Preparation of High-phosphorus Iron Ore Reference Materials for Chemical Composition Analysis
-
摘要: 高磷铁矿石的分析测试过程需要基体组分相似、含量适中、定值组分全的标准物质进行质量监控,目前我国没有高磷铁矿石标准物质,现有铁矿石标准物质因基体组分不尽相同,磷元素含量大部分低于0.25%,而高磷铁矿石中磷含量均高于0.25%,这些标准物质难以满足高磷铁矿石产品的分析测试质量监控要求。基于此,本文研制了3个高磷铁矿石成分分析标准物质,样品分别采集于鄂西地区湖北宜昌秭归县野狼坪矿区、湖北恩施长岭矿区(武钢矿区)、湖北宜昌长阳县火烧坪矿区(宝钢长阳矿区),磷和铁含量均呈一定梯度,基本覆盖高磷铁矿的含量范围。均匀性和稳定性对SiO2、Al2O3、TiO2、P、K2O、Na2O、Fe、MnO、CaO、MgO、FeO、LOI、S、Cu、Pb、Zn、Cr、Ni、Co、Cd、Sr、Ba、V、As、Hg共25个组分进行检验,均匀性检验采用方差分析F检验法和测试结果的相对标准偏差进行评价,稳定性检验采用直线拟合,t检验法进行评估。经检验,样品均匀性、稳定性良好;定值采用11家实验室协作,采用2种以上不同原理的方法进行测试,定值组分包括主量元素、微量元素共25项,其中24项提供认定值及不确定度,Hg提供参考值。磷的含量分别为0.285%、不确定度0.010%,0.735%、不确定度0.020%,1.73%、不确定度0.05%,总铁含量分别为35.18%、不确定度0.20%,41.46%、不确定度0.20%,51.44%、不确定度0.13%。本次研制的高磷铁矿石标准物质可用于高磷铁矿的勘查、评价和综合利用开发中对标准物质的需求。Abstract:
BACKGROUNDThe analysis and testing process of high-phosphorus iron ore requires quality control of standard materials with similar matrix components, moderate content and fixed value components. At present, there are no certified reference materials available for high-phosphorus iron ore chemical composition analysis in China. The available iron ore reference materials in China and abroad have different matrix compositions and phosphorus contents. Phosphorus content is mostly less than 0.25%, while phosphorus content in high-phosphorus iron ore is higher than 0.25%. It is difficult to meet the analytical quality control requirements of high-phosphorus iron ore products with these reference materials. OBJECTIVESTo develop three high-phosphorus iron ore reference materials with contents of iron and phosphorus forming a certain gradient and covering the content range of high phosphorus iron ore. CANDIDATES CHARACTERISTICS The sample GPFe-1 is composed of 40% metallic minerals, 25% quartz, 15% colloidal phosphate, 20% oolitic chlorite, clay mineral, apatite, carbonate minerals, rock debris and a small amount of organic matter. The metal minerals are hematite, limonite and pyrite.The contents of iron and phosphorus are 31%-37% and 0.1%-0.5%, respectively. The sample GPFe-2 consists of 40% hematite, 5% limonite, 55% gangue mineral, and minor collophanite and pyrite. The iron and phosphorus contents in GPFe-2 are 38%-44% and 0.6%-1.0%, respectively. The sample GPFe-3 is composed of 70% metallic minerals (hematite, limonite, pyrite), 5% quartz, 1% collophane, 3% chlorite, 1% cuttings, and minor apatite and calcite. The contents of iron and phosphorus in this sample are 48%-55% and 1.4%-2.0%, respectively. METHODSThe samples of high-phosphorus iron ores were collected from the western Hubei Yelangping mining area in Zigui county of Yichang city, the Enshi Changling mining area (Wuhan iron and steel corporation mining area), and the Huoshaoping mining area in Changyang county of Yichang city (Bao Steel Group Changyang mining area). Uniformity and stability were tested for 25 components of