中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

原子荧光光谱仪工作温度对水体中砷含量测定的影响

刘景龙, 吴巧丽. 原子荧光光谱仪工作温度对水体中砷含量测定的影响[J]. 岩矿测试, 2019, 38(2): 228-232. doi: 10.15898/j.cnki.11-2131/td.201804260052
引用本文: 刘景龙, 吴巧丽. 原子荧光光谱仪工作温度对水体中砷含量测定的影响[J]. 岩矿测试, 2019, 38(2): 228-232. doi: 10.15898/j.cnki.11-2131/td.201804260052
Jing-long LIU, Qiao-li WU. Effect of Temperatures on Determination of Arsenic in Water by Atomic Fluorescence Spectrometry[J]. Rock and Mineral Analysis, 2019, 38(2): 228-232. doi: 10.15898/j.cnki.11-2131/td.201804260052
Citation: Jing-long LIU, Qiao-li WU. Effect of Temperatures on Determination of Arsenic in Water by Atomic Fluorescence Spectrometry[J]. Rock and Mineral Analysis, 2019, 38(2): 228-232. doi: 10.15898/j.cnki.11-2131/td.201804260052

原子荧光光谱仪工作温度对水体中砷含量测定的影响

详细信息
    作者简介: 刘景龙, 硕士, 工程师, 从事环境监测分析工作。E-mail:ljlnby@126.com
  • 中图分类号: O657.31;O613.63

Effect of Temperatures on Determination of Arsenic in Water by Atomic Fluorescence Spectrometry

  • 氢化物发生-原子荧光光谱法受到仪器工作温度的影响主要来自于氢化物发生反应和仪器漂移,工作温度升高会增加仪器的背景值,而过低的工作温度又不利于氢化物发生反应进行。本文根据原子荧光光谱测定水体中砷的方法,在10℃、20℃和30℃的工作温度条件下,分别测试校准曲线、空白样品、自配质控样品和有证标准物质来确定最适宜的工作温度。结果表明:三个温度条件下的校准曲线均具有较好的线性相关性;仪器工作温度过高会引起空白荧光值变大、检出限升高,同时会造成仪器灵敏度的降低,增加了样品测试误差,测试结果不能满足准确度的要求。本文提出,利用原子荧光光谱法测定砷含量时,应控制仪器工作温度在10~20℃,并且保证温度变化相对稳定。
  • 加载中
  • 图 1  不同工作温度条件下校准曲线

    Figure 1. 

    表 1  不同室温条件下空白样品的荧光强度

    Table 1.  Intensity of blank samples in different room temperature

    室温(℃) 连续11次空白荧光强度测量值 测量均值 标准偏差 检出限(μg/L)
    31.73 28.86 34.15 26.28
    10 30.24 30.52 31.09 30.27 30.39 2.56 0.02
    26.05 33.53 31.56
    35.73 35.99 30.07 32.04
    20 32.40 25.80 27.10 22.78 28.73 4.92 0.04
    28.58 22.21 23.78
    44.75 46.10 50.32 41.61
    30 42.09 41.38 36.10 43.51 42.91 4.57 0.04
    34.72 44.03 47.44
    下载: 导出CSV

    表 2  不同工作温度条件下测定自配质控样品的浓度

    Table 2.  Concentration of QC samples at different working temperatures

    室温(℃) 质控1# (μg/L) 相对误差(%) 质控2# (μg/L) 相对误差(%) 质控3# (μg/L) 相对误差(%)
    10 2.06 3.0 10.3 3.0 15.2 1.3
    20 1.90 4.5 10.4 4.0 15.4 2.7
    30 1.85 7.7 9.63 3.7 15.8 5.6
    下载: 导出CSV

    表 3  不同工作温度条件下测定标准样品的浓度

    Table 3.  Concentration of standard samples at different working temperatures

    室温(℃) 标准样品9次测试值(μg/L) 平均值(μg/L) 相对标准偏差(%) 相对误差(%)
    10 27.4 27.1 27.1 27.5 27.0 27.1 0.96 4.2
    27.5 27.0 26.9 26.8 (合格)
    20 25.9 26.0 25.9 25.8 25.6 25.7 0.86 1.2
    25.6 25.5 25.5 25.3 (合格)
    30 28.4 28.5 28.8 28.6 28.7 28.5 0.64 9.6
    28.3 28.7 28.6 28.3 (不合格)
    下载: 导出CSV
  • [1]

