Determination of Sn, W, Ti and Other Elements in Polymetallic Ore by Inductively Coupled Plasma-Optical Emission Spectrometry with Sodium Peroxide Fusion
-
摘要: 准确、快速测定多金属矿中的主次量成分,对矿产资源的综合利用具有十分重要的意义,但针对锡、钨、钛三种元素等难以被酸溶解的元素,选择适宜的样品前处理方法和电感耦合等离子体发射光谱(ICP-OES)技术结合起来,有利于提高准确度和测试效率。本文以过氧化钠为熔剂,样品经高温熔融,盐酸+酒石酸+过氧化氢混合酸提取,结合内标法建立了测定多金属矿中铜铅锌以及锡钨钛等15个主次量成分的分析方法。实验优化了各元素的分析谱线和背景校正模式,系统研究了坩埚、熔剂的选择、铝元素和内标元素的影响,获得方法检出限为7~995 μg/g,加标回收率为90.3%~105.0%,精密度(RSD,n=12)为0.8%~6.6%。本方法针对5种不同类型的典型多金属矿,具有不分矿种、前处理步骤相同、多成分同时测定和测试范围宽(40 μg/g~25%)的技术特点,尤其对于矿种类型不确定、测定范围在百分含量以上的多金属矿具有优势。
-
关键词:
- 多金属矿 /
- 锡钨钛 /
- 过氧化钠碱熔 /
- 电感耦合等离子体发射光谱法 /
- 内标法
Abstract: For tin, tungsten, titanium and other elements not easily digested by acid, a suitable sample preparation method combined with Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES) can help to improve the accuracy and efficiency. Polymetallic ore samples were melted with Na2O2 and then extracted by mixed leaching solution (hydrochloric acid-tartaric acid-hydrogen peroxide).15 major and minor elements including Cu, Pb, Zn, Sn, W and Ti were determined by ICP-OES using an internal standard method. The analytical lines of analyzed elements and the correction mode of the background were optimized. The effect of crucible contamination, solvent, Al and internal standard element on the results were systematically studied. The method has detection limits of 7-995 μg/g, recoveries of 90.3%-105.0% (in Table 4), and relative standard deviations (RSD, n=12) of 0.8%-6.6% (in Table 3) by the standard addition method. For five different types of polymetallic ores, the method has a wide test range (40 μg/g to 25%). -
-
表 1 各元素分析谱线及扣背景模式
Table 1. Analytical spectral line and background deduction model for each element
元素 分析谱线
(nm)扣背景
模式Eu 381.967 左、右 Ca 422.673 - Mg 279.553 - Fe 259.940 - Mn 257.610 左、右 Ti 336.121 左、右 P 178.284 左、右 Cu 324.754 右 Pb 220.353 左、右 Zn 213.856 左、右 W 239.709 左 Mo 202.030 左、右 Sn 189.989 左、右 V 310.231 左、右 Cr 267.716 左、右 Sr 407.771 左、右 表 2 熔剂对分析结果的影响
Table 2. Effect of the flux on the determination of elements
元素 GBW07281 GBW07284 标准值
(%)测定值 (%) 标准值
(%)测定值 (%) 过氧化钠
(4 g)氢氧化钠
+过氧化钠
(3 g+1 g)碳酸钠
+硝酸钾
(5 g+2 g)硼砂
+碳酸钠
(2 g+5 g)过氧化钠
(4 g)氢氧化钠
+过氧化钠
(3 g+1 g)碳酸钠
+硝酸钾
(5 g+2 g)硼砂
+碳酸钠
