中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

河北曲阳县中佐伟晶岩脉中电气石的类型和成岩成矿环境研究

侯江龙, 王登红, 王成辉, 黄凡, 李建康, 陈振宇. 河北曲阳县中佐伟晶岩脉中电气石的类型和成岩成矿环境研究[J]. 岩矿测试, 2017, 36(5): 529-537. doi: 10.15898/j.cnki.11-2131/td.201704130056
引用本文: 侯江龙, 王登红, 王成辉, 黄凡, 李建康, 陈振宇. 河北曲阳县中佐伟晶岩脉中电气石的类型和成岩成矿环境研究[J]. 岩矿测试, 2017, 36(5): 529-537. doi: 10.15898/j.cnki.11-2131/td.201704130056
Jiang-long HOU, Deng-hong WANG, Cheng-hui WANG, Fan HUANG, Jian-kang LI, Zhen-yu CHEN. Study on the Types, and Metallogenic and Diagenetic Environment of Tourmaline from the Zhongzuo Pegmatite Veins in Quyang County, Hebei Province[J]. Rock and Mineral Analysis, 2017, 36(5): 529-537. doi: 10.15898/j.cnki.11-2131/td.201704130056
Citation: Jiang-long HOU, Deng-hong WANG, Cheng-hui WANG, Fan HUANG, Jian-kang LI, Zhen-yu CHEN. Study on the Types, and Metallogenic and Diagenetic Environment of Tourmaline from the Zhongzuo Pegmatite Veins in Quyang County, Hebei Province[J]. Rock and Mineral Analysis, 2017, 36(5): 529-537. doi: 10.15898/j.cnki.11-2131/td.201704130056

河北曲阳县中佐伟晶岩脉中电气石的类型和成岩成矿环境研究

  • 基金项目:
    中国地质调查局地质调查项目“川西甲基卡大型锂矿资源基地综合调查评价”、“稀有稀土稀散矿产调查”和“中国地质调查局中国矿产地质与成矿规律综合集成和服务(矿产地质志)”项目(DD20160346)
详细信息
    作者简介: 侯江龙, 博士研究生, 主要从事矿床学及构造成矿学研究。E-mail:houjianglong1988@126.com
    通讯作者: 王登红, 研究员, 从事矿床学研究。E-mail:wangdenghong@sina.com
  • 中图分类号: P578.953;P575.5;P575.1

Study on the Types, and Metallogenic and Diagenetic Environment of Tourmaline from the Zhongzuo Pegmatite Veins in Quyang County, Hebei Province

More Information
  • 电气石在成岩、成矿作用中具有重要的示踪意义,利用电气石化学组成特征可有效指示其形成的成岩、成矿环境,也是一种有用的找矿标志。我国华南、西部等地区伟晶岩型稀有金属矿床找矿已取得较大进展,但华北地台区伟晶岩型稀有金属矿床尚未取得找矿突破,亟待开展系统而深入的地质找矿工作。河北曲阳县中佐伟晶岩脉中分布有大量的灰黑色自形电气石,适合开展系统的矿物学研究。本文在详细野外地质调查的基础上,系统采集研究样品,结合镜下鉴定,采用粉晶X射线衍射和电子探针相结合的研究方法,对河北曲阳县中佐伟晶岩脉中电气石的化学成分进行测试,以查明电气石的类型及其成岩、成矿环境。粉晶X射线衍射和电子探针分析结果均显示中佐伟晶岩脉中电气石属镁电气石(但接近于铁电气石),而电气石化学成分Ca-Fe-Mg三角图解显示电气石成岩环境为贫Ca变质泥质岩、变质砂屑岩和石英-电气石岩。电气石化学成分常与围岩岩石类型存在明显关联,认为中佐伟晶岩脉中的镁电气石是在较高温度(700~600℃,早期结晶的伟晶岩)条件下,岩浆熔体与高温流体和围岩发生同化混染的过程中形成的,围岩中Mg、Fe等物质成分为电气石的形成提供了必要的物质来源。中佐伟晶岩脉中电气石化学成分的系统研究,为我国地台区伟晶岩矿床的找矿提供了基础地质资料和找矿方向。
  • 加载中
  • 图 1  中佐伟晶岩脉中电气石显微镜下照片(单偏光下)

    Figure 1. 

