskiy granite, Caucasus[J].Journal of Geophysical Research, 1999, 104(B8):17531-17549. doi: 10.1029/1999JB900173
[17] 杨帆, 方成名, 黄泽光, 等.贺兰山断裂带的ESR年龄测定[J].石油实验地质, 2014, 36(5):642-644. http://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201405020.htm
Yang F, Fang C M, Huang Z G, et al.ESR dating of helan mountain fault zone[J].Petroleum Geology & Experiment, 2014, 36(5):642-644. http://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201405020.htm
[18] Fukuchi T, Imai N, Shimokawa K.ESR dating of fault movement using various defect centres in quartz; the case in the Western South Fossa Magna, Japan[J].Earth and Planetary Science Letters, 1986, 78(1):121-128. doi: 10.1016/0012-821X(86)90178-0
[19] Lee H K, Yang J S.ESR dating of the eupchon fault, South Korea[J].Quaternary Geochronology, 2007, 2(1):392-397.
[20] Ulusoy V.ESR dating of North Anatolian (Turkey) and Nojima (Japan) faults[J].Quaternary Science Reviews, 2004, 23(1-2):161-174. doi: 10.1016/S0277-3791(03)00214-2
[21] Toyoda S, Nagashima K, Yamamoto Y.ESR signals in quartz:Applications to provenance research-A review[J].Quaternary International, 2015, 397:258-266.
[22] 刘春茹, 尹功明, Grün R.石英ESR测年信号衰退特征研究进展[J].地球科学进展, 2013, 28(1):24-30. http://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201301004.htm
Liu C R, Yin G M, Grün R.Reserch progress of the resetting features of quartz ESR signal[J].Advance in Earth Science, 2013, 28(1):24-30. http://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201301004.htm
[23] 高璐, 尹功明, 刘春茹, 等.六盘山东麓断裂断层泥ESR测年研究[J].核技术, 2011, 34(2):121-125. http://www.cnki.com.cn/Article/CJFDTOTAL-HJSU201102011.htm
Gao L, Yin G M, Liu C R, et al.ESR dating of fault gouge from the Eastern Liupanshan Piedmont Fault Zone[J].Nuclear Techniques, 2011, 34(2):121-125. http://www.cnki.com.cn/Article/CJFDTOTAL-HJSU201102011.htm
[24] Fukuchi T, Yurugi J I, Imai N.ESR detection of seismic frictional heating events in the Nojima Fault drill core samples, Japan[J].Tectonophysics, 2007, 443(3-4):127-138. doi: 10.1016/j.tecto.2007.01.020
[25] 陈继镛, 梁兴中, 冯家岷, 等.石英中E'心的热活化研究[J].四川大学学报 (自然科学版), 1991, 28(3):314-317. http://www.cnki.com.cn/Article/CJFDTOTAL-SCDX199103008.htm
Chen J Y, Liang X Z, Feng J M, et al.A study of annealing on E' center in quartz[J].Journal of Sichuan University (Natural Science Edition), 1991, 28(3):314-317. http://www.cnki.com.cn/Article/CJFDTOTAL-SCDX199103008.htm
[26] 业渝光, 和杰, 刁少波, 等.沉积物中石英ESR测年功率ë和效应的初步研究[J].波谱学杂志, 1993, 10(3):315-322. http://www.cnki.com.cn/Article/CJFDTOTAL-PPXZ199303015.htm
Ye Y G, He J, Diao S B, et al.Preliminary research on effect of power saturation of quartz in sediments for ESR dating[J].Chinese Journal of Magnetic Resonnance, 1993, 10(3):315-322. http://www.cnki.com.cn/Article/CJFDTOTAL-PPXZ199303015.htm
[27] 陈洪云, 林敏, 孙有斌, 等.石英E1'心ESR信号强度的影响因子分析[J].地球环境学报, 2011, 2(4):497-502.
Chen H Y, Lin M, Sun Y B, et al.Factors influencing the ESR signal intensity of E1' center of quartz[J].Journal of Earth Environment, 2011, 2(4):497-502.
[28] Liu C R, Yin G M, Han F.Effects of grain size on quartz ESR dating of Ti-Li center in Fluvial and Lacustrine sediments[J].Quaternary Geochronology, 2015, 30:513-518. doi: 10.1016/j.quageo.2015.02.007
[29] Biswas R H, Toyoda S, Takada M, et al.Multiple approaches to date japanese marker tephras using optical and ESR methods[J].Quaternary Geochronology, 2015, 30:350-356. doi: 10.1016/j.quageo.2015.01.004
[30] Liu C R, Yin G M, Zhang H P, et al.ESR geochronology of the Minjiang River Terraces at Wenchuan, eastern margin of Tibetan Plateau, China[J].Geochronometria, 2013, 40(4):360-367.
[31] 徐元植编著.实用电子磁共振波谱学:基本原理和实际应用[M].北京:科学出版社, 2008:271-295.
Xu Y Z.Applied Electron Magnetic Resonance Spectroscopy:Elementary Principle & Practical Applications[M].Beijing:Science Press, 2008:271-295.
