Effect of Temperatures on Determination of Arsenic in Water by Atomic Fluorescence Spectrometry
-
摘要: 氢化物发生-原子荧光光谱法受到仪器工作温度的影响主要来自于氢化物发生反应和仪器漂移,工作温度升高会增加仪器的背景值,而过低的工作温度又不利于氢化物发生反应进行。本文根据原子荧光光谱测定水体中砷的方法,在10℃、20℃和30℃的工作温度条件下,分别测试校准曲线、空白样品、自配质控样品和有证标准物质来确定最适宜的工作温度。结果表明:三个温度条件下的校准曲线均具有较好的线性相关性;仪器工作温度过高会引起空白荧光值变大、检出限升高,同时会造成仪器灵敏度的降低,增加了样品测试误差,测试结果不能满足准确度的要求。本文提出,利用原子荧光光谱法测定砷含量时,应控制仪器工作温度在10~20℃,并且保证温度变化相对稳定。Abstract:
BACKGROUNDThe influence of the operating temperature on Hydride Generation-Atomic Fluorescence Spectrometry comes mainly from the hydride reaction and the drift of the instrument. An increase in operating temperature increases the background value of the instrument, while a low operating temperature is not conducive to hydride reaction. OBJECTIVESTo investigate the effect of operating temperature on the determination of arsenic and to find the optimal temperature conditions. METHODSAccording to the standard method of Atomic Fluorescence Spectrometry for determination of arsenic in water, the calibration curves, the blank samples, the QC samples and the standard materials were analyzed at temperatures of 10℃, 20℃ and 30℃, respectively. RESULTSThe calibration curves in three temperature conditions had good linear correlation. However, when the operating temperature increased, the blank fluorescence value and detection limit increased accordingly, and the instrument sensitivity decreased. The analytical results cannot meet the accuracy requirement. CONCLUSIONSWhen the arsenic content is determined by Atomic Fluorescence Spectrometry, the working temperature of the instrument should be controlled at 10-20℃, where the temperature change is relatively stable. -
Key words:
- water /
- arsenic /
- Atomic Fluorescence Spectrometry /
- hydride generation /
- operating temperature /
- sensitivity
-
表 1 不同室温条件下空白样品的荧光强度
Table 1. Intensity of blank samples in different room temperature
室温(℃) 连续11次空白荧光强度测量值 测量均值 标准偏差 检出限(μg/L) 31.73 28.86 34.15 26.28 10 30.24 30.52 31.09 30.27 30.39 2.56 0.02 26.05 33.53 31.56 35.73 35.99 30.07 32.04 20 32.40 25.80 27.10 22.78 28.73 4.92 0.04 28.58 22.21 23.78 44.75 46.10 50.32 41.61 30 42.09 41.38 36.10 43.51 42.91 4.57 0.04 34.72 44.03 47.44 表 2 不同工作温度条件下测定自配质控样品的浓度
Table 2. Concentration of QC samples at different working temperatures
室温(℃) 质控1# (μg/L) 相对误差(%) 质控2# (μg/L) 相对误差(%) 质控3# (μg/L) 相对误差(%) 10 2.06 3.0 10.3 3.0 15.2 1.3 20 1.90 4.5 10.4 4.0 15.4 2.7 30 1.85 7.7 9.63 3.7 15.8 5.6 表 3 不同工作温度条件下测定标准样品的浓度
Table 3. Concentration of standard samples at different working temperatures
室温(℃) 标准样品9次测试值(μg/L) 平均值(μg/L) 相对标准偏差(%) 相对误差(%) 10 27.4 27.1 27.1 27.5 27.0 27.1 0.96 4.2 27.5 27.0 26.9 26.8 (合格) 20 25.9 26.0 25.9 25.8 25.6 25.7 0.86 1.2 25.6 25.5 25.5 25.3 (合格) 30 28.4 28.5 28.8 28.6 28.7 28.5 0.64 9.6 28.3 28.7 28.6 28.3 (不合格) -
[1] 杨常青, 张双双, 吴楠, 等.微波消解-氢化物发生原子荧光光谱法和质谱法测定高有机质无烟煤中汞砷的可行性研究[J].岩矿测试, 2016, 35(5):481-487. http://www.ykcs.ac.cn/article/id/ykcs_200705144