    图 2  电气石粉晶X射线衍射谱图

    Figure 2. 

    图 3  中佐伟晶岩脉中电气石主量元素分类投影图

    Figure 3. 

    图 4  曲阳县中佐电气石化学成分Ca-Fe-Mg三角投影图

    Figure 4. 

    图 5  电气石类型与伟晶岩类型的演化关系

    Figure 5. 

    图 6  中佐伟晶岩脉中电气石Fe-Na图解

    Figure 6. 

    表 1  中佐伟晶岩脉中电气石电子探针成分分析及相关计算数据

    Table 1.  Electron microprobe analyses of composition and relevant calculating data of tourmaline in Zhongzuo pegmatite veins

    测量
    项目
    16BZZ-11-116BZZ-11-216BZZ-11-316BZZ-12-116BZZ-12-1a16BZZ-12-1b16BZZ-12-216BZZ-12-316BZZ-12-416BZZ-12-516BZZ-12-5a16BZZ-12-5b16BZZ-12-616BZZ-12-716BZZ-12-816BZZ-13-1-116BZZ-13-1-216BZZ-13-1-316BZZ-13-1-416BZZ-13-1-516BZZ-13-2-116BZZ-13-2-216BZZ-13-2-3
    SiO235.83235.80835.39235.87536.47136.16535.52635.31235.79735.50135.98036.15435.71035.84235.62836.49236.25736.80236.42137.07935.94736.20435.722
    TiO20.4620.3350.3230.2030.2540.2640.3740.4140.4150.3640.3930.1920.2830.3640.3330.3830.4640.3030.3630.3730.2010.3120.494
    Al2O331.58731.16930.99231.91032.18932.25631.31831.33331.65731.49731.76432.07731.99731.38331.23331.57731.47731.82631.70331.02831.83331.71531.400
    FeO8.4179.0209.1287.6507.4676.4167.9758.3818.1568.2769.0007.7497.1237.8468.4768.5647.8968.6158.5678.6318.8778.4778.385
    MnO0.0170.1040.0830.0460.0280.0040.0250.0390.0040.0460.0320.0390.0040.0070.0880.0670.0600.0000.0250.0390.0280.1160.056
    MgO6.7496.4656.6277.1997.1907.2567.2487.0117.0766.9446.7807.1237.1397.0157.0627.0617.4717.0637.0557.0026.7646.6766.876
    CaO0.4450.5240.6000.5110.4730.3930.7070.5740.7520.6310.6100.4880.4400.6040.5830.6250.7710.6630.5320.7340.5030.5720.581
    Na2O2.2142.2922.2332.2532.3062.0942.3722.3172.2512.4322.4512.3222.2002.4162.3792.3122.2992.4062.4022.2782.3222.3452.421
    K2O0.0760.0790.0740.0510.0740.0550.0610.0710.0830.0620.0760.0710.0730.0800.0500.0860.0680.0940.0680.0960.0860.0730.076
    B2O310.56010.51710.45910.59610.71010.59810.53610.49810.60910.53910.67010.65710.54310.55110.54010.71610.69210.79210.71510.73210.62710.63910.569
    总和96.35996.31395.91196.29497.16295.50196.14295.95096.80096.29297.75696.87295.51296.10896.37297.88397.45598.56497.85197.99297.18897.12996.580
    B3.0003.0003.0003.0003.0003.0003.0003.0003.0003.0003.0003.0003.0003.0003.0003.0003.0003.0003.0003.0003.0003.0003.000
    Si5.9365.9585.9225.9255.9595.9725.9005.8875.9055.8955.9015.9375.9275.9455.9155.9595.9345.9675.9486.0465.9195.9555.915
    Aly0.0640.0420.0780.0750.0410.0280.1000.1130.0950.1050.0990.0630.0730.0550.0850.0410.0610.0330.0520.0000.0810.0450.085
    Alz6.0006.0006.0006.0006.0006.0006.0006.0006.0006.0006.0006.0006.0006.0006.0006.0006.0006.0006.0005.9536.0006.0006.000
    Aly0.0920.0590.0230.1260.1470.2390.0190.0330.0480.0480.0300.1340.1750.0690.0160.0250.0000.0390.0390.0000.0860.0920.032
    Ti0.0570.0420.0410.0250.0310.0330.0470.0520.0510.0450.0480.0240.0350.0450.0410.0470.0570.0370.0440.0460.0250.0380.061
    Fe1.1621.2511.2731.0531.0170.8831.1041.1641.1211.1451.2301.0600.9851.0841.1731.1651.0771.1641.1661.1731.2181.1621.157
    Mn0.0020.0150.0120.0060.0040.0010.0040.0050.0010.0060.0040.0050.0010.0010.0120.0090.0080.0000.0030.0050.0040.0160.008
    Mg1.6771.6141.6631.7841.7621.7971.8061.7531.7511.7301.6681.7551.7771.7451.7591.7301.8341.7181.7281.7131.6711.6471.708
    Y位和2.9912.9803.0112.9942.9612.9522.9793.0082.9722.9752.9812.9782.9732.9453.0012.9762.9762.9582.9812.9373.0042.9562.966
    Ca0.0790.0930.1080.0900.0830.0700.1260.1030.1330.1120.1070.0860.0780.1070.1040.1090.1350.1150.0930.1280.0890.1010.103
    Na0.7100.7380.7230.7200.7290.6690.7620.7480.7190.7820.7780.7380.7070.7760.7650.7310.7280.7550.7590.7190.7400.7470.776
    K0.0160.0170.0160.0110.0150.0120.0130.0150.0170.0130.0160.0150.0150.0170.0110.0180.0140.0190.0140.0200.0180.0150.016
    X位和0.8050.8480.8460.8210.8280.7500.9010.8650.8690.9070.9010.8390.8000.9000.8790.8580.8780.8900.8670.8670.8470.8630.895
    注:电气石电子探针数据处理及参数计算方法参考Henry等[11]
    下载: 导出CSV

