Determination of Cr (Ⅵ) in Coal Ashby Microwave Alkaline Digestion and Inductively Coupled Plasma-Optical Emission Spectrometry
-
摘要: 定量分析煤灰中Cr(Ⅵ)含量对于控制煤炭燃烧过程中产生的高毒性Cr(Ⅵ)的排放具有重要意义。现有的Cr(Ⅵ)定量分析方法主要是针对水、土壤、固体废弃物中的高浓度Cr(Ⅵ),前处理方法耗时长,检出限较高,不能有效测定煤灰中的低浓度Cr(Ⅵ)含量,因此有必要建立便捷、有效的煤灰中Cr(Ⅵ)高灵敏度检测方法。本文采用碱性提取剂,使用微波消解仪对煤灰进行前处理,对样品量、微波消解时间、微波消解温度等微波消解条件进行了优化,通过共沉淀法分离消解液中的Cr(Ⅲ)与Cr(Ⅵ),应用电感耦合等离子体发射光谱法测定Cr(Ⅵ)含量。结果表明,当样品量为0.2 g,微波消解温度为90℃,消解时间为60 min时能够保证煤灰中Cr(Ⅵ)的完全提取及准确测定。方法检出限为0.00033 μg/mL,测定下限为0.00134 μg/mL,实际样品的加标回收率平均值为87.2%。传统的二苯卡巴肼-紫外分光光度法的检出限为0.001 μg/mL。与传统方法相比,本方法检出限降低,提高了检测灵敏度。
-
关键词:
- 煤灰 /
- 六价铬 /
- 微波碱消解 /
- 电感耦合等离子体发射光谱法
Abstract: Quantitative determination of Cr (Ⅵ) in coal ash is very important for controlling the emission of highly toxic Cr (Ⅵ) produced by coal combustion. Available quantification determination methods are mainly used for detecting high concentration Cr (Ⅵ) in water, soil and solid waste, which are not suitable for analyzing low concentration Cr (Ⅵ) in coal ash. The sample processing methods are time consuming and the detection limits are relatively high. Thus, it is necessary to develop a convenient, effective and highly sensitive determination method for Cr (Ⅵ) in coal ash. In this study, alkaline solvent and the microwave digestion system were used for pretreatment of coal ash. Through the experiments, the digestion conditions, which included sample amount, microwave digestion time, and microwave digestion temperature were optimized. The chemical co-precipitation method was used to separate Cr (Ⅲ) and Cr (Ⅵ) in the extracted solution. The concentration of Cr (Ⅵ) was determined by Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES). The results show that the optimum digestion condition is 0.2 g sample digested under 9℃ for 60 minutes. The determination limit is 0.00134 μg/mL (in Table 1), and the average matrix spike recovery of practical samples is 87.2% (in Table 2). The detection limit of this method is 0.00033 μg/mL (in Table 1), suggesting that the sensitivity of Cr (Ⅵ) was improved by 10 times than that of the traditional 1, 5-diphenylcarbohydrazide spectrophotometric method (0.001 μg/mL). -
-
表 1 方法检出限和测定下限
Table 1. Detection limits and low determination limits of the method
分析项目 空白测定值 (μg/mL) 空白7次的测定值
(μg/mL)0.0014 0.0016 0.0017
0.0017 0.0016 0.0016
0.0017平均值 (μg/mL) 0.0016 标准偏差 (μg/mL) 0.000107 t值 3.143 检出限 (μg/mL) 0.00033 测定下限 (μg/mL) 0.00134 表 2 样品加标回收率测定结果
Table 2. Determination results of matrix spike recovery for practical samples
加标量
(μg)6次平行测定的
平均值 (μg)回收率
(%)RSD
(%)2 1.67 83.5 1.8 5 4.42 88.4 2.0 10 8.96 89.6 2.3 -
[1] Shah P, Strezov V, Nelson P F, et al.Speciation of chromium in Australian coals and combustion products[J].Fuel, 2012, 102:1-8. doi: 10.1016/j.fuel.2008.11.019
[2] Liu Y, Liu G J, Qi C C, et al.Chemical speciation and combustion behavior of chromium (Cr) and vanadium (Ⅴ) in coals[J].Fuel, 2016, 184:42-49. doi: 10.1016/j.fuel.2016.07.003
[3] 吴江平, 闫峻, 刘桂建, 等.中国煤中铬的分布、赋存状态及富集因素研究进展[J].矿物岩石地球化学通报, 2005, 24(3):239-244. http://www.cnki.com.cn/Article/CJFDTOTAL-KYDH200503011.htm
Wu J P, Yan J, Liu G J, et al.Advance of research on the distribution, mode of occurrence and enrichment factors of chromium in Chinese coals[J].Bulletin of Mineralogy, Petrology and Geochemistry, 2005, 24(3):239-244. http://www.cnki.com.cn/Article/CJFDTOTAL-KYDH200503011.htm
[4] 孙喆.燃煤电站砷、铅、镉、铬的迁移规律[D].北京:华北电力大学, 2015.
Sun Z.Transformation of arsenic, lead, cadmium and chromium in coal-fired power plant[D].Beijing:North China Electric Power University, 2015.
[5] 史晓方.生物质与煤混燃过程对痕量有毒金属Hg、Cr化合物形态变化影响的研究[D].上海:东华大学, 2014.
Shi X F.Research on the effects of the compound morphological changes of trace toxic metals mercury and chromium in the process of co-combustion biomass with coal[D].Shanghai:Donghua University, 2014.
