Determination of Symbiotic and Associated Elements in Tin Ore by ICP-MS Combined with Pressurized Acid Digestion and Detinning Process
-
摘要: 锡矿石是难分解的矿物,主要存在形式是锡石(SnO2),且共生和伴生元素多,常用的酸溶方法几乎不能溶解SnO2,从而给锡矿石中的共生与伴生元素的准确测定带来困难。本文基于碘化氨在较低温度下熔融可产生无水状态的碘化氢,利用碘化氢的酸性和氨的还原性分解SnO2,使Sn呈SnI4升华分离的原理处理锡矿石。实验中以高纯铂丝作催化剂,加入碘化铵在450℃的马弗炉中分解锡矿石30 min,使得Sn以SnI4形式挥发,除锡率达到98%以上,再用2 mL氢氟酸和1 mL硝酸封闭溶解残渣,电感耦合等离子体质谱测定钴镍铜铌钽钍铀等24个共生和伴生元素。元素检出限在0.001~2.9 μg/g之间,90%以上元素的相对标准偏差(RSD)小于5%,相对误差小于10%。本方法解决了锡矿石难分解的问题,可测定共存金属元素,也适合测定Sn含量在1.27%~62.49%之间的锡矿石中的微量和痕量元素及锡精矿中的微量元素。
-
关键词:
- 锡石 /
- 金属元素 /
- 除锡率 /
- 碘化铵 /
- 电感耦合等离子体质谱法
Abstract:BACKGROUNDTin ore is a hard-to-decompose mineral. The main form is cassiterite (SnO2), and there are many symbiotic and associated elements. The commonly used acid-digestion method can barely dissolve SnO2, making it difficult for accurate measurement of symbiotic and associated elements in tin ore. OBJECTIVESTo decompose the tin ore completely, and accurately determine the symbiotic and associated trace elements in ore. METHODSHydrogen iodide can be produced in a non-aqueous state during the melting of ammonium iodide at a lower temperature, and the acidity of hydrogen iodide and the reductive decomposition of SnO2 by ammonia, and Sn separation by the sublimation of SnI4 which is the basis of the study. Under the catalysis of a high purity platinum, ammonium iodide was used to decompose cassiterite for 30 minutes in a Maffer furnace at 450℃. Tin was removed in the form of SnI4 with a removal rate of 98%. The residue was dissolved by 2 mL HF and 1 mL HNO3 using pressurized acid digestion. Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) was used to accurately determine 24 elements in tin ore. RESULTSThe element detection limits are from 0.001 to 2.9 μg/g, and more than 90% of the elements have a relative standard deviation (RSD) of less than 5%. The relative error is less than 10%. CONCLUSIONSThe method solves the problem of tin ore being difficult to decompose, can measure the coexisting metal elements, and is also suitable for determining trace and ultra-trace elements in tin ore with Sn contents between 1.27% and 62.49% and trace elements in tin concentrate. -
-
表 1 组合标准溶液元素浓度
Table 1. Concentration of the elements in calibration standard solution
标准溶液编号 标准元素 元素浓度(ng/mL) 溶液介质 标准溶液1 Ba, Co, Ni, Cu, Pb, Th, U 20 3%盐酸 标准溶液2 Ti, Nb, Ta, W 20 3%盐酸 标准溶液3 La, Ce, Pr, Nd, Sm, Eu, Y 20 3%盐酸 标准溶液4 Gd, Tb, Dy, Ho, Er, Tb, Yb, Lu 20 3%盐酸 注:校准标准溶液保存期限为一个月。Ba、Ti为干扰元素,用于求出干扰系数。 表 2 加入铂丝催化碘化铵的除锡率
Table 2. Removal rate of tin by ammonium iodide with Pt as catalyzer
样品编号 Sn含量(%) 碘化氨除锡后Sn含量(μg/g) 锡去除率(%) GBW07281 4.47 32.05 99.9 GBW07282 1.27 27.3 99.8 Sn-3 6.37 1367 97.9 Sn-5 20.83 427 99.8 GBW07231 45.8 1711 99.6 GBW07232 62.49 4313 99.3 表 3 GBW07281样品分解使用的碘化铵用量实验结果