SiO2, Al2O3, TiO2, P, K2O, Na2O, Fe, MnO, CaO, MgO, FeO, LOI, S, Cu, Pb, Zn, Cr, Ni, Co, Cd, Sr, Ba, V, As and Hg. Uniformity test was evaluated by variance analysis F test and relative standard deviation of test results. Stability test was evaluated by linear fitting and t-test. RESULTSThree samples were homogeneous and stable. The RSD of major elements and trace elements of 3 samples was less than 5%. The F value of variance test was less than the critical value F0.05(24, 25)=1.96, indicating that all the components of 3 samples were homogeneous. The stability test showed that the components of 3 samples had no directional change and statistically significant differences, indicating that the elements in the 3 samples were stable. The verified value was tested by 11 laboratories and by two or more different principles. The verified value components included 25 major elements and trace elements. Three components of Na2O, S and Hg of GPFe-1 had reference values, whereas other 22 components had certified values and uncertainties. The contents of iron and phosphorus in GPFe-1 were 35.18%±0.20% and 0.285%±0.010%, respectively. Two components of Cd and Hg in GPFe-2 had reference values, and other 23 components had certified values and uncertainties. The contents of iron and phosphorus in GPFe-2 were 41.46%±0.20% and 0.735%±0.020%, respectively. Two components of FeO and Hg in GPFe-3 had reference values, while other 23 components had certified values and uncertainties. The contents of iron and phosphorus in GPFe-3 were 51.44%±0.13% and 1.73%±0.05%, respectively. CONCLUSIONSThe developed high-phosphorus iron ore reference materials meet the requirements for exploration, evaluation, and comprehensive utilization of high-phosphorus iron ore. -
Key words:
- high-phosphorus iron ore /
- reference materials /
- uniformity /
- stability /
- certified values
-
表 1 样品概况
Table 1. Information of samples
样品编号
Sample采样地点
Sampling site矿物组成
Mineral constituent铁含量
Iron content(%)磷含量
Phosphorus content(%)采样量
Sample weight(kg)GPFe-1 湖北秭归
Zigui county, Hubei Province金属矿物40%,石英25%,胶磷矿15%,鲕绿泥石20%,黏土矿物、磷灰石、碳酸盐矿物、岩屑、有机质少量(金属矿物有:赤铁矿、褐铁矿、黄铁矿)
Metallic mineral (40%), quartz (25%), colloidal phosphate (15%), oolitic chlorite (20%), clay mineral, apatite, carbonate mineral, rock debris, a small amount of organic matter (Metal minerals include hematite, limonite and pyrite)31~37 0.1~0.5 170 GPFe-2 湖北恩施
Enshi county, Hubei Province赤铁矿40%,褐铁矿5%,脉石矿物55%,胶磷矿少量,黄铁矿少量
Hematite (40%), limonite (5%), gangue mineral (55%), a small amount of collophanite and pyrite38~44 0.6~1.0 170 GPFe-3 湖北长阳
Changyang county, Hubei Province金属矿物70%(赤铁矿、褐铁矿、黄铁矿),石英5%,胶磷矿1%,绿泥石3%,岩屑1%,磷灰石、方解石少量
Metallic minerals (70%)include hematite, limonite, and pyrite, quartz (5%), collophane (1%), chlorite (3%), cuttings (1%), a small amount of apatite and calcite48~55 1.4~2.0 170 表 2 高磷铁矿石样品粒度分布
Table 2. Grain distribution of phosphate rock
粒径Partical size(μm) GPFe-1 GPFe-2 GPFe -3 区间百分含量