[6] Huggins F E, Huffman G P.Modes of occurrence of trace elements in coal from XAFS spectroscopy[J].International Journal of Coal Geology, 1996, 32:31-53. doi: 10.1016/S0166-5162(96)00029-8
[7] Huggins F E, Rezaee M, Honaker R Q, et al.On the removal of hexavalent chromium from a Class F fly ash[J].Waste Management, 2016, 51:105-110. doi: 10.1016/j.wasman.2016.02.038
[8] Swietlik R, Trojanowska M, Łozyńska M, et al.Impact of solid fuel combustion technology on valence speciation of chromium in fly ash[J].Fuel, 2014, 137:306-312. doi: 10.1016/j.fuel.2014.08.010
[9] Hu H Y, Luo G Q, Liu H, et al.Fate of chromium during thermal treatment of municipal solid waste incineration (MSWI) fly ash[J].Proceedings of Combustion Institute, 2013, 34(2):2795-2801. doi: 10.1016/j.proci.2012.06.181
[10] 覃嘉铭, 裴建国, 郭慧霞, 等.粉煤灰重金属铬的二次污染:某电厂灰场周围地下水Cr6+污染事例[J].中国岩溶, 2001, 20(3):189-195.
Tan J M, Pei J G, Guo H X, et al.Secondary pollution of chromium in powdery coal ash and example of Cr6+ in underground water around an ash site in a power station[J].Carsologica Sinica, 2001, 20(3):189-195.
[11] Hackbarth F V, Maass D, Souza A A U, et al.Removal of hexavalent chromium from electroplating wastewaters using marine macroalga Pelvetia canaliculata as natural electron donor[J].Chemical Engineering Journal, 2016, 290:477-489. doi: 10.1016/j.cej.2016.01.070
[12] Sadeghi S, Moghaddam A Z.Chromium speciation using task specific ionic liquid/aqueous phase biphasic system combined with flame atomic absorption spectrometry[J].Journal of Molecular Liquids, 2016, 221:798-804. doi: 10.1016/j.molliq.2016.06.056
[13] 刀谞, 吕怡兵, 滕恩江, 等.离子色谱-电感耦合等离子体质谱联用测定大气颗粒物PM2.5和PM10中的六价铬[J].色谱, 2014, 32(9):936-941. doi: 10.3724/SP.J.1123.2014.05026
Dao X, Lü Y B, Teng E J, et al.Determination of hexavalent chromium in atmospheric particles PM2.5 and PM10 by ion chromatography with inductively coupled plasma mass spectrometry[J].Chinese Journal of Chromatography, 2014, 32(9):936-941. doi: 10.3724/SP.J.1123.2014.05026
[14] Ohata M, Matsubayashi N.Determination of hexavalent chromium in plastic certified reference materials by X-ray absorption fine structure analysis[J].Spectrochimica Acta Part B, 2014, 93:14-19. doi: 10.1016/j.sab.2013.12.005
[15] 陈斌, 韩双来.在线离子交换-ICP-OES测定水中微量六价铬[J].中国环境监测, 2014, 30(2):95-98. http://www.cnki.com.cn/Article/CJFDTOTAL-IAOB201402020.htm
Chen B, Han S L.The determination of trace chromium (Ⅵ) in tanning wasterwater by ICP-OES hyphenated with on-line ion-exchange[J].Environmental Monitoring in China, 2014, 30(2):95-98. http://www.cnki.com.cn/Article/CJFDTOTAL-IAOB201402020.htm
[16] 王珲, 宋蔷, 姚强, 等.微波消解与ICP-OES/ICP-MS测定飞灰中的多种元素[J].光谱实验室, 2012, 29(1):525-528. http://www.cnki.com.cn/Article/CJFDTOTAL-GPSS201201158.htm
Wang H, Song Q, Yao Q, et al.Determination of multi-elements in fly ash by ICP-OES and ICP-MS with microwave digestion[J].Chinese Journal of Spectroscopy Laboratory, 2012, 29(1):525-528. http://www.cnki.com.cn/Article/CJFDTOTAL-GPSS201201158.htm
[17] 王珲, 宋蔷, 姚强, 等.ICP-OES/ICP-MS测定煤中多种元素的微波消解方法研究[J].光谱学与光谱分析, 2012, 32(6):1662-1665. http://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201206056.htm
Wang H, Song Q, Yao Q, et al.Study on microwave digestion of coal for the determination of multi-element by ICP-OES and ICP-MS[J].Spectroscopy and Spectral Analysis, 2012, 32(6):1662-1665. http://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201206056.htm
[18] Low F, Zhang L.Microwave digestion for the quantifi-cation of inorganic elements in coal and coal ash using ICP-OES[J].Talanta, 2012, 101:346-352. doi: 10.1016/j.talanta.2012.09.037
[19] Dai S F, Wang X B, Zhou Y P, et al.Chemical and mineralogical compositions of silicic, mafic, and alkali tonsteins in the late Permian coals from the Songzao Coalfield, Chongqing, Southwest China[J].Chemical Geology, 2011, 282:29-44. doi: 10.1016/j.chemgeo.2011.01.006
[20] 马生凤, 温宏利, 李冰, 等.微波消解-耐氢氟酸系统电感耦合等离子体发射光谱法测定铌钽矿中的铌和钽[J].岩矿测试, 2016, 35(3):271-275. http://www.ykcs.ac.cn/ykcs/ch/reader/view_abstract.aspx?file_no=20160308&flag=1
Ma S F, Wen H L, Li B, et al.Determination of Nb and Ta in Nb-Ta ore by inductively coupled plasma-optical emission spectrometry with a combined microwave digestion hydrofluoric acid-resistant system[J].Rock and Mineral Analysis, 2016, 35(3):271-275. http://www.ykcs.ac.cn/ykcs/ch/reader/view_abstract.aspx?file_no=20160308&flag=1
-