(2 g+5 g)Cu 0.26 0.26 0.26 0.27 0.26 0.13 0.13 0.13 0.13 0.12 MnO 1.17 1.16 1.18 1.20 1.22 - 0.61 0.63 0.62 0.62 Mo 0.027 0.029 0.030 0.029 0.034 0.0085 0.0086 0.0081 0.0079 0.0082 Pb 2.72 2.72 2.74 2.74 2.96 0.081 0.083 0.087 0.083 0.078 Sn 4.47 4.49 1.76 1.81 0.18 0.017 0.019 0.020 0.019 0.020 TiO2 0.85 0.83 0.82 0.75 0.69 - 0.84 0.85 0.85 0.83 V2O5 - 0.088 0.091 0.095 0.10 - 0.034 0.036 0.035 0.034 WO3 0.086 0.089 0.087 0.087 0.096 4.62 4.58 4.16 3.51 3.39 Zn 0.74 0.73 0.73 0.74 0.80 0.032 0.032 0.034 0.035 0.034 CaO 7.73 7.75 7.74 7.75 7.74 - 1.77 1.75 1.72 1.74 MgO 0.99 1.00 0.98 1.01 1.01 - 1.75 1.76 1.69 1.69 Fe2O3 36.19 34.15 32.32 31.68 25.26 - 8.44 8.47 8.39 8.32 P2O5 0.25 0.24 0.24 0.26 0.24 - 0.52 0.51 0.51 0.49 Cr2O3 - 0.016 0.016 0.015 0.016 - 0.015 0.015 0.014 0.014 SrO - 9.65 9.59 9.61 9.61 - 4.08 4.09 4.05 4.04 表 3 准确度和精密度试验
Table 3. Accuracy and precision tests of the method
元素 GBW07240 GBW07281 标准值
(%)测定平均值
(%)相对误差
(%)RSD
(%)标准值
(%)测定平均值
(%)相对误差
(%)RSD
(%)Cu 0.079 0.084 6.33 2.9 0.26 0.26 0.00 0.8 MnO 0.97 1.01 4.12 3.0 1.17 1.19 1.71 0.8 Mo 0.0004 0.0006 - 2.6 0.027 0.028 3.70 5.7 Pb 0.26 0.27 3.85 3.0 2.72 2.73 0.37 1.0 Sn 0.14 0.14 0.00 3.1 4.47 4.47 0.00 1.2 TiO2 0.079 0.080 1.27 5.1 0.85 0.83 -2.35 2.6 V2O5 - 0.006 - 4.9 - 0.088 - 3.6 WO3 0.019 0.020 5.26 2.4 0.086 0.088 2.33 4.0 Zn 0.29 0.30 3.45 3.3 0.74 0.73 -1.35 0.8 CaO 37.30 37.41 0.29 3.6 7.73 7.75 0.26 3.1 MgO 1.45 1.43 -1.38 5.0 0.99 1.00 1.01 2.3 Fe2O3 7.79 7.82 0.39 4.7 36.19 34.15 - 6.6 P2O5 - 0.034 - 2.6 0.25 0.24 -4.00 1.2 Cr2O3 0.00095 - - - - 0.016 - 1.4 SrO - 16.50 - 3.7 - 9.65 - 1.8 表 4 加标回收试验
Table 4. Recovery tests of the method
元素 GBW07225 GBW07282 原始量
(μg/mL)加入量
(μg/mL)测定值
(μg/mL)回收率
(%)原始量
(μg/mL)加入量
(μg/mL)测定值
(μg/mL)回收率
(%)Cu 0.16 0.15 0.307 98.0 3.22 3.00 6.19 99.0 MnO 2.62 3.00 5.64 100.7 4.71 5.00 9.50 95.8 Mo 0.00 0.10 0.097 97.0 0.33 0.20 0.527 98.5 Pb 0.00 0.10 0.099 99.0 28.31 20.00 47.50 96.0 Sn 0.01 0.01 0.020 100.0 12.72 10.00 22.62 99.0 TiO2 97.5 100 197 99.5 3.76 3.00 6.78 100.7 V2O5 2.63 3.00 5.65 100.7 0.55 0.50 1.04 98.0 WO3 0.02 0.02 0.041 105.0 0.18 0.20 0.383 101.5 Zn 0.03 0.04 0.069 97.5 9.07 10.00 18.87 98.0 CaO 74.8 75 152 102.9 182 180 360 98.9 MgO 61.8 65 126 98.8 16.09 15.00 31.80 104.7 Fe2O3 365 300 636 90.3 342 300 615 91.0 P2O5 1.21 1.00 2.22 101.0 1.56 1.50 3.10 102.7 Cr2O3 0.15 0.15 0.30 100.0 0.10 0.10 0.20 100.0 SrO 286 250 513 90.8 89.3 100 182 92.7 表 5 不同样品分析方法测定结果比较
Table 5. Comparison of the analytical results with different methods
样品