Interval percentage(%)累积百分含量
Cumulative percentage(%)区间百分含量
Interval percentage(%)累积百分含量
Cumulative percentage(%)区间百分含量
Interval percentage(%)累积百分含量
Cumulative percentage(%)1.00~1.30 4.23 40.09 4.74 53.25 5.31 61.80 1.30~2.50 6.99 47.08 6.78 60.03 6.63 68.43 2.50~5.00 8.11 55.19 7.82 67.85 6.06 74.49 5.00~6.50 4.15 59.34 3.44 71.29 2.78 77.27 6.50~10.00 7.43 66.77 5.54 76.83 4.49 81.76 10.00~13.00 4.87 71.64 3.95 80.78 3.66 85.42 13.00~18.00 6.00 77.64 4.95 85.73 4.35 89.77 18.00~20.00 1.94 79.58 1.65 87.38 1.39 91.16 20.00~23.00 2.47 82.05 2.19 89.57 1.96 93.12 23.00~28.00 3.20 85.25 2.96 92.53 2.90 96.02 28.00~32.00 2.03 87.28 1.83 94.36 1.76 97.78 32.00~38.00 2.50 89.78 2.11 96.47 1.40 99.18 38.00~45.00 2.57 92.35 1.84 98.31 0.63 99.81 45.00~53.00 2.68 95.03 1.08 99.39 0.17 99.98 53.00~63.00 2.64 97.67 0.49 99.88 0.02 100 63.00~75.00 1.57 99.24 0.12 100 0 100 表 3 均匀性检验结果
Table 3. Homogeneity test results of candidates
样品编号
Sample项目
Parameter组分含量
Component content (%)组分含量
Component content (%)SiO2 Al2O3 TiO2 P K2O Na2O Fe MnO CaO MgO FeO LOI S Cu Pb Zn Cr Ni Co Cd Sr Ba V As Hg GPFe-1 x 40.9 4.25 0.133 0.273 0.032 0.008 35.1 0.042 0.273 0.224 0.273 3.31 56.7 20.7 20.7 91.3 46.7 41.8 35.1 75.1 120 110 324 12.4 0.058 RSD(%) 0.25 0.63 2.33 1.43 2.79 2.92 0.25 3.37 1.83 2.9 2.3 1.26 2.32 3.73 3.35 2.08 1.67 2.62 2.2 1.68 1.4 1.25 0.31 2.87 4.84 F 1.35 1.29 1.09 1.45 1.58 1.08 1.01 1.19 1.53 1.68 1.48 1.39 1.21 1.72 1.39 1.07 1.62 1.05 1.38 1.2 1.75 1.77 1.85 1.27 1.67 ubb 0.04 0.01 0.0006 0.002 0.0004 0.0001 0.006 0.0004 0.002 0.003 0.003 0.02 0.40 0.40 0.30 0.30 0.40 0.20 0.30 0.40 0.90 0.70 0.50 0.10 0.001 GPFe-2 x 28.6 4.75 0.15 0.74 0.23 0.06 41.5 0.07 1.89 0.34 0.56 2.78 136 5.5 26.5 114 50 84.4 35 32 188 83.8 438 50.6 0.02 RSD(%) 0.27 1.28 3.09 1.03 3.77 3.96 0.17 4.28 1.21 2.13 1.74 1.09 1.8 1.93 2.59 1.56 4.04 1.29 3.55 2.91 1 1.08 0.46 3.54 4.35 F 1.07 1.52 1.7 1.75 1.16 1.02 1.53 1.32 1.66 1.4 1.17 1.57 1.17 1.17 1.77 1.38 1.59 1.4 1.63 1.63 1.5 1.46 1.17 1.07 1.16 ubb 0.01 0.03 0.002 0.004 0.002 0.0002 0.03 0.001 0.01 0.003 0.003 0.01 0.70 0.03 0.40 0.70 1.00 0.40 0.60 0.50 0.80 0.40 0.60 0.30 0.0003 GPFe-3 x 9.46 3.76 0.126 1.71 0.176 0.06 51.4 0.505 5.36 0.497 0.345 2.33 41 7.04 104 115 30.4 60.4 40.6 41.1 162 172 485 125 9.5 RSD(%) 0.72 1.36 3.28 1.85 2.92 4.6 0.15 1.3 0.66 2.14 2.1 1.43 3.11 0.84 1.14 0.92 2.96 1.86 2.28 3.34 1.29 0.98 0.43 1.5 0.83 F 1.08 1.71 1.71 1.28 1.04 1.29 1.47 1.29 1.3 1.64 1.3 1.17 1.51 1.32 1.27 1.43 1.16 1.58 1.42 1.44 1.43 1.49 1.4 1.42 1.74 ubb 0.01 0.03 0.002 0.01 0.001 0.001 0.03 0.002 0.01 0.005 0.003 0.009 0.60 0.02 0.40 0.40 0.20 0.50 0.40 0.60 0.90 0.80 0.90 0.80 0.04 表 4 稳定性检验结果
Table 4. Stability test results of candidates
样品编号
Sample项目