Table 3. Experimental results of GBW07281 with the dosage of ammonium iodide
元素 测定值(μg/g) 认定值(μg/g) 配比1:5 配比1:6 配比1:7 配比1:8 配比1:9 配比1:10 Co 27.19 26.47 26.94 27.25 26.96 29.10 26.2±2.1 Ni 83.87 80.06 80.62 80.50 78.97 84.24 70.9±5.4 Cu 2671 2749 2729 2829 2731 2765 2600±100 Nb 44.75 45.43 47.26 46.21 49.58 46.9 46.9±2.2 Y 31.52 30.71 30.35 31.36 30.67 31.69 32.1±1.3 La 31.96 29.89 30.34 30.18 30.21 31.70 45.3±1.8 Ce 61.29 59.46 59.88 59.13 61.31 61.80 87±3.5 Pr 7.76 7.42 7.53 7.44 7.49 7.69 10.8±0.7 Nd 32.10 30.37 29.51 29.46 30.21 32.03 39.9±1.9 Sm 8.66 8.47 8.43 8.27 8.38 8.68 8.0±0.4 Eu 1.99 1.92 1.92 1.86 1.93 2.00 1.8±0.1 Gd 7.36 7.92 7.86 7.64 7.86 7.09 7.4±0.6 Tb 1.32 1.26 1.24 1.25 1.22 1.30 1.1±0.2 Dy 7.20 6.89 6.84 7.00 6.87 6.97 6.7±0.8 Ho 1.41 1.35 1.29 1.32 1.34 1.38 1.3±0.2 Er 3.89 3.90 3.70 3.80 3.87 3.92 3.5±0.3 Tm 0.55 0.52 0.53 0.52 0.54 0.53 0.57±0.08 Yb 3.47 3.42 3.16 3.28 3.36 3.39 3.3±0.3 Lu 0.53 0.53 0.48 0.51 0.50 0.52 0.5±0.05 Ta 15.38 15.39 15.57 15.70 15.91 15.95 16.2±1.1 W 614 627 677 670 693 686 680±50 Pb 26635 26863 26335 26605 26525 26523 27200±700 Th 17.05 15.75 15.98 15.50 15.72 16.10 - U 32.36 32.23 30.30 30.68 31.10 31.19 - 注:“-”表示因没有认定值,无法计算相对误差。 表 4 方法准确度和精密度
Table 4. Accuracy and precision tests of the method
元素 GBW07281(锡矿石) GBW07370(锡铅铜矿石) 测定平均值(μg/g) RSD(%) 认定值(μg/g) 相对误差(%) 测定平均值(μg/g) RSD(%) 认定值(μg/g) 相对误差(%) Co 27.3 3.3 26.2±2.1 4.3 2.81 5.1 2.62+0.22 7.3 Ni 75.4 2.7 70.9±5.4 6.3 9.6 4.9 10.2+1.1 -5.9 Cu 2746 1.9 2600±100 5.6 2327 1.9 2290+110 1.6 Nb 45.43 4.8 46.9±2.2 -3.1 1.72 6.1 - - Y 31.1 1.7 32.1±1.3 -3.3 3.86 3.1 3.6+0.34 7.4 La 41.7 2.9 45.3±1.8 -7.9 9.53 8.0 10.4+0.8 -8.4 Ce 81.5 1.9 87±3.5 -6.3 16.11 5.9 16.9+1.1 -4.7 Pr 9.85 1.82 10.8±0.7 -8.8 1.75 4.3 1.84+0.13 -5.0 Nd 36.6 3.86 39.9±1.9 -8.3 5.79 4.9 5.9+0.5 -1.8 Sm 8.48 1.9 8.0±0.4 6.1 1.05 3.5 1.1+0.09 -4.9 Eu 1.84 2.74 1.8±0.1 2.4 0.14 2.6 0.14+0.01 0.7 Gd 8.05 2.55 7.4±0.6 8.8 0.94 3.4 0.96+0.13 -2.1 Tb 1.17 3.12 1.1±0.2 6.7 0.12 3.5 0.14+0.02 -14.0 Dy 6.96 1.87 6.7±0.8 3.9 0.7 4.1 0.7+0.05 0.4 Ho 1.35 3.08 1.3±0.2 3.6 0.12 5.4 0.13+0.01 -9.0 Er 3.85 2.15 3.5±0.3 9.9 0.39 3.1 0.39+0.03 -0.8 Tm 0.53 2.1 0.57±0.08 -6.4 0.056 4.3 0.065+0.007 -0.7 Yb 3.35 3.31 3.3±0.3 1.5 0.4 5.2 0.44+0.03 -9.2 Lu 0.51 3.72 0.5±0.05 2.3 0.070 8.2 0.073+0.008 -3.8 Ta 15.9 1.57 16.2±1.1 -1.9 0.13 5.9 - - W 693 5.18 680±50 1.9 293 4.4 320+70 -8.4 Pb 26581 0.65 27200±700 -2.3 20359 0.6 20800+400 -2.1 Th 16.02 3.44 - - 0.84 5.6 0.83+0.09 1.2 U 31.31 2.65 - - 30.49 1.5 29.8+1.2 2.3 注:“-”表示没有认定值或者无法计算出相对误差。 表 5 本方法和碱熔法测定结果比较
Table 5. Comparison of the analytical results determined with the method and alkali dissolution
元素 GBW07282(Sn含量1.27%) GBW07231(Sn含量45.8%) GBW07232(Sn含量62.9%) 本方法
(μg/g)碱熔法
(μg/g)相对误差
(%)本方法
(μg/g)碱熔法
(μg/g)相对误差
(%)本方法
(μg/g)碱熔法
(μg/g)相对误差