编号方法 含量 (%) Cu MnO Mo Pb Sn TiO2 V2O5 WO3 Zn CaO MgO Fe2O3 P2O5 Cr2O3 SrO A-10 化学法 0.005 0.19 0.038 0.076 0.012 0.54 0.032 0.015 0.029 6.32 1.86 5.81 0.18 0.025 1.49 本法 0.005 0.18 0.039 0.075 0.010 0.54 0.033 0.018 0.028 6.35 1.87 5.79 0.17 0.026 1.47 A-16 化学法 0.005 0.21 0.11 0.38 0.008 0.38 0.048 0.011 0.055 7.93 2.38 6.31 0.11 0.063 1.23 本法 0.006 0.22 0.10 0.38 0.005 0.37 0.049 0.014 0.056 7.95 2.41 6.33 0.10 0.064 1.22 L-31 化学法 0.052 0.98 0.003 0.022 0.31 0.78 0.12 0.023 0.31 9.64 1.01 11.73 0.28 0.075 0.037 本法 0.052 0.98 0.001 0.023 0.30 0.77 0.12 0.023 0.32 9.60 1.02 11.69 0.28 0.074 0.033 L-40 化学法 0.060 0.54 0.006 0.008 0.12 0.66 0.067 0.17 0.069 7.72 3.63 13.87 0.26 0.096 0.005 本法 0.059 0.54 0.007 0.010 0.12 0.65 0.068 0.16 0.068 7.77 3.59 13.99 0.25 0.094 0.007 M-10 化学法 0.016 0.081 0.045 0.003 0.050 0.53 0.019 0.011 0.061 1.28 1.74 6.21 0.11 0.13 0.005 本法 0.016 0.080 0.044 0.002 0.051 0.55 0.020 0.013 0.061 1.30 1.77 6.18 0.10 0.12 0.006 M-12 化学法 0.013 0.069 0.061 0.003 0.046 0.59 0.022 0.012 0.063 1.76 2.05 5.75 0.10 0.037 0.007 本法 0.014 0.070 0.059 0.002 0.046 0.58 0.023 0.015 0.060 1.74 2.08 5.72 0.10 0.036 0.005 N-01 化学法 0.055 1.13 0.003 0.79 0.010 0.20 0.018 0.001 0.39 3.97 2.39 8.67 0.059 0.081 0.015 本法 0.054 1.10 0.001 0.81 0.008 0.19 0.015 0.005 0.38 4.01 2.41 8.72 0.060 0.078 0.012 N-02 化学法 0.32 0.81 0.003 8.47 0.008 0.14 0.015 0.015 1.44 1.41 1.34 6.51 0.025 0.12 0.003 本法 0.32 0.91 0.001 8.50 0.010 0.13 0.011 0.013 1.42 1.39 1.36 6.48 0.020 0.12 0.006 X-03 化学法 0.007 0.019 0.001 0.003 0.008 0.57 0.11 0.004 0.024 3.01 1.64 4.82 0.25 0.53 0.021 本法 0.006 0.020 0.002 0.006 0.005 0.58 0.12 0.006 0.025 2.97 1.67 4.88 0.24 0.55 0.028 X-08 化学法 0.025 0.021 0.004 0.003 0.003 0.29 1.03 0.009 0.043 0.82 0.36 5.52 0.39 1.02 0.082 本法 0.026 0.020 0.004 0.002 0.007 0.30 1.01 0.006 0.042 0.82 0.37 5.56 0.40 0.99 0.080 -
[1] 岩石矿物分析编委会编著.岩石矿物分析 (第四版第三分册)[M].北京:地质出版社, 2011.
The Editorial Committee of Rock and Mineral Analysis.Rock and Mineral Analysis (Fourth Edition:VolumeⅢ)[M].Beijing:Geological Publishing House, 2011.
[2] 盛献臻, 张汉萍, 李展强, 等.电感耦合等离子体发射光谱法同时测定地质样品中次量钨锡钼[J].岩矿测试, 2010, 29(4):383-386. http://www.ykcs.ac.cn/ykcs/ch/reader/view_abstract.aspx?file_no=20100412&flag=1
Sheng X Z, Zhang H P, Li Z Q, et al.Simultaneous determination of minor tungsten, tin and molybdenum in geological samples by inductively coupled plasma-atomic emission spectrometry[J].Rock and Mineral Analysis, 2010, 29(4):383-386. http://www.ykcs.ac.cn/ykcs/ch/reader/view_abstract.aspx?file_no=20100412&flag=1
[3] Kazuya A, Mitsuru E.Accurate determination of trace amounts of phosphorus in geological samples by inductively coupled plasma-atomic emission spectrometry with ion-exchange separation[J].Analytica Chimica Acta, 2013, 779(5):8-13.