Parameter组分含量Component content (%) SiO2 Al2O3 TiO2 P K2O Na2O Fe MnO CaO MgO FeO LOI S Cu Pb Zn Cr Ni Co Cd Sr Ba V As Hg GPFe-1 x 40.7 4.22 0.131 0.276 0.031 0.009 35.1 0.041 0.279 0.227 0.278 3.31 57 14.8 20.8 91.1 46.3 41.3 34.8 75.3 121 111 322 12.6 0.052 b1 -0.0067 0.0001 -0.0004 0.0003 -0.00001 -0.00004 0.0071 -0.00002 0.0001 -0.0003 0.0012 -0.0037 -0.0105 0.0071 -0.051 0.121 0.1138 -0.0062 0.0324 0.0048 -0.1319 0.0433 -0.0876 0.0114 0.0001 t0.05×s(b1) 0.0248 0.0044 0.0017 0.0007 0.0004 0.0001 0.0183 0.0002 0.0024 0.0022 0.0025 0.0217 0.5312 0.0709 0.2227 0.4711 0.2117 0.2308 0.0922 0.5526 0.302 0.3157 0.1732 0.0539 0.0003 us 0.10 0.01 0.005 0.002 0.001 0.0002 0.10 0.001 0.01 0.01 0.01 0.10 1.5 0.20 0.60 1.3 0.60 0.60 0.30 1.5 0.80 0.90 0.50 0.20 0 GPFe-2 x 28.6 4.8 0.146 0.74 0.231 0.066 41.5 0.073 1.87 0.336 0.554 2.78 136 5.53 25.6 113 48.9 84.5 35.1 31.9 187 83.9 439 50.9 0.024 b1 -0.0002 0.0032 0.0007 -0.0011 0.0002 0.0004 0.0086 0.0001 0.0015 0.0001 -0.0004 -0.0011 0.1643 -0.0139 0.0095 -0.0476 0.02 0.1148 -0.05 -0.0667 -0.0343 -0.0033 -0.1891 -0.0067 0.00007 t0.05×s(b1) 0.0156 0.018 0.002 0.0036 0.0041 0.0008 0.036 0.0006 0.0114 0.0022 0.0029 0.0071 0.4247 0.0371 0.0572 0.5118 0.5342 0.2856 0.1392 0.1923 0.1821 0.3546 0.549 0.5545 0.0002 us 0.04 0.05 0.01 0.01 0.01 0.002 0.10 0.002 0.03 0.01 0.01 0.02 1.2 0.10 0.20 1.4 1.5 0.80 0.40 0.50 0.50 1.00 1.50 1.50 0.001 GPFe-3 x 9.48 3.77 0.124 1.7 0.175 0.057 51.4 0.504 5.36 0.487 0.346 2.35 41.5 7.03 104 115 30.5 60.1 40.7 40.8 163 172 486 125 9.46 b1 -0.0061 0.0042 0.00003 -0.0035 0.0001 0.0001 0.0041 0.0002 0.0053 0.0003 0.0008 0.0017 0.0319 0.0034 0.0314 -0.0729 0.0081 0.1133 0.0076 0.21 0.0205 0.1552 0.0157 0.0795 0.0022 t0.05×s(b1) 0.0155 0.006 0.0004 0.0044 0.0006 0.0013 0.0126 0.0019 0.0078 0.0065 0.002 0.0098 0.2625 0.0245 0.7101 0.1181 0.3522 0.1574 0.3892 0.2321 0.2109 0.6929 0.5857 0.176 0.0134 us 0.04 0.02 0.001 0.01 0 0 0.04 0.01 0.02 0.02 0.01 0.03 0.70 0.07 2.00 0.30 1.00 0.40 1.1 0.60 0.60 1.9 1.6 0.50 0.04 表 5 各元素定值采用的样品分解和分析方法
Table 5. Sample decomposition and analytical methods used for the certification of high-phosphorus iron ore reference materials
组分
Component样品分解方法
Decomposition method测定方法
Analytical methodSiO2 DMA, FUS GR, XRF Al2O3 DF, FUS COV, ICP-OES, XRF TiO2 DMA, FUS COL, ICP-OES, XRF P FU, FUS COL, XRF K2O DF, FU, FUS AAS, ICP-OES, XRF Na2O DF, FU, FUS AAS, ICP-OES, XRF Fe DF, FU COV, ICP-OES MnO FU, FUS AAS, ICP-OES, XRF CaO DMA, FU, FUP AAS, COV, ICP-OES MgO DMA, FU AAS, ICP-OES FeO DF COV LOI COB GR Cu DF, DFC AAS, ICP-MS Pb DF, DFC AAS, ICP-MS Zn DF, FU AAS, ICP-OES Cr DF, FU, DFC AAS, ICP-MS Ni DF, FU, DFC AAS, ICP-MS, ICP-OES Co DF, DFC AAS, ICP-MS Cd DF, DFC GAAS, ICP-MS Sr DF, DFC ICP-MS, ICP-OES Ba DF, DFC ICP-MS, ICP-OES V DF, DFC ICP-MS, ICP-OES As DA, DFC AFS, ICP-MS Hg DA AFS S COB COV, CS 注:样品分解方法为DA—王水分解;DF—含氢氟酸的混合酸分解;DFC—混合酸密闭分解;FUP—氨水溶解;FU—熔融;COB—燃烧法;DMA—混合酸分解;FUS—熔片法。
测定方法为XRF—X射线荧光光谱法;GR—重量法;ICP-MS—电感耦合等离子体质谱法;ICP-OES—电感耦合等离子体发射光谱法;AFS—原子荧光光谱法;AAS—火焰原子吸收光谱法;COL—比色法;COV—容量法;CS—高频红外吸收光谱法;GAAS—石墨炉原子吸收光谱法。表 6 标准物质的认定值与扩展不确定度
Table 6. Certified values and expanded uncertainty of the reference materials
