Determination of Tungsten, Molybdenum, Tin, Germanium, Selenium and Tellurium in Lead-Zinc Ore by Inductively Coupled Plasma-Mass Spectrometry with Resin Exchange Separation
-
摘要: 铅锌矿常与硫化矿共生形成复合多金属矿床,其中伴生有益元素的含量对矿床的综合利用评估有重要的参考意义。在目前常用方法中,钨钼锡锗硒碲主要采用分组或单独熔矿和测试的方法,操作强度大、分析效率低,且高含量铜、铅和含量高于1 μg/g的硒分别干扰钨钼和碲的测定。本文采用过氧化钠碱熔,提取后加入0.8%柠檬酸溶液络合钨、钼、锡形成金属复合物,以8~9 g阳离子树脂交换分离高含量钠盐和铜、铅、锌、铁等主量元素,采用动能歧视模式以铼、硼为内标用电感耦合等离子体质谱仪同时测定钨钼锡锗硒碲的含量。经树脂处理后,铜铅锌铁的去除率均高于96%,在测定介质中实际浓度为0.192 ng/mL~1.28 μg/mL,基本消除了主量元素的干扰。各待测元素工作曲线相关系数为0.9994~0.9999,优于阳离子树脂处理前的0.9923~0.9992。经标准物质验证,各元素测定相对误差为-8.33%~7.00%,加标回收率为94.9%~107.5%,相对标准偏差(RSD,n=8)小于8%。该方法在样品前处理环节将主量干扰元素从溶液体系中分离,优化了测定介质,实现了铅锌矿中多元素的准确快速测定。
-
关键词:
- 铅锌矿 /
- 过氧化钠熔融 /
- 阳离子树脂分离 /
- 电感耦合等离子体质谱法
Abstract:BACKGROUNDLead-zinc ore often co-exists with sulfide ore to form polymetallic deposits. The content of the associated beneficial elements can provide an important reference for the comprehensive utilization evaluation of the mineral deposits. Using current methods, tungsten, molybdenum, tin, germanium, selenium, and tellurium were analyzed by grouping or separate melting and analytical methods with strong operation and low analysis efficiency were employed. Moreover, copper and lead with high content, and selenium with the content higher than 1 μg/g interferes with the determination of tungsten and tellurium, respectively, when using current methods. OBJECTIVESTo establish a method for the determination of tungsten, molybdenum, tin, germanium, selenium, and tellurium in lead-zinc ore by ICP-MS. METHODSThe samples were melted with sodium peroxide. After extraction, 0.8% citric acid solution was added to complex tungsten, molybdenum and tin to form metal complexes. 8-9 g cation resin was used to exchange sodium, copper, lead, zinc, iron and other major elements. The content of tungsten, molybdenum, tin, germanium, selenium and tellurium was determined by ICP-MS using a kinetic discrimination model with rhenium and boron as the internal standard. RESULTSAfter the resin treatment, the removal rate of copper, lead, zinc and iron is higher than 96%, the actual concentrations in the measuring medium are 0.192 ng/mL-1.28 μg/mL, which effectively eliminates the interference of the main elements. The correlation coefficients of the working curve are 0.9994-0.9999, better than 0.9923-0.9992 before cation resin treatment. The method is verified by standard material, the relative errors are -8.33%-7.00%, the standard addition recoveries are 94.9%-107.5%, and the relative standard deviation (RSD, n=8) is less than 8%. CONCLUSIONSThis method can be used effectively to separate the main interference elements from the solution by sample pretreatment, optimizing the measuring medium and determining the accurate and rapid values of multiple elements in lead-zinc ore. -