Yang C Q, Zhang S S, Wu N, et al. Feasibility study on content determination of mercury and arsenic in high organic anthracite by microwave digestion-hydride generation-atomic fluorescence spectrometry and mass spectrometry[J].Rock and Mineral Analysis, 2016, 35(5):481-487. http://www.ykcs.ac.cn/article/id/ykcs_200705144
[2] 李刚, 胡斯宪, 陈琳玲.原子荧光光谱分析技术的创新与发展[J].岩矿测试, 2013, 32(3):359-376. http://www.ykcs.ac.cn/article/id/0c8cca2d-b0a6-46c7-be65-25f1c32a1e6b
Li G, Hu S X, Chen L L.Innovation and development for atomic fluorescence spectrometry analysis[J].Rock and Mineral Analysis, 2013, 32(3):359-376. http://www.ykcs.ac.cn/article/id/0c8cca2d-b0a6-46c7-be65-25f1c32a1e6b
[3] 张锦茂, 梁敬, 董芳.中国30多年来原子荧光光谱仪器的发展与应用[J].中国无机分析化学, 2013, 3(4):1-10. http://d.old.wanfangdata.com.cn/Periodical/zgwjfxhxwz201304001
Zhang J M, Liang J, Dong F. Development of vapor generation-atomic fluorescence spectrometer and its applications in China in last more than thirty years[J].Inorganic Analytical Abstracts of China, 2013, 3(4):1-10. http://d.old.wanfangdata.com.cn/Periodical/zgwjfxhxwz201304001
[4] Li Z X, Yang X M, Guo Y A, et al.Simultaneous deter-mination of arsenic, antimony, bismuth and mercury in geological materials by vapor generation-four-channel non-dispersive atomic fluorescence spectrometry[J].Talanta, 2008, 74:915-921. doi: 10.1016/j.talanta.2007.07.028
[5] 刘曙, 华若男, 朱志秀, 等.原子荧光光谱法测定萤石中砷含量:实验室内验证[J].分析试验室, 2015, 34(8):939-943. http://cdmd.cnki.com.cn/Article/CDMD-10255-1016707733.htm
Liu S, Hua R N, Zhu Z X, et al.Determination of arsenic content in fluorite by atomic fluorescence spectrometry:In-house validation[J].Chinese Journal of Analysis Laboratory, 2015, 34(8):939-943. http://cdmd.cnki.com.cn/Article/CDMD-10255-1016707733.htm
[6] 何军, 冯伟.氢化物发生-原子荧光法同时测定水中的砷和铅的研究[J].中国环境监测, 2011, 27(5):30-32. doi: 10.3969/j.issn.1002-6002.2011.05.008
He J, Feng W.Simultaeous determination of trace amount of As and Pb in water by HG-AFS[J]. Environmental Monitoring in China, 2011, 27(5):30-32. doi: 10.3969/j.issn.1002-6002.2011.05.008
[7] Yang X A, Lu X P, Zhang W B, et al.Selective deter-mination of four arsenic species in rice and water samples by modified graphite electrode-based electrolytic hydride generation coupled with atomic fluorescence spectrometry[J].Talanta, 2016, 159:127-136. doi: 10.1016/j.talanta.2016.06.009
[8] Carolina L T, Rodrigo A G, Marlo S A, et al.Deter-mination of total arsenic in seawater by hydride generation atomic fluorescence spectrometry[J].Microchemical Journal, 2010, 96:157-160. doi: 10.1016/j.microc.2010.03.004
[9] 张庆建, 丁仕兵, 郭兵, 等.原子荧光光谱法测定固体废弃物——氧化皮中的砷[J].中国无机分析化学, 2013, 3(2):25-27. doi: 10.3969/j.issn.2095-1035.2013.02.006
Zhang Q J, Ding S B, Guo B, et al.Determination of arsenic in mill scale solid waste by atomic fluorescence spectrometry[J].Inorganic Analytical Abstracts of China, 2013, 3(2):25-27. doi: 10.3969/j.issn.2095-1035.2013.02.006
[10] 张洪文, 张永辉, 韩康琴, 等.多道全自动原子荧光光谱法测定土壤中的砷和汞[J].中国无机分析化学, 2014, 4(1):18-21. doi: 10.3969/j.issn.2095-1035.2014.01.005