定值指标
Component定值单位
Unit认定值与扩展不确定度
Certified value and expanded uncertaintyGPFe-1 GPFe-2 GPFe-3 SiO2 % 40.74±0.20 28.57±0.20 9.37±0.10 Al2O3 % 4.22±0.03 4.78±0.08 3.78±0.10 TiO2 % 0.138±0.010 0.146±0.010 0.137±0.010 P % 0.285±0.010 0.735±0.020 1.73±0.05 K2O % 0.033±0.003 0.225±0.010 0.174±0.010 Na2O % (0.008) 0.057±0.002 0.055±0.010 Fe % 35.18±0.20 41.46±0.20 51.44±0.13 MnO % 0.043±0.002 0.074±0.003 0.471±0.040 CaO % 0.249±0.020 1.94±0.04 5.33±0.07 MgO % 0.225±0.020 0.332±0.020 0.516±0.040 FeO % 0.255±0.020 0.543±0.030 (0.335) LOI % 3.26±0.20 2.75±0.20 2.36±0.10 S μg/g (57) 135.9±3.3 41.5±1.8 Cu μg/g 11.26±1.00 5.52±0.40 6.9±0.4 Pb μg/g 19.1±1.6 27.59±1.70 103.8±5.0 Zn μg/g 93.33±6.00 114.1±3.8 116.4±5.4 Cr μg/g 47.79±3.10 50.66±3.40 31.36±3.60 Ni μg/g 40.63±1.70 84.75±1.60 61.6±1.7 Co μg/g 35.08±1.50 37.23±1.70 41.45±2.90 Cd μg/g 65.3±9.9 (29.51) 38.42±3.00 Sr μg/g 117.3±3.6 189.4±6.8 162.4±4.4 Ba μg/g 108.1±4.8 81.15±3.20 173.2±5.4 V μg/g 323.7±6.4 431.9±10.6 493.7±14.3 As μg/g 12.51±0.50 51.38±1.90 129.9±11.2 Hg μg/g (0.053) (0.02) (0.01) 表 7 标准物质质量监控结果
Table 7. Quality control results of the reference materials
样品编号
Sample项目
Parameter组分含量
Component content (%)SiO2 Al2O3 TiO2 P K2O Na2O Fe MnO CaO MgO FeO S Cu* GBW07825 认定值
Certified value16.3 2.58 0.138 0.138 0.91 0.035 49.5 0.256 0.91 0.98 7.66 0.065 14 x 16.18 2.55 0.14 0.135 0.92 0.034 49.4 0.26 0.9 1.01 7.6 0.067 16 RE(%) 0.74 1.16 1.45 2.17 1.1 2.86 0.2 1.56 1.1 3.06 0.78 3.08 7.14 GBW07112 认定值
Certified value35.69 14.14 7.69 0.012 0.15 2.11 17.31 0.193 9.86 5.25 13.36 0.37 28.3 x 35.52 14.21 7.68 0.012 0.15 2.1 17.32 0.19 9.85 5.18 13.35 0.368 28.5 RE(%) 0.64 0.49 0.13 0 0 0.47 0.06 1.6 0.1 1.33 0.07 0.54 0.71 样品编号
Sample项目
Parameter组分含量
Component content (%)Pb Zn Cr Ni Co Cd Sr Ba V As Hg GBW07112 认定值
Certified value5.16 118 14.5 69 93 0.09 612 86.2 768 0.21 0.0050 x 5 114 14.3 70.1 91.9 0.07 634 84.8 758 0.23 0.005 RE(%) 3.1 3.39 1.38 1.59 1.2 22.22 3.59 1.62 1.3 9.52 0 注:*组分含量单位为μg/g。 -
[1] 张亮, 杨卉芃, 冯安生, 等.全球铁矿资源开发利用现状及供需分析[J].矿产保护与利用, 2016(6):57-63. http://d.old.wanfangdata.com.cn/Periodical/kcbhyly201606012
Zhang L, Yang H P, Feng A S, et al.Study on utilization and analysis of supply and demand of global iron ore resources[J].Conservation and Utilization of Mineral Resources, 2016(6):57-63. http://d.old.wanfangdata.com.cn/Periodical/kcbhyly201606012
[2] 崔立伟, 夏浩东, 王聪, 等.中国铁矿资源现状与铁矿实物地质资料筛选[J].地质与勘探, 2012, 48(5):894-905. http://d.old.wanfangdata.com.cn/Periodical/dzykt201205004
Cui L W, Xia H D, Wang C, et al.Current status of iron-ore resources in China and screening of object iron-ore geological data[J].Geology and Exploration, 2012, 48(5):894-905. http://d.old.wanfangdata.com.cn/Periodical/dzykt201205004
[3] 阴江宁, 肖克炎, 娄德波.中国铁矿预测模型与资源潜力分析[J].地学前缘, 2018, 25(3):107-117. http://d.old.wanfangdata.com.cn/Periodical/dxqy201803009