    表 2  不同产地电气石的Fe#参数对比

    Table 2.  The w(FeO)/w(FeO+MgO) values of tourmaline in various regions

    顺序号寄主岩类型和产地Fe#
    1美国西南部贫Li花岗岩0.91
    2葡萄牙北部贫Li花岗岩0.86
    3哥伦比亚元古代石英岩和泥质岩0.45~0.67
    4乌克兰沉积变质片岩和片麻岩0.42~0.50
    5美国缅因地区变泥质岩0.41~0.55
    6块状硫化物矿床0.21
    7铜矿峪花岗闪长岩0.79
    8柿沟条纹状电气石岩0.73
    9北峪花岗闪长岩和花岗斑岩0.55
    10地层中电气石石英岩脉0.42
    11篦子沟富矿黑云片岩和大理岩0.45
    12胡加峪赋矿金云母石英白云石大理岩0.20
    13河北省曲阳县中佐伟晶岩脉0.54
    注:中佐数据为本文成果,其余据文献[4]。 ${\rm{F}}{{\rm{e}}^{\rm{\# }}}{\rm{ = }}\frac{{w\left( {{\rm{FeO}}} \right)}}{{w\left( {{\rm{FeO}} + {\rm{MgO}}} \right)}}$
    下载: 导出CSV
  • [1]

    Van Hinsberg V J, Henry D J, Dutrow B L.Tourmaline as a petrologic forensic mineral:A unique recorder of its geologic past[J].Elements, 2011, 7(5):327-332. doi: 10.2113/gselements.7.5.327

    [2]

    毛景文, 王平安, 王登红, 等.电气石对成岩成矿环境的示踪性及应用条件[J].地质论评, 1993, 39(6):498-507. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP199306003.htm

    Mao J W, Wang P A, Wang D H, et al.The tracer of tourmaline for rock-forming and metallogenic environments and its applied conditions[J].Geological Review, 1993, 39(6):498-507. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP199306003.htm

    [3]

    蒋少涌, 于际民, 倪培, 等.电气石——成岩成矿作用的灵敏示踪剂[J].地质论评, 2000, 16(6):595-604. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200006006.htm

    Jiang S Y, Yu J M, Ni P, et al.Tourmaline-A sensitive tracer for petrogenesis and minerogenesis[J].Geological Review, 2000, 16(6):595-604. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200006006.htm