Zhang H W, Zhang Y H, Han K Q, et al.Determination of arsenic and mercury in soils by multi-channel automatic atomic fluorescence spectrometry[J].Chinese Journal of Inorganic Analytical Chemistry, 2014, 4(1):18-21. doi: 10.3969/j.issn.2095-1035.2014.01.005
[11] Duan X C, Zhang J Y, Bu F L.Direct determination of arsenic in soil samples by fast pyrolysis-chemical vapor generation using sodium formate as a reductant followed by nondispersive atomic fluorescence spectrometry[J].Spectrochimica Acta Part B:Atomic Spectroscopy, 2015, 111:87-91. doi: 10.1016/j.sab.2015.07.005
[12] 齐素芬.AFS-2202双道原子荧光计测定砷锡铋汞中应注意的几个问题[J].岩矿测试, 2006, 25(2):197-198. doi: 10.3969/j.issn.0254-5357.2006.02.023 http://www.ykcs.ac.cn/article/id/ykcs_20060264
Qi S F.Discussion on some problems in determination of As, Sn, Bi and Hg by AFS-2202 double-channel atomic fluorescence spectrometry[J].Rock and Mineral Analysis, 2006, 25(2):197-198. doi: 10.3969/j.issn.0254-5357.2006.02.023 http://www.ykcs.ac.cn/article/id/ykcs_20060264
[13] 李学文, 金兰淑, 李会杰, 等.氢化物发生-原子荧光光谱法测定痕量砷时仪器工作条件的选择[J].理化检验(化学分册), 2009, 45(1):73-74. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lhjy-hx200901026
Li X W, Jin L S, Li H J, et al.Choice of working condition of instrument in HG-AFS determination of trace amounts of arsenic[J].Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2009, 45(1):73-74. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lhjy-hx200901026
[14] 岳宇超, 常恺, 唐志华.原子荧光仪测定砷实验条件的优化[J].分析仪器, 2018(1):167-173. doi: 10.3969/j.issn.1001-232x.2018.01.031
Yue Y C, Chang K, Tang Z H.Optimization of experimental conditions for determination of arsenic by atomic fluorescence spectrometry[J].Analytical Instrumentation, 2018(1):167-173. doi: 10.3969/j.issn.1001-232x.2018.01.031
[15] Cabon J Y, Giamarchi P, Bihan A L.Determination of iron in seawater by electrothermal atomic absorption spectrometry and atomic fluorescence spectrometry:A comparative study[J].Analytica Chimica Acta, 2010, 664:114-120. doi: 10.1016/j.aca.2010.02.014
[16] 赵如琳, 王骏峰, 孙梅, 等.氢化物发生-原子荧光光谱法测定处理废水中砷[J].冶金分析, 2013, 33(1):59-64. doi: 10.3969/j.issn.1000-7571.2013.01.011
Zhao R L, Wang J F, Sun M, et al.Determination of arsenic in treated sewage by hydride generation-atomic fluorescence spectrometry[J].Metallurgical Analysis, 2013, 33(1):59-64. doi: 10.3969/j.issn.1000-7571.2013.01.011
[17] 程新良, 郭金鑫, 高远.双通道原子荧光法同时测定水中砷和硒[J].化学分析计量, 2015, 24(4):75-77. doi: 10.3969/j.issn.1008-6145.2015.04.022
Cheng X L, Guo J X, Gao Y.Simultaneous determination of arsenic and selenium in water samples by double channel atomic fluorescence spectrometry[J].Chemical Analysis and Meterage, 2015, 24(4):75-77. doi: 10.3969/j.issn.1008-6145.2015.04.022
[18] 马旻, 柴昌信, 祝建国.氢化物发生-原子荧光光谱法的干扰及其消除[J].分析测试技术与仪器, 2011, 17(3):179-182. doi: 10.3969/j.issn.1006-3757.2011.03.011
Ma M, Chai C X, Zhu J G.Brief discussion on interference in hydride generation-atomic fluorescence spectrometry and its elimination[J].Analysis and Testing Technology and Instuments, 2011, 17(3):179-182. doi: 10.3969/j.issn.1006-3757.2011.03.011