Yin J N, Xiao K Y, Lou D B.Prediction model and resource potential of iron in China[J].Earth Science Frontiers, 2018, 25(3):107-117. http://d.old.wanfangdata.com.cn/Periodical/dxqy201803009
[4] 范松梅, 沙景华, 闫晶晶, 等.中国铁矿石资源供应风险评价与治理研究[J].资源科学, 2018, 40(3):507-515. http://d.old.wanfangdata.com.cn/Periodical/zykx201803006
Fan S M, Sha J H, Yan J J, et al.Risk assessment and management of iron ore resource supply in China[J].Resources Science, 2018, 40(3):507-515. http://d.old.wanfangdata.com.cn/Periodical/zykx201803006
[5] 刘云勇, 贺爱平, 秦元奎, 等.中国宁乡式铁矿[M].北京:冶金工业出版社, 2017.
Liu Y Y, He A P, Qin Y K, et al.Chinese Ningxiang Iron Ore[M].Beijing:Metallurgical Industry Press, 2017.
[6] 韩跃新, 孙永升, 高鹏, 等.高磷鲕状赤铁矿开发利用现状及发展趋势[J].金属矿山, 2012(3):1-5. http://d.old.wanfangdata.com.cn/Periodical/jsks201203001
Han Y X, Sun Y S, Gao P, et al.Exploitation situation and development trend of high phosphorus oolitic hematite[J].Metal Mine, 2012(3):1-5. http://d.old.wanfangdata.com.cn/Periodical/jsks201203001
[7] 杨舒萍, 卿山, 邓文龙, 等.高磷铁矿工艺矿物学研究[J].工业加热, 2015, 44(1):44-47. doi: 10.3969/j.issn.1002-1639.2015.01.013
Yang S P, Qing S, Deng W L, et al.Study on technological mineralogy of high phosphorus iron ore[J].Industrial Heating, 2015, 44(1):44-47. doi: 10.3969/j.issn.1002-1639.2015.01.013
[8] 贺爱平.鄂西高磷铁矿选冶技术及开发方式探讨[J].资源环境与工程, 2013, 27(5):688-693. doi: 10.3969/j.issn.1671-1211.2013.05.017
He A P.Disussion on beneficiation & metallurgy technology and development mode of high phosphorus iron ore, Western Hubei[J].Resources Environment & Engineering, 2013, 27(5):688-693. doi: 10.3969/j.issn.1671-1211.2013.05.017
[9] 艾光华, 李晓波, 周源.高磷铁矿石脱磷技术研究现状及发展趋势[J].有色金属科学与工程, 2011, 2(4):53-58. http://d.old.wanfangdata.com.cn/Periodical/jxysjs201104013
Ai G H, Li X B, Zhou Y.Research status and trend of the dephosphorization technology of high-phosphorus iron ore[J].Nonferrous Metals Science and Engineering, 2011, 2(4):53-58. http://d.old.wanfangdata.com.cn/Periodical/jxysjs201104013
[10] 黄凯, 修祎帆, 郭占成, 等.高磷铁矿脱磷技术现状及磷资源化提取新方法[J].钢铁, 2016, 51(10):1-5. http://d.old.wanfangdata.com.cn/Periodical/gt201610002
Huang K, Xiu Y F, Guo Z C, et al.Advance in dephosphorisation of high phosphorus iron ore and new technology of recovering phosphorus as a resource[J].Iron and Steel, 2016, 51(10):1-5. http://d.old.wanfangdata.com.cn/Periodical/gt201610002
[11] 郭威, 孙永升, 杨耀辉.高磷鲕状赤铁矿脱磷处理研究进展[J].矿产综合利用, 2014(6):15-19. doi: 10.3969/j.issn.1000-6532.2014.06.004
Guo W, Sun Y S, Yang Y H.Research progress of dephosphorization of high phosphorus oolitic hematite[J].Multipurpose Utilization of Mineral Resources, 2014(6):15-19. doi: 10.3969/j.issn.1000-6532.2014.06.004
[12] 朱德庆, 王浩, 潘建, 等.机械活化强化高磷粗铁精矿酸浸脱磷的工艺及机理[J].中南大学学报(自然科学版), 2017, 48(3):553-561. http://d.old.wanfangdata.com.cn/Periodical/zngydxxb201703001
Zhu D Q, Wang H, Pan J, et al.Technology and mechanism of mechanical activation enhancing acid leaching dephosphorization of high phosphorus rough iron ore concentrate[J].Journal of Central South University (Science and Technology), 2017, 48(3):553-561. http://d.old.wanfangdata.com.cn/Periodical/zngydxxb201703001