-
表 1 钨钼锡锗硒碲标准工作溶液
Table 1. Standard working solution of tungsten, molybdenum, tin, germanium, selenium and tellurium
混合标准溶液系列 浓度(ng/mL) W Mo Sn Ge Se Te S0 0.0 0.0 0.0 0.0 0.0 0.0 S1 4.0 10.0 4.0 2.0 2.0 1.0 S2 8.0 20.0 8.0 4.0 4.0 2.0 S3 20.0 50.0 20.0 10.0 10.0 5.0 S4 40.0 100.0 40.0 20.0 20.0 10.0 S5 80.0 200.0 80.0 40.0 40.0 20.0 S6 120.0 400.0 120.0 60.0 60.0 30.0 S7 200.0 1000.0 200.0 100.0 100.0 50.0 表 2 主量元素去除试验
Table 2. Removal tests of the principal components
标准物质编号 Cu Pb Zn Fe 认定值(%) 实测含量(%) 去除率(%) 认定值(%) 实测含量(%) 去除率(%) 认定值(%) 实测含量(%) 去除率(%) 认定值(%) 实测含量(%) 去除率(%) GBW07170 12.59 1.28×10-3 99.99 2.24 8×10-5 99.99 1.21 8×10-5 99.99 - 8×10-3 - GBW07167 0.028 9.6×10-4 96.57 57.1 8×10-2 99.86 3.3 1.84×10-3 99.94 12 0.16 98.67 BY0110-1 0.135 2.4×10-5 99.98 0.35 3.44×10-3 99.02 42.98 8.24×10-4 99.99 - 7.2×10-3 - 注:“-”表示该元素无定值或其去除率无法计算。 表 3 内标元素选择试验
Table 3. Selection tests of internal standards
内标元素 对应待测元素 RSD(%) 各类样品中内标元素含量范围 Re W、Mo、Sn、Ge 0.92~2.20 铅锌矿石:0.24~3.5 μg/g
土壤样品:0.074~0.53 ng/gRh W、Mo、Sn、Ge 1.03~3.55 贵金属矿石:0.017~22 ng/g B Se、Te 1.66~2.43 土壤样品:4.6~155 μg/g P Se、Te 3.68~4.94 土壤样品:140~1490 μg/g I Se、Te 3.93~5.81 土壤样品:0.3~2.9 μg/g 注:各元素大致含量范围参考国家一级标准物质定值。 表 4 同位素、相关系数、质谱干扰扣除及方法检出限
Table 4. Isotope, correlation coefficient, mass spectrum interference deduction and detection limits
元素 同位素 相关系数 干扰校正 方法检出限(μg/g) 树脂处理前 树脂处理后 W 182W 0.9981 0.9995 - 0.50 Mo 95Mo 0.9990 0.9999 - 0.15 Sn 118Sn 0.9954 0.9994 - 0.29 Ge 74Ge 0.9992 0.9997 -0.0407×78Se 0.15 Se 82Se 0.9989 0.9995 -1.0010×83Kr 0.05 Te 128Te 0.9923 0.9995 - 0.03 注:“-”表示元素无干扰或存在的干扰极小,可忽略。 表 5 准确度和精密度试验
Table 5. Accuracy and precision tests of the method
标准物质编号 元素 参考值(μg/g) 测定值(μg/g) 相对误差(%) 加标量(μg/g) 测定值(μg/g) 回收率(%) RSD(%) GBW07234 W 3.9 3.88 -0.51 5.0 8.69 95.8 4.7 Mo 2.4 2.32 -3.33 2.0 4.51 105.5 2.2 Sn 3.8 4.05 6.58 5.0 8.93 102.6 3.5 Ge 0.93 0.94 1.08 1.0 1.91 98.0 2.7 Se 0.89 0.86 -3.37 1.0 1.84 95.0 6.1 Te 0.13 0.12 -7.69 0.2 0.34 105.0 7.6 GBW07164 W 56 54.5 -2.68 50.0 105.5 99.5 2.2 Mo 137 137.6 0.44 150.0 282.3 98.3 1.5 Sn 9.7 9.2 -5.15 10.0 18.7 94.9 4.6 Ge 3.3 3.1 -6.06 5.0 8.90 107.2 2.6 Se 24 25.1 4.58 30.0 55.3 102.4 1.8 Te 1.8 1.65 -8.33 2.0 3.71 95.0 5.7 GBW07235 W 17.6 18.35 4.26 20.0 38.22 103.1 3.2 Mo 1.6 1.65 3.12 2.0 3.63 101.5 4.8 Sn 3.0 3.21 7.00 5.0 7.97 99.4 5.6 Ge 0.90 0.88 -2.22 1.0 1.91 101.0 3.1 Se 1.7 1.66 -2.35 2.0 3.85 107.5 5.3 Te 3.9 4.09 4.87 5.0 8.88 99.6 2.2 -
[1] 岩石矿物分析编委会.岩石矿物分析(第四版 第三分册)[M].北京:地质出版社, 2011:54-87.