    [4]

    王进军, 赵枫.电气石的化学特征与相关矿床的关系[J].地质找矿论丛, 2002, 17(3):162-163. http://youxian.cnki.com.cn/yxdetail.aspx?filename=YKCS2017092700O&dbname=CAPJ2015

    Wang J J, Zhao F.Relation between tourmaline chemical feature and related deposit[J].Geologic Prospecting Analects, 2002, 17(3):162-163. http://youxian.cnki.com.cn/yxdetail.aspx?filename=YKCS2017092700O&dbname=CAPJ2015

    [5]

    黄雪飞, 张宝林, 李晓利, 等.电气石研究进展及其找矿意义[J].黄金科学技术, 2012, 20(3):56-65. http://www.cnki.com.cn/Article/CJFDTOTAL-HJKJ201203018.htm

    Huang X F, Zhang B L, Li X L, et al.Research progress of tourmaline and its prospecting significance[J].Gold Science & Technology, 2012, 20(3):56-65. http://www.cnki.com.cn/Article/CJFDTOTAL-HJKJ201203018.htm

    [6]

    Roda E, Pesquera A, Velasco F.Tourmaline in granitic pegmatites and their country rocks, Fregeneda area, Salamanca, Spain[J].The Canadian Mineralogist, 1999, 33:835-848. https://link.springer.com/article/10.1007/s12517-015-1900-x

    [7]

    卢宗柳.我国电气石矿床类型及其地质特征[J].矿产与地质, 2008, 22(2):174-177. http://youxian.cnki.com.cn/yxdetail.aspx?filename=YKCS2017092700O&dbname=CAPJ2015

    Lu Z L.Chinese tourmaline deposits type with their geological characteristics[J].Mineral Resources and Geology, 2008, 22(2):174-177. http://youxian.cnki.com.cn/yxdetail.aspx?filename=YKCS2017092700O&dbname=CAPJ2015

    [8]

    熊欣, 徐文艺, 吕庆田, 等.安徽庐枞盆地砖桥深部钻孔内电气石对铀钍成矿流体在高温阶段的指示意义[J].岩石矿物学杂志, 2014, 33(2):263-272. http://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201402005.htm

    Xiong X, Xu W Y, Lü Q T, et al.Tourmaline as an early stage indicator of uranium mineralization in the deep drilling, Luzong Basin, Anhui Province[J].Acta Petrologica et Mineralogica, 2014, 33(2):263-272. http://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201402005.htm

    [9]

    伍守荣, 赵景宇, 张新, 等.新疆阿尔泰可可托海3号伟晶岩脉岩浆-热液过程:来自电气石化学组成演化的证据[J].矿物学报, 2015, 35(3):300-308. http://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201503004.htm

    Wu S R, Zhao J Y, Zhang X, et al.Magmatic-hydrothermal evolution of the Koktokay No.3 pegmatite, Altay, NW China:Evidence from compositional variation of tourmaline[J].Acta Mineralogica Sinica, 2015, 35(3):300-308. http://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201503004.htm

    [10]

    张洁, 李林庆.岩矿鉴定实用手册[M].北京:地质出版社, 2016:1-69.

    Zhang J, Li L Q.Mineral and Rock Identification Guide[M].Beijing:Geological Publishing House, 2016:1-69.

    [11]

    Henry D J, Guidotti C V.Tourmaline as a petrogenetic indicator mineral-An example from the staurolite-grade metapelites of NW Maine[J].American Mineralogist, 1985, 70(1-2):1-15. https://core.ac.uk/display/10385204

    [12]

    Hawthorne F C, Henry D J.Classification of the minerals of the tourmaline group[J].European Journal of Mineralogy, 1999, 11(2):201-215. doi: 10.1127/ejm/11/2/0201

    [13]

    Henry D J, Nov M, Hawthorne F C, et al.Nomenclature of the tourmaline-supergroup minerals[J].American Mineralogist, 2011, 96(5-6):895-913. doi: 10.2138/am.2011.3636

    [14]

    杨岳清, 王勇, 吕庆田, 等.福建南平花岗伟晶岩中的电气石研究[J].岩石矿物学杂志, 2010, 29(3):235-242. http://youxian.cnki.com.cn/yxdetail.aspx?filename=YKCS2017092700O&dbname=CAPJ2015