[13] 向杰, 肖春桥, 刘婷婷, 等.4种添加剂对黑曲霉脱除高磷铁矿中磷的影响[J].矿冶工程, 2016, 36(4):76-79. doi: 10.3969/j.issn.0253-6099.2016.04.020
Xiang J, Xiao C Q, Liu T T, et al.Effects of four additives on dephosphorization of high-phosphorus iron ore by aspergillus niger[J].Mining and Metallurgical Engineering, 2016, 36(4):76-79. doi: 10.3969/j.issn.0253-6099.2016.04.020
[14] 肖婉琴.云南某高磷铁矿直接还原同步脱磷试验研究[J].矿冶, 2017, 26(3):5-8. doi: 10.3969/j.issn.1005-7854.2017.03.002
Xiao W Q.Study of direct reduction and synchronous dephosphorization for high-phosphorus hematite from Yunnan[J].Mining and Metallurgy, 2017, 26(3):5-8. doi: 10.3969/j.issn.1005-7854.2017.03.002
[15] 王辉, 张建松, 孙瑞靖, 等.高磷铁矿气化脱磷理论及试验研究[J].钢铁钒钛, 2018, 39(2):110-114. http://d.old.wanfangdata.com.cn/Periodical/gtft201802019
Wang H, Zhang J S, Sun R J, et al.Theoretical and experimental study on gasification dephosphorization in high-phosphorus iron ore[J].Iron Steel Vanadium Titanium, 2018, 39(2):110-114. http://d.old.wanfangdata.com.cn/Periodical/gtft201802019
[16] Jochum K P, Weis U, Schwager B, et al.Reference values following ISO guidelines for frequently requested rock reference materials[J].Geostandards and Geoanalytical Research, 2016, 40(3):333-350. doi: 10.1111/ggr.2016.40.issue-3
[17] Weis U, Schwager B, Nohl U, et al.Geostandards and geoanalytical research bibliographic review 2015[J].Geostandards and Geoanalytical Research, 2016, 40(4):599-601. doi: 10.1111/ggr.2016.40.issue-4
[18] 黄宏库, 程志中, 刘妹, 等.铬铁矿标准物质研制[J].化学分析计量, 2010, 19(5):4-6. doi: 10.3969/j.issn.1008-6145.2010.05.001
Huang H K, Cheng Z Z, Liu M, et al.Development of reference materials of chrimote[J].Chemical Analysis and Meterage, 2010, 19(5):4-6. doi: 10.3969/j.issn.1008-6145.2010.05.001
[19] 洪飞, 刘耀华, 吕振生, 等.钛铁矿化学成分标准物质研制[J].岩矿测试, 2014, 33(1):67-73. doi: 10.3969/j.issn.0254-5357.2014.01.012 http://www.ykcs.ac.cn/article/id/82cf00b1-ad39-479b-b13c-db18e56b96b4
Hong F, Liu Y H, Lü Z S, et al.Certified reference materials preparation of ilmenite chemical composition[J].Rock and Mineral Analysis, 2014, 33(1):67-73. doi: 10.3969/j.issn.0254-5357.2014.01.012 http://www.ykcs.ac.cn/article/id/82cf00b1-ad39-479b-b13c-db18e56b96b4
[20] 程志中, 顾铁新, 范永贵, 等.九个铁矿石标准物质研制[J].岩矿测试, 2010, 29(3):305-308. doi: 10.3969/j.issn.0254-5357.2010.03.023 http://www.ykcs.ac.cn/article/id/ykcs_20100323
Cheng Z Z, Gu T X, Fan Y G, et al.Preparation of nine iron reference materials of GFe1-GFe9[J].Rock and Mineral Analysis, 2010, 29(3):305-308. doi: 10.3969/j.issn.0254-5357.2010.03.023 http://www.ykcs.ac.cn/article/id/ykcs_20100323
[21] 谢承祥, 李厚民, 王瑞江, 等.中国查明铁矿资源储量的数量、分布及保障程度分析[J].地球学报, 2009, 30(3):387-394. doi: 10.3321/j.issn:1006-3021.2009.03.013
Xie C X, Li H M, Wang R J, et al.Analysis of the quantity and distribution of the total identified iron resources in China and their supply capability[J].Acta Geoscientica Sinica, 2009, 30(3):387-394. doi: 10.3321/j.issn:1006-3021.2009.03.013