(%)Nb 12.5 13.1 -4.6 16.7 17.2 -2.9 13.4 14.2 -5.6 Ta 3.71 3.57 3.9 2.74 3.01 -9.0 2.31 2.52 -8.3 Y 18.34 17.86 2.7 45.24 47.26 -4.3 36.58 38.06 -3.9 La 17.72 20.33 -12.8 48.82 54.55 -10.5 54.03 59.06 -8.5 Ce 35.72 37.02 -3.5 102 105 -3.2 98.64 110 -10.5 Pr 4.92 4.92 0.0 11.13 11.63 -4.3 10.3 12.25 -15.9 Nd 20.53 19.22 6.8 44.1 41.05 7.4 40.33 42.96 -6.1 Sm 4.71 4.54 3.7 8.94 8.7 2.8 8.33 8.69 -4.1 Eu 0.96 0.9 6.7 1.2 1.07 12.1 0.93 1.04 -10.6 Gd 3.96 3.78 4.8 7.98 7.34 8.7 6.44 6.77 -4.9 Tb 0.61 0.62 -1.6 1.33 1.21 9.9 1.1 1.14 -3.5 Dy 3.66 3.27 11.9 8.55 7.45 14.8 6.76 6.54 3.4 Ho 0.72 0.66 9.1 1.98 1.73 14.5 1.52 1.46 4.1 Er 2.04 1.90 7.4 6.83 6.3 8.4 5.5 5.2 5.8 Tm 0.27 0.29 -6.9 1.2 1.1 9.1 0.92 0.87 5.7 Yb 1.83 1.74 5.2 9.3 8.4 10.7 7.29 6.65 9.6 Lu 0.25 0.27 -7.4 1.64 1.56 5.1 1.32 1.24 6.5 -
[1] 吕中海, 胡卫波, 张俊, 等.锡矿石选矿工艺研究现状与进展[J].现代矿业, 2009(10):19-22. doi: 10.3969/j.issn.1674-6082.2009.10.005
Lü Z H, Hu W B, Zhang J, et al.Study status and progress of tin ore dressing process[J].Modern Mining, 2009(10):19-22. doi: 10.3969/j.issn.1674-6082.2009.10.005
[2] 杨小莉, 杨小丽, 李小丹, 等.敞开酸溶-电感耦合等离子体质谱法同时测定钨矿石和锡矿石中14种微量元素[J].岩矿测试, 2014, 33(3):321-326. doi: 10.3969/j.issn.0254-5357.2014.03.006 http://www.ykcs.ac.cn/article/id/956360be-9a54-4e0a-8ef1-0f9f0be45e32
Yang X L, Yang X L, Li X D, et al.Simultaneous determination of 14 trace elements in and tin ore with open acid digestion by inductively coupled plasma-mass spectrometry[J].Rock and Mineral Analysis, 2014, 33(3):321-326. doi: 10.3969/j.issn.0254-5357.2014.03.006 http://www.ykcs.ac.cn/article/id/956360be-9a54-4e0a-8ef1-0f9f0be45e32
[3] 杨惠玲, 夏辉, 杜天军, 等.电感耦合等离子体发射光谱法同时测定锡矿石中锡钨钼铜铅锌[J].岩矿测试, 2013, 32(6):887-892. doi: 10.3969/j.issn.0254-5357.2013.06.007 http://www.ykcs.ac.cn/article/id/12fc9719-0e4a-4249-be27-2e067212525c
Yang H L, Xia H, Du T J, et al.Simultaneous determination of Sn, W, Mo, Cu, Pb and Zn in tin ores by inductively coupled plasma-atomic emission spectrometry[J].Rock and Mineral Analysis, 2013, 32(6):887-892. doi: 10.3969/j.issn.0254-5357.2013.06.007 http://www.ykcs.ac.cn/article/id/12fc9719-0e4a-4249-be27-2e067212525c
[4] 袁永海, 尹昌慧, 元志红, 等.氢化物发生-原子荧光光谱法同时测定锡矿石中砷和锑[J].冶金分析, 2016, 36(3):39-43. http://d.old.wanfangdata.com.cn/Periodical/yjfx201603009
Yuan Y H, Yin C H, Yuan Z H, et al.Determination of arsenic and antimony in tin ore by hydride generation atomic fluorescence spectrometry[J].Metallurgical Analysis, 2016, 36(3):39-43. http://d.old.wanfangdata.com.cn/Periodical/yjfx201603009
[5] 陈小雁.多金属共生锡矿石中铅的EDTA滴定法测定[J].湿法冶金, 2016, 35(3):260-263. http://d.old.wanfangdata.com.cn/Periodical/sfyj201603022
Chen X Y.Determination of lead in tin ore by EDTA titrimetric method[J].Hydrometallurgy of China, 2016, 35(3):260-263. http://d.old.wanfangdata.com.cn/Periodical/sfyj201603022
[6] 童晓民, 王楠.熔片X射线荧光光谱法测定锡矿石中八种重金属元素[J].分析试验室, 2016, 35(1):97-101. http://www.cnki.com.cn/Article/CJFDTotal-FXSY201601025.htm