    杨常青, 张双双, 吴楠, 等.微波消解-氢化物发生原子荧光光谱法和质谱法测定高有机质无烟煤中汞砷的可行性研究[J].岩矿测试, 2016, 35(5):481-487. http://www.ykcs.ac.cn/article/id/ykcs_200705144

    Yang C Q, Zhang S S, Wu N, et al. Feasibility study on content determination of mercury and arsenic in high organic anthracite by microwave digestion-hydride generation-atomic fluorescence spectrometry and mass spectrometry[J].Rock and Mineral Analysis, 2016, 35(5):481-487. http://www.ykcs.ac.cn/article/id/ykcs_200705144

    [2]

    李刚, 胡斯宪, 陈琳玲.原子荧光光谱分析技术的创新与发展[J].岩矿测试, 2013, 32(3):359-376. http://www.ykcs.ac.cn/article/id/0c8cca2d-b0a6-46c7-be65-25f1c32a1e6b

    Li G, Hu S X, Chen L L.Innovation and development for atomic fluorescence spectrometry analysis[J].Rock and Mineral Analysis, 2013, 32(3):359-376. http://www.ykcs.ac.cn/article/id/0c8cca2d-b0a6-46c7-be65-25f1c32a1e6b

    [3]

    张锦茂, 梁敬, 董芳.中国30多年来原子荧光光谱仪器的发展与应用[J].中国无机分析化学, 2013, 3(4):1-10. http://d.old.wanfangdata.com.cn/Periodical/zgwjfxhxwz201304001

    Zhang J M, Liang J, Dong F. Development of vapor generation-atomic fluorescence spectrometer and its applications in China in last more than thirty years[J].Inorganic Analytical Abstracts of China, 2013, 3(4):1-10. http://d.old.wanfangdata.com.cn/Periodical/zgwjfxhxwz201304001

    [4]

    Li Z X, Yang X M, Guo Y A, et al.Simultaneous deter-mination of arsenic, antimony, bismuth and mercury in geological materials by vapor generation-four-channel non-dispersive atomic fluorescence spectrometry[J].Talanta, 2008, 74:915-921. doi: 10.1016/j.talanta.2007.07.028

    [5]

    刘曙, 华若男, 朱志秀, 等.原子荧光光谱法测定萤石中砷含量:实验室内验证[J].分析试验室, 2015, 34(8):939-943. http://cdmd.cnki.com.cn/Article/CDMD-10255-1016707733.htm

    Liu S, Hua R N, Zhu Z X, et al.Determination of arsenic content in fluorite by atomic fluorescence spectrometry:In-house validation[J].Chinese Journal of Analysis Laboratory, 2015, 34(8):939-943. http://cdmd.cnki.com.cn/Article/CDMD-10255-1016707733.htm

    [6]

    何军, 冯伟.氢化物发生-原子荧光法同时测定水中的砷和铅的研究[J].中国环境监测, 2011, 27(5):30-32. doi: 10.3969/j.issn.1002-6002.2011.05.008

    He J, Feng W.Simultaeous determination of trace amount of As and Pb in water by HG-AFS[J]. Environmental Monitoring in China, 2011, 27(5):30-32. doi: 10.3969/j.issn.1002-6002.2011.05.008

    [7]

    Yang X A, Lu X P, Zhang W B, et al.Selective deter-mination of four arsenic species in rice and water samples by modified graphite electrode-based electrolytic hydride generation coupled with atomic fluorescence spectrometry[J].Talanta, 2016, 159:127-136. doi: 10.1016/j.talanta.2016.06.009

    [8]

    Carolina L T, Rodrigo A G, Marlo S A, et al.Deter-mination of total arsenic in seawater by hydride generation atomic fluorescence spectrometry[J].Microchemical Journal, 2010, 96:157-160. doi: 10.1016/j.microc.2010.03.004

    [9]

    张庆建, 丁仕兵, 郭兵, 等.原子荧光光谱法测定固体废弃物——氧化皮中的砷[J].中国无机分析化学, 2013, 3(2):25-27. doi: 10.3969/j.issn.2095-1035.2013.02.006

    Zhang Q J, Ding S B, Guo B, et al.Determination of arsenic in mill scale solid waste by atomic fluorescence spectrometry[J].Inorganic Analytical Abstracts of China, 2013, 3(2):25-27. doi: 10.3969/j.issn.2095-1035.2013.02.006

    [10]

    张洪文, 张永辉, 韩康琴, 等.多道全自动原子荧光光谱法测定土壤中的砷和汞[J].中国无机分析化学, 2014, 4(1):18-21. doi: 10.3969/j.issn.2095-1035.2014.01.005