[4] 张微, 张丽微, 艾倩娇, 等.ICP-OES法同时测定地质样品中Cu-Pb-Zn-Sc-Mo[J].矿物学报, 2013, 33(4):521-524. http://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201304012.htm
Zhang W, Zhang L W, Ai Q J, et al.Simultaneous determination of Cu-Pb-Zn-Sc-Mo in the geological samples with inductively coupled plasma optical emission spectrometer[J].Acta Mineralogica Sinica, 2013, 33(4):521-524. http://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201304012.htm
[5] 王松君, 常平, 王璞珺, 等.ICP-AES法测定方铅矿中多元素的方法研究[J].分析试验室, 2007, 26(3):39-42. http://www.cnki.com.cn/Article/CJFDTOTAL-FXSY200703009.htm
Wang S J, Chang P, Wang P J, et al.Study on determination of multi-elements in galena by inductively coupled plasma-atomic emission spectrometry[J].Chinese Journal of Analysis Laboratory, 2007, 26(3):39-42. http://www.cnki.com.cn/Article/CJFDTOTAL-FXSY200703009.htm
[6] 袁秀茹, 谈建安, 王建波, 等.ICP-AES法测定铜镍矿、铅锌矿中铜、镍、铅、锌、钴[J].分析测试技术与仪器, 2009, 15(1):47-50. http://www.cnki.com.cn/Article/CJFDTOTAL-FXCQ200901012.htm
Yuan X R, Tan J A, Wang J B, et al.Determination of copper, nickel, lead, zinc and cobalt in copper-nickel ore and lead-zinc ore by inductively coupled plasma-atomic emission spectrometry[J].Analysis and Testing Technology and Instruments, 2009, 15(1):47-50. http://www.cnki.com.cn/Article/CJFDTOTAL-FXCQ200901012.htm
[7] 吕振生, 赵庆令, 李清彩, 等.电感耦合等离子体原子发射光谱光谱法测定钨矿石中8种成分[J].冶金分析, 2010, 30(9):47-50. http://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201009011.htm
Lü Z S, Zhao Q L, Li Q C, et al.Determination of eight components in tungsten ore by inductively coupled plasma-atomic emission spectrometry[J].Metallurgical Analysis, 2010, 30(9):47-50. http://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201009011.htm
[8] 张宁.电感耦合等离子体原子发射光谱法测定矿石中的钨钼[J].冶金分析, 2010, 30(10):25-28. http://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201010007.htm
Zhang N.Determination of tungsten and molybdenum in ores by inductively coupled plasma-atomic emission spectrometry[J].Metallurgical Analysis, 2010, 30(10):25-28. http://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201010007.htm
[9] 马生凤, 温宏利, 李冰, 等.微波消解-耐氢氟酸系统电感耦合等离子体发射光谱法测定铌钽矿中的铌和钽[J].岩矿测试, 2016, 35(3):271-275. http://www.ykcs.ac.cn/ykcs/ch/reader/view_abstract.aspx?file_no=20160308&flag=1
Ma S F, Wen H L, Li B, et al.Determination of Nb and Ta in Nb-Ta ore by inductively coupled plasma-optical emission spectrometry with a combined microwave digestion hydrofluoric acid-resistant system[J].Rock and Mineral Analysis, 2016, 35(3):271-275. http://www.ykcs.ac.cn/ykcs/ch/reader/view_abstract.aspx?file_no=20160308&flag=1
[10] 卢彦, 冯勇, 李刚, 等.酸溶-电感耦合等离子发射光谱法测定密西西比型铅锌矿床矿石中的铅[J].岩矿测试, 2015, 34(4):442-447. http://www.ykcs.ac.cn/ykcs/ch/reader/view_abstract.aspx?file_no=20150411&flag=1
Lu Y, Feng Y, Li G, et al.Determination of lead in Mississippi Valley-type ore by inductively coupled plasma-optical emission spectrometry after acid digestion[J].Rock and Mineral Analysis, 2015, 34(4):442-447. http://www.ykcs.ac.cn/ykcs/ch/reader/view_abstract.aspx?file_no=20150411&flag=1
[11] 马生凤, 温宏利, 马新荣, 等.四酸溶样-电感耦合等离子体原子发射光谱法测定铁、铜、锌、铅等硫化物矿石中22个元素[J].矿物岩石地球化学通报, 2011, 30(5):566-571. http://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201101010.htm