The Editorial Committee of Rock and Mineral Analysis.Rock and Mineral Analysis (Fourth Edition:Volume Ⅲ)[M].Beijing:Geological Publishing House, 2011:54-87.
[2] 李小辉, 孙慧莹, 于亚辉, 等.交流电弧发射光谱法测定地球化学样品中银锡硼[J].冶金分析, 2017, 37(4):16-21. http://d.old.wanfangdata.com.cn/Periodical/yjfx201704003
Li X H, Sun H Y, Yu Y H, et al.Determination of sliver, tin and boron in geochemical sample by alternating current (AC) arc emission spectrometry[J].Metallurgical Analysis, 2017, 37(4):16-21. http://d.old.wanfangdata.com.cn/Periodical/yjfx201704003
[3] 王铁, 亢德华, 于媛君.电感耦合等离子体质谱法测定锰铁中痕量铅锡锑[J].冶金分析, 2013, 33(5):13-16. doi: 10.3969/j.issn.1000-7571.2013.05.003
Wang T, Kang D H, Yu Y J.Determination of trace lead, tin and antimony in ferromanganese by inductively coupled plasma mass spectrometry[J].Metallurgical Analysis, 2013, 33(5):13-16. doi: 10.3969/j.issn.1000-7571.2013.05.003
[4] 刘正, 王海舟, 李小佳, 等.第三液相富集-石墨炉原子吸收光谱法测定高温合金中痕量碲[J].冶金分析, 2016, 36(5):1-6. http://d.old.wanfangdata.com.cn/Periodical/yjfx201605001
Liu Z, Wang H Z, Li X J, et al.Determination of trace tellurium in superalloy by graphite furnace atomic absorption spectrometry after enrichment with the third liquid phase[J].Metallurgical Analysis, 2016, 36(5):1-6. http://d.old.wanfangdata.com.cn/Periodical/yjfx201605001
[5] 王佳翰, 冯俊, 王达成, 等.电感耦合等离子体质谱法测定地球化学样品中钼镉钨铀锡[J].冶金分析, 2017, 37(6):20-25. http://d.old.wanfangdata.com.cn/Periodical/yjfx201706005
Wang J H, Feng J, Wang D C, et al.Determination of molybdenum, cadmium, tungsten, uranium and tin in geochemical samples by inductively coupled plasma mass spectrometry[J].Metallurgical Analysis, 2017, 37(6):20-25. http://d.old.wanfangdata.com.cn/Periodical/yjfx201706005
[6] 陈波, 刘洪青, 邢应香.电感耦合等离子体质谱法同时测定地质样品中锗硒碲[J].岩矿测试, 2014, 33(2):192-196. doi: 10.3969/j.issn.0254-5357.2014.02.006 http://www.ykcs.ac.cn/article/id/230dfc09-9aed-48e1-b479-fbd429e9bb9b
Chen B, Liu H Q, Xing Y X.Simultaneous determination of Ge, Se and Te in geological samples by inductively coupled plasma-mass spectrometry[J].Rock and Mineral Anaysis, 2014, 33(2):192-196. doi: 10.3969/j.issn.0254-5357.2014.02.006 http://www.ykcs.ac.cn/article/id/230dfc09-9aed-48e1-b479-fbd429e9bb9b
[7] 张计东, 罗善霞, 焦圣兵, 等.地球化学样品中微量锗的分析进展[J].冶金分析, 2014, 34(2):29-35. http://d.old.wanfangdata.com.cn/Periodical/yjfx201402007
Zhang J D, Luo S X, Jiao S B, et al.Progress of analysis of micro germanium in geochemical samples[J].Metallurgical Analysis, 2014, 34(2):29-35. http://d.old.wanfangdata.com.cn/Periodical/yjfx201402007
[8] 董学林, 贾正勋, 汪慧平, 等.共沉淀分离-电感耦合等离子体质谱法测定多金属矿石中硒和碲[J].冶金分析, 2016, 36(3):6-10. http://d.old.wanfangdata.com.cn/Periodical/yjfx201603002