    Yang Y Q, Wang Y, Lü Q T, et al.Characteristics of tourmalines from Nanping granitic pegmatites in Fujian Province[J].Acta Petrologica et Mineralogica, 2010, 29(3):235-242. http://youxian.cnki.com.cn/yxdetail.aspx?filename=YKCS2017092700O&dbname=CAPJ2015

    [15]

    邹天人, 杨岳清.中国电气石(碧玺)的颜色与成分[J].矿床地质, 1996, 15(增刊):65-68. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ1996S1025.htm

    Zou T R, Yang Y Q.The color and composition of tourmaline of China[J].Mineral Deposits, 1996, 15(Supplement):65-68. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ1996S1025.htm

    [16]

    Slack J F, Trumbull R B.Tourmaline as a recorder of ore-forming processes[J].Elements, 2011, 7(5):321-326. doi: 10.2113/gselements.7.5.321

    [17]

    于淼, 丰成友, 刘洪川, 等.青海尕林格铁矿床电气石矿物学、元素地球化学及成因研究[J].矿床地质, 2016, 35(1):69-84. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201601005.htm

    Yu M, Feng C Y, Liu H C, et al.Mineralogy, element geochemistry and genesis of tourmaline from Galingge skarn deposit, Qinghai Province[J].Mineral Deposits, 2016, 35(1):69-84. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201601005.htm

    [18]

    Yu M, Feng C Y, Mao J W, et al.Multistage skarn-related tourmaline from the Galinge deposit, Qiman Tagh, Western China:A fluid evolution perspective[J].The Canadian Mineralogist, 2017, 55:3-19. doi: 10.3749/canmin.1600043

    [19]

    Henry D J, Brodtkorb M K D.Mineral chemistry and chemical zoning in tourmalines, Pampadel Tamboreo, San Luis, Argentina[J].Journal of South American Earth Sciences, 2009, 28(2):132-141. doi: 10.1016/j.jsames.2009.03.001

    [20]

    Henry D J, Dutrow B L.Metammorphic tourmaline and its petrologic applications[J].Reviews in Mineralogy and Geochemistry, 1996, 33(1):503-557. http://rimg.geoscienceworld.org/content/33/1/503.abstract

    [21]

    冀志江, 梁金生, 金宗哲, 等.热处理电气石的物相转变[J].矿物学报, 2002, 22(3):281-284. http://www.cnki.com.cn/Article/CJFDTOTAL-KWXB200203015.htm

    Ji Z J, Liang J S, Jin Z Z, et al.Structure change of dravite-schorl after heat treatment[J].Acta Mineralogica Sinica, 2002, 22(3):281-284. http://www.cnki.com.cn/Article/CJFDTOTAL-KWXB200203015.htm

    [22]

    汤云晖, 马喆生, 吴瑞华, 等.Mg-Fe电气石的热膨胀与相变[J].矿物学报, 2002, 22(4):384-386. http://www.cnki.com.cn/Article/CJFDTOTAL-KWXB200204016.htm

    Tang Y H, Ma Z S, Wu R H, et al.Research on thermal deformation and phase transformation of Mg-Fe tourmaline[J].Acta Mineralogica Sinica, 2002, 22(4):384-386. http://www.cnki.com.cn/Article/CJFDTOTAL-KWXB200204016.htm

    [23]

    王敏, 张尚坤, 张增奇, 等.鲁西柳家电气石矿物学特征及成矿机理探讨[J].山东地质, 2001, 17(1):36-39. http://www.cnki.com.cn/Article/CJFDTOTAL-SDDI200101006.htm

    Wang M, Zhang S K, Zhang Z Q, et al.Study on mineralogical characteristics and ore-forming mechanism of tourmalinite in Liujia of West Shangdong[J].Shandong Geology, 2001, 17(1):36-39. http://www.cnki.com.cn/Article/CJFDTOTAL-SDDI200101006.htm

  • 加载中

(6)

(2)

计量
  • 文章访问数:  2007
  • PDF下载数:  38
  • 施引文献:  0
出版历程
收稿日期:  2017-04-13
修回日期:  2017-07-31
录用日期:  2017-08-14

目录