Ma S F, Wen H L, Ma X R, et al.Determination of 22 elements in iron, copper, zinc and lead sulphide ores by ICP-AES with four acids digestion[J].Bulletin of Mineralogy, Petrology and Geochemistry, 2011, 30(5):566-571. http://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201101010.htm
[12] 孙朝阳, 何颖婷, 戴雪峰, 等.密闭酸溶-电感耦合等离子体原子发射光谱光谱法测定钼矿石中钼和铜[J].理化检验 (化学分册), 2011, 47(11):1299-1304. http://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201111017.htm
Sun C Y, He Y T, Dai X F, et al.ICP-AES determination of molybdenum and copper in molybdenum ores with acid dissolution of sample in closed vessel[J].Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2011, 47(11):1299-1304. http://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201111017.htm
[13] 韦新红, 陈永欣, 黎香荣, 等.微波消解-等离子体原子发射光谱法测定3种铅锌矿物中的10种组分[J].广西科学院学报, 2012, 28(3):194-196. http://www.cnki.com.cn/Article/CJFDTOTAL-GXKX201203007.htm
Wei X H, Chen Y X, Li X R, et al.Determination of 10 components in lead ore, lead concentrates and lead-zinc ore using inductively coupled plasma-atomic emission spectrometry and microwave-assisted digestion[J].Journal of Guangxi Academy of Sciences, 2012, 28(3):194-196. http://www.cnki.com.cn/Article/CJFDTOTAL-GXKX201203007.htm
[14] 黎香荣, 陈永欣, 刘顺琼, 等.电感耦合等离子体发射光谱法测定多金属矿中的主次量元素[J].冶金分析, 2012, 32(8):38-41. http://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201208010.htm
Li X R, Chen Y X, Liu S Q, et al.Determination of major and minor elements in polymetallic ore by inductively coupled plasma atomic emission spectrometry[J].Metallurgical Analysis, 2012, 32(8):38-41. http://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201208010.htm
[15] 闵国华, 张庆建, 刘稚, 等.电感耦合等离子体原子发射光谱法测定铅矿、锌矿和铅锌矿中杂质元素[J].冶金分析, 2014, 34(5):51-55. http://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201405013.htm
Min G H, Zhang Q J, Liu Z, et al.Determination of impurity elements in lead ore, zinc ore and lead-zinc ore by inductively coupled plasma-atomic emission spectrometry[J].Metallurgical Analysis, 2014, 34(5):51-55. http://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201405013.htm
[16] 夏辉, 王小强, 杜天军, 等.五酸和硝酸微波消解法结合ICP-OES技术测定多金属矿中多种元素的对比研究[J].岩矿测试, 2015, 34(3):297-301. http://www.ykcs.ac.cn/ykcs/ch/reader/view_abstract.aspx?file_no=20150306&flag=1
Xia H, Wang X Q, Du T J, et al.Determination of multi-elements in polymetallic ores by ICP-OES with mixed acids and nitric acid microwave digestion[J].Rock and Mineral Analysis, 2015, 34(3):297-301. http://www.ykcs.ac.cn/ykcs/ch/reader/view_abstract.aspx?file_no=20150306&flag=1
[17] 王干珍, 汤行, 叶明, 等.电感耦合等离子体原子发射光谱法测定含碳质钒矿石中硅铝铁钒磷[J].冶金分析, 2016, 36(5):30-34. http://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201605006.htm
Wang G Z, Tang X, Ye M, et al.Determination of silicon, aluminum, iron, vanadium and phosphorus in carbon-bearing vanadium ore by inductively coupled plasma-atomic emission spectrometry[J].Metallurgical Analysis, 2016, 36(5):30-34. http://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201605006.htm
[18] 赵君威, 梅坛, 鄢国强, 等.电感耦合等离子体原子发射光谱分析中的光谱干扰及其校正的研究进展[J].理化检验 (化学分册), 2013, 49(3):364-369.
Zhao J W, Mei T, Yan G Q, et al.Recent progress of researches on spectral interference and its correction in ICP-AES analysis[J].Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2013, 49(3):364-369.
-