Dong X L, Jia Z X, Wang H P, et al.Determination of selenium and tellurium in polymetallic ore by coprecipitation separation-inductively coupled plasma mass spectrometry[J].Metallurgical Analysis, 2016, 36(3):6-10. http://d.old.wanfangdata.com.cn/Periodical/yjfx201603002
[9] 杨小莉, 杨小丽, 李小丹, 等.敞开酸溶-电感耦合等离子体质谱法同时测定钨矿石和锡矿石中14种微量元素[J].岩矿测试, 2014, 33(3):321-326. doi: 10.3969/j.issn.0254-5357.2014.03.006 http://www.ykcs.ac.cn/article/id/956360be-9a54-4e0a-8ef1-0f9f0be45e32
Yang X L, Yang X L, Li X D, et al.Simultaneous determination of 14 trace elements in and yin ore with open acid digestion by inductively coupled plasma-mass spectrometry[J].Rock and Mineral Anaysis, 2014, 33(3):321-326. doi: 10.3969/j.issn.0254-5357.2014.03.006 http://www.ykcs.ac.cn/article/id/956360be-9a54-4e0a-8ef1-0f9f0be45e32
[10] Gaschnig R M, Rudnick R L, Mcdonough W F.Deter-mination of Ga, Ge, Mo, Ag, Cd, In, Sn, Sb, W, T1 and Bi in USGS whole-rock reference materials by standard addition ICP-MS[J].Geostandards and Geoanalytical Research, 2015, 39(3):371-379. doi: 10.1111/ggr.2015.39.issue-3
[11] Siewers U.Inductively coupled plasma/mass spectro-metry in geochemistry[J].Mikrochim Acta, 1989, 3:365-372.
[12] 李华玲, 郑荣华, 沈加林.基体分离-高分辨电感耦合等离子体质谱法测定硫化物矿石中的稀土元素和钇[J].分析试验室, 2014, 33(10):1139-1142. http://www.cnki.com.cn/Article/CJFDTotal-FXSY201410007.htm
Li H L, Zheng R H, Shen J L.Determination of Y and rare earth elements in sulfide ore by high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS)after matrix separation[J].Chinese Journal of Analysis Laboratory, 2014, 33(10):1139-1142. http://www.cnki.com.cn/Article/CJFDTotal-FXSY201410007.htm
[13] 于亚辉, 王琳, 王明军, 等.电感耦合等离子体质谱法测定地球化学样品中痕量铑的干扰消除方法探讨[J].冶金分析, 2017, 37(9):25-32. http://d.old.wanfangdata.com.cn/Periodical/yjfx201709004
Yu Y H, Wang L, Wang M J, et al.Discussion on elimination of interference in determination of trace rhodium in geochemical sample by inductively coupled plasma mass spectrometry[J].Metallurgical Analysis, 2017, 37(9):25-32. http://d.old.wanfangdata.com.cn/Periodical/yjfx201709004
[14] 倪文山, 刘长淼, 姚明星, 等.电感耦合等离子体质谱法测定磷灰石中稀土元素分量和总量[J].冶金分析, 2016, 36(7):69-73. http://d.old.wanfangdata.com.cn/Periodical/yjfx201607011
Ni W S, Liu C M, Yao M X, et al.Determination of the total amount of rare earth elements and its component in apatite by inductively coupled plasma mass spectrometry[J].Metallurgical Analysis, 2016, 36(7):69-73. http://d.old.wanfangdata.com.cn/Periodical/yjfx201607011
[15] 孟时贤, 邓飞跃, 杨远, 等.电感耦合等离子体发射光谱法测定铅锌矿中15个主次量元素[J].岩矿测试, 2015, 34(1):48-54. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2015.01.006
Meng S X, Deng F Y, Yang Y, et al.Simultaneous determination of 15 elements in lead-zinc ore by inductively coupled plasma-atomic emission spectrometry[J].Rock and Mineral Anaysis, 2015, 34(1):48-54. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2015.01.006
-