Tong X M, Wang N.X-ray fluorescence analysis of eight heavy metallic elements in tin ore using fused glass disc method[J].Chinese Journal of Analysis Laboratory, 2016, 35(1):97-101. http://www.cnki.com.cn/Article/CJFDTotal-FXSY201601025.htm
[7] Bergerl D, Brügmann G, Pernicka E.On smelting cassi-terite in geological and archaeological samples:Preparation and implications for provenance studies on metal artefacts with tin isotopes[J].Journal of Archaeological Science, 2017.DOI10.1007/s12520-017-0544-z.
[8] 松本健.利用碘化铵熔融分解SnO2、Sb2O3和Bi2O3以及在分析中的应用[J].地球与环境, 1983(5):58-59. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000000346510
Song B J.Decomposition of tin(Ⅳ) oxide, antimony(Ⅲ) oxide and bismuth(Ⅲ) oxide by fusion with ammonium iodide and its application for analysis of the environmental samples[J].Earth and Environment, 1983(5):58-59. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000000346510
[9] 何红蓼, 胡明月, 巩爱华, 等.碘化物升华分离-电感耦合等离子体光谱法测定土壤和沉积物中砷、锑、铋、镉、锡[J].光谱学与光谱分析, 2008, 28(3):663-666. doi: 10.3964/j.issn.1000-0593.2008.03.044
He H L, Hu M Y, Gong A H, et al.Determination of As, Sb, Bi, Cd and Sn in soils and sediments by inductively coupled plasma atomic emission spectrometry after sublimation separation as iodides[J].Spectroscopy and Spectral Analysis, 2008, 28(3):663-666. doi: 10.3964/j.issn.1000-0593.2008.03.044
[10] 段文峰, 龚露.碘化铵挥发与分离制样技术在原子荧光光谱法测定地质样品中痕量锗、锡、锑的运用[J].理化检验(化学分册), 2014, 50(8):1004-1007. http://d.wanfangdata.com.cn/Periodical_lhjy-hx201408019.aspx
Duan W F, Gong L.Application of volatilization of iodides of Ge, Sn and Sb by NH4I as techniques of sample pretreatment and separation to AFS determination of the 3 elements in geological samples[J].Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2014, 50(8):1004-1007. http://d.wanfangdata.com.cn/Periodical_lhjy-hx201408019.aspx
[11] 陈国娟.碘化铵挥发-原子荧光光谱法测定铅锌矿中的锡[J].化学与黏合, 2016, 38(6):461-463. http://d.old.wanfangdata.com.cn/Periodical/hxynh201606021
Chen G J.Determination of tin in lead-zinc mine by the volatilization of ammonium iodide-atomic fluorescence spectrometry[J].Chemistry and Adhesion, 2016, 38(6):461-463. http://d.old.wanfangdata.com.cn/Periodical/hxynh201606021
[12] 岩石矿物分析编委会.岩石矿物分析(第四版 第三分册)[M].北京:地质出版社, 2011:118-207.
The Editorial Committee of Rock and Mineral Analysis.Rock and Mineral Analysis (Fourth Edition:Volume Ⅲ)[M].Beijing:Geological Publishing House, 2011:118-207.
[13] 何红蓼, 李冰, 韩丽荣, 等.封闭压力酸溶-ICP-MS法分析地质样品中47个元素的评价[J].分析试验室, 2002, 21(5):8-12. doi: 10.3969/j.issn.1000-0720.2002.05.004
He H L, Li B, Han L R, et al.Evaluation of determining 47 elements in geological samples by pressurized acid digestion-ICP-MS[J].Chinese Journal of Analysis Laboratory, 2002, 21(5):8-12. doi: 10.3969/j.issn.1000-0720.2002.05.004
-