[22] 刘云勇, 姚敬劬, 万传辉.鄂西泥盆纪沉积铁矿成矿元素和主要伴生元素分布规律[J].资源环境与工程, 2016, 30(1):17-24. http://d.old.wanfangdata.com.cn/Periodical/hbdk201601004
Liu Y Y, Yao J Q, Wan C H.Distribution law of the ore-forming element and major associated elements in the devonian sedimentary iron deposits, Western Hubei[J].Resources Environment and Engineering, 2016, 30(1):17-24. http://d.old.wanfangdata.com.cn/Periodical/hbdk201601004
[23] 郑赫.鄂西宁乡式铁矿地球化学特征及对成矿环境的指示[D].北京: 中国地质大学(北京), 2016.
https://www.ixueshu.com/document/23109049a39394839e908a3c0d3d464d.html Zheng H.Geochemical Characteristics of Ningxiang-type Iron Deposits in the West of Hubei Province and Their Implication for Metallogenic Environment[D].Beijing: China University of Geosciences (Beijing), 2016.
[24] 王树林, 黄志良, 杨超, 等.鄂西某高磷铁矿中磷的赋存状态[J].有色金属工程, 2014, 4(2):58-60. doi: 10.3969/j.issn.2095-1744.2014.02.013
Wang S L, Huang Z L, Yang C, et al.The existent states of phosphorus in a high phosphorus iron ore in Western Hubei[J].Nonferrous Metals Engineering, 2014, 4(2):58-60. doi: 10.3969/j.issn.2095-1744.2014.02.013
[25] Botha A, Ellison S, Linsinger T, et al.Outline for the revision of ISO Guide 35[J].Accreditation and Quality Assurance, 2013, 18:115-118. doi: 10.1007/s00769-012-0940-0
[26] 宋丽华, 郝原芳, 杨柳, 等.地质标准物质的研制方法[J].地质与资源, 2013, 22(5):419-421. doi: 10.3969/j.issn.1671-1947.2013.05.013
Song L H, Hao Y F, Yang L, et al.Preparation on method of geochemical reference materials[J].Geology and Resources, 2013, 22(5):419-421. doi: 10.3969/j.issn.1671-1947.2013.05.013
[27] 刘妹, 顾铁新, 潘含江, 等.泛滥平原沉积物标准物质研制[J].岩矿测试, 2018, 37(5):558-571. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201801080002
Liu M, Gu T X, Pan H J, et al.Preparation of seven reference materials for floodplain sediments[J].Rock and Mineral Analysis, 2018, 37(5):558-571. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201801080002
[28] 杨理勤.常量金标准物质标准值的不确定度评定方法[J].黄金, 2015, 36(9):80-82. http://d.old.wanfangdata.com.cn/Periodical/huangj201509019
Yang L Q.Discussion about the assessment method of the uncertainty degree of certified values from ore gold reference materials[J].Gold, 2015, 36(9):80-82. http://d.old.wanfangdata.com.cn/Periodical/huangj201509019
[29] 曾美云, 刘金, 邵鑫, 等.磷矿石化学成分分析标准物质研制[J].岩矿测试, 2017, 36(6):633-640. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201705170082
Zeng M Y, Liu J, Shao X, et al.Preparation of phosphate ore concentrate reference materials[J].Rock and Mineral Analysis, 2017, 36(6):633-640. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201705170082
[30] 赵晓亮, 李志伟, 王烨, 等.铌钽精矿标准物质研制[J].岩矿测试, 2018, 37(6):687-694. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201711230185
Zhao X L, Li Z W, Wang Y, et al.Preparation and certification of niobium-tantalum concentrate reference materials[J].Rock and Mineral Analysis, 2018, 37(6):687-694. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201711230185