    Zhang H W, Zhang Y H, Han K Q, et al.Determination of arsenic and mercury in soils by multi-channel automatic atomic fluorescence spectrometry[J].Chinese Journal of Inorganic Analytical Chemistry, 2014, 4(1):18-21. doi: 10.3969/j.issn.2095-1035.2014.01.005

    [11]

    Duan X C, Zhang J Y, Bu F L.Direct determination of arsenic in soil samples by fast pyrolysis-chemical vapor generation using sodium formate as a reductant followed by nondispersive atomic fluorescence spectrometry[J].Spectrochimica Acta Part B:Atomic Spectroscopy, 2015, 111:87-91. doi: 10.1016/j.sab.2015.07.005

    [12]

    齐素芬.AFS-2202双道原子荧光计测定砷锡铋汞中应注意的几个问题[J].岩矿测试, 2006, 25(2):197-198. doi: 10.3969/j.issn.0254-5357.2006.02.023 http://www.ykcs.ac.cn/article/id/ykcs_20060264

    Qi S F.Discussion on some problems in determination of As, Sn, Bi and Hg by AFS-2202 double-channel atomic fluorescence spectrometry[J].Rock and Mineral Analysis, 2006, 25(2):197-198. doi: 10.3969/j.issn.0254-5357.2006.02.023 http://www.ykcs.ac.cn/article/id/ykcs_20060264

    [13]

    李学文, 金兰淑, 李会杰, 等.氢化物发生-原子荧光光谱法测定痕量砷时仪器工作条件的选择[J].理化检验(化学分册), 2009, 45(1):73-74. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lhjy-hx200901026

    Li X W, Jin L S, Li H J, et al.Choice of working condition of instrument in HG-AFS determination of trace amounts of arsenic[J].Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2009, 45(1):73-74. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lhjy-hx200901026

    [14]

    岳宇超, 常恺, 唐志华.原子荧光仪测定砷实验条件的优化[J].分析仪器, 2018(1):167-173. doi: 10.3969/j.issn.1001-232x.2018.01.031

    Yue Y C, Chang K, Tang Z H.Optimization of experimental conditions for determination of arsenic by atomic fluorescence spectrometry[J].Analytical Instrumentation, 2018(1):167-173. doi: 10.3969/j.issn.1001-232x.2018.01.031

    [15]

    Cabon J Y, Giamarchi P, Bihan A L.Determination of iron in seawater by electrothermal atomic absorption spectrometry and atomic fluorescence spectrometry:A comparative study[J].Analytica Chimica Acta, 2010, 664:114-120. doi: 10.1016/j.aca.2010.02.014

    [16]

    赵如琳, 王骏峰, 孙梅, 等.氢化物发生-原子荧光光谱法测定处理废水中砷[J].冶金分析, 2013, 33(1):59-64. doi: 10.3969/j.issn.1000-7571.2013.01.011

    Zhao R L, Wang J F, Sun M, et al.Determination of arsenic in treated sewage by hydride generation-atomic fluorescence spectrometry[J].Metallurgical Analysis, 2013, 33(1):59-64. doi: 10.3969/j.issn.1000-7571.2013.01.011

    [17]

    程新良, 郭金鑫, 高远.双通道原子荧光法同时测定水中砷和硒[J].化学分析计量, 2015, 24(4):75-77. doi: 10.3969/j.issn.1008-6145.2015.04.022

    Cheng X L, Guo J X, Gao Y.Simultaneous determination of arsenic and selenium in water samples by double channel atomic fluorescence spectrometry[J].Chemical Analysis and Meterage, 2015, 24(4):75-77. doi: 10.3969/j.issn.1008-6145.2015.04.022

    [18]

    马旻, 柴昌信, 祝建国.氢化物发生-原子荧光光谱法的干扰及其消除[J].分析测试技术与仪器, 2011, 17(3):179-182. doi: 10.3969/j.issn.1006-3757.2011.03.011

    Ma M, Chai C X, Zhu J G.Brief discussion on interference in hydride generation-atomic fluorescence spectrometry and its elimination[J].Analysis and Testing Technology and Instuments, 2011, 17(3):179-182. doi: 10.3969/j.issn.1006-3757.2011.03.011

  • 加载中

(1)

(3)

计量
  • 文章访问数:  1003
  • PDF下载数:  81
  • 施引文献:  0
出版历程
收稿日期:  2018-04-26
修回日期:  2018-08-13
录用日期:  2019-01-04

目录