[32] Odom A L, Rink W J.Natural accumulation of Schottky-Frenkel defects:Implications for a quartz geochronometer[J].Geology, 1989:55-58. https://www.researchgate.net/publication/252087660_Natural_accumulation_of_Schottky-Frenkel_defects_Implications_for_a_quartz_geochronometer
[33] 业渝光, 刁少波, 邬象隆, 等.沉积物中石英E'心的热力学特性及其地质应用意义[J].岩矿测试, 2000, 19(1):4-6. http://www.ykcs.ac.cn/ykcs/ch/reader/view_abstract.aspx?file_no=20000106&flag=1
Ye Y G, Diao S B, Wu X L, et al.Thermodynamic behavoir of E' centers in quartz from sediments:Application potential in geochronometry and palaeothermometry[J].Rock and Mineral Analysis, 2000, 19(1):4-6. http://www.ykcs.ac.cn/ykcs/ch/reader/view_abstract.aspx?file_no=20000106&flag=1
[34] 业渝光, 刁少波, 邬象隆, 等.塔里木盆地深层沉积物石英E'心热力学特性[J].石油勘探与开发, 2001, 28(5):23-24. http://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200105005.htm
Ye Y G, Diao S B, Wu X L, et al.Thermodynamic behavior of E' centers in quartz from deep sediments of tarim basin[J].Petroleum Exploration and Development, 2001, 28(5):23-24. http://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200105005.htm
[35] Yamamoto Y, Toyoda S, Nagasima K, et al.The grain size influence on the E1' centre observed in quartz of atmospheric deposition at two Japanese cities:A preliminary study[J].Geochronometria, 2010, 37(1):9-12. https://www.researchgate.net/profile/Yasuhito_Igarashi/publication/266091923_The_Grain_Size_Influence_on_the_E1%27_Centre_Observed_in_Quartz_of_Atmospheric_Deposition_at_Two_Japanese_Cities_A_Preliminary_Study/links/548925d70cf289302e30bd5d.pdf
[36] 高钧成, 梁兴中.α石英E'心浓度测量与测年研究[J].核技术, 1995, 18(8):507-508. http://www.cnki.com.cn/Article/CJFDTOTAL-HJSU508.016.htm
Gao J C, Liang X Z.Dating of α-quartz by deteriming E' center concentration[J].Nuclear Techniques, 1995, 18(8):507-508. http://www.cnki.com.cn/Article/CJFDTOTAL-HJSU508.016.htm
[37] 业渝光, 刁少波, 戴春山, 等.辽河盆地下第三系砂岩层ESR测年的初步研究[J].海洋地质与第四纪地质, 1997, 17(1):17-24. http://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ701.002.htm
Ye Y G, Diao S B, Dai C S, et al.Preliminary study on ESR dating for the lower tertiary sandstone in Liaohe Basin[J].Marine Geology & Quaternary Geology, 1997, 17(1):17-24. http://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ701.002.htm
[38] 尹功明, 赵波, 许建东, 等.河北沧州小山火山的ESR年代学研究[J].岩石学报, 2013, 29(12):4415-4420. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201312025.htm
Yin G M, Zhao B, Xu J D, et al.Electron spin resonance data of the Xiaoshan Volcano in Cangzhou, Hebei Province[J].Acta Petrologica Sinica, 2013, 29(12):4415-4420. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201312025.htm
[39] Voinchet P, Toyoda S, Falguères C, et al.Evaluation of ESR residual dose in quartz modern samples, an investigation on environmental dependence[J].Quatemary Geochronology, 2015, 30:506-512. doi: 10.1016/j.quageo.2015.02.017
[40] Liu C R, Grün R.Fluvio-mechanical resetting of the Al and Ti centres in quartz[J].Radiation Measurements, 2011, 46(10):1038-1042. doi: 10.1016/j.radmeas.2011.06.076
[41] Yi C, Bi W, Li J.ESR dating of glacial moraine deposits:Some insights about the resetting of the germanium (Ge) signal measured in quartz[J].Quaternary Geochronology, 2016, 35:69-76. doi: 10.1016/j.quageo.2016.06.003
[42] Zhao J D, Liu S Y, Wang J, et al.Glacial advances and ESR chronology of the Pochengzi Glaciation, Tianshan Mountains, China[J].Science China:Earth Sciences, 2010, 53(3):403-410. doi: 10.1007/s11430-009-0109-9
[43] Bahain J J, Falguères C, Laurent M, et al.ESR/U-series dating of faunal remains from the paleoanthropological site of Biache-Saint-Vaast (Pas-de-Calais, France)[J].Quatemary Geochronology, 2015, 30:541-546. doi: 10.1016/j.quageo.2015.02.020
[44] Cordier S, Harmand D, Lauer T, et al.Geochronological reconstruction of the pleistocene evolution of the Sarre Valley (France and Germany) using OSL and ESR dating techniques[J].Geomorphology, 2012, 165-166(2):91-106. https://www.researchgate.net/profile/Stephane_Cordier4/publication/257034751_Geochronological_reconstruction_of_the_Pleistocene_evolution_of_the_Sarre_valley_France_and_Germany_using_OSL_and_ESR_dating_techniques/links/5416efe90cf2788c4b35f605.pdf
[45] Han F, Bahain J J, Boëda É, et al.Preliminary results of combined ESR/U-series dating of fossil teeth from Longgupo Cave, China[J].Quatemary Geochronology, 2012, 10(4):436-442.
[46] Liu C R, Yin G M, Fang F, et al.ESR dating of the Donggutuo Palaeolithic site in the Nihewan Basin, Northern China[J].Geochronometria, 2013, 40(4):348-354.
[47] Gao W, Jia D C, Jiang Q G, et al.ESR Age of a quaternary sedimentary profile in Manjiang, Fusong County, Changbai Mountain Region, and its significance[J].Quaternary International, 2014, 349(6):49-58.
-