中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

高磷铁矿石成分分析标准物质研制

曾美云, 陈燕波, 刘金, 王迪民. 高磷铁矿石成分分析标准物质研制[J]. 岩矿测试, 2019, 38(2): 212-221. doi: 10.15898/j.cnki.11-2131/td.201808150094
引用本文: 曾美云, 陈燕波, 刘金, 王迪民. 高磷铁矿石成分分析标准物质研制[J]. 岩矿测试, 2019, 38(2): 212-221. doi: 10.15898/j.cnki.11-2131/td.201808150094
Mei-yun ZENG, Yan-bo CHEN, Jin LIU, Di-min WANG. Preparation of High-phosphorus Iron Ore Reference Materials for Chemical Composition Analysis[J]. Rock and Mineral Analysis, 2019, 38(2): 212-221. doi: 10.15898/j.cnki.11-2131/td.201808150094
Citation: Mei-yun ZENG, Yan-bo CHEN, Jin LIU, Di-min WANG. Preparation of High-phosphorus Iron Ore Reference Materials for Chemical Composition Analysis[J]. Rock and Mineral Analysis, 2019, 38(2): 212-221. doi: 10.15898/j.cnki.11-2131/td.201808150094

高磷铁矿石成分分析标准物质研制

  • 基金项目:
    自然资源部公益性行业专项(201311096)
详细信息
    作者简介: 曾美云, 高级工程师, 主要从事岩矿测试及标准化研究。E-mail:ld_2002@sina.com
  • 中图分类号: P578.12;TQ421.31

Preparation of High-phosphorus Iron Ore Reference Materials for Chemical Composition Analysis

  • 高磷铁矿石的分析测试过程需要基体组分相似、含量适中、定值组分全的标准物质进行质量监控,目前我国没有高磷铁矿石标准物质,现有铁矿石标准物质因基体组分不尽相同,磷元素含量大部分低于0.25%,而高磷铁矿石中磷含量均高于0.25%,这些标准物质难以满足高磷铁矿石产品的分析测试质量监控要求。基于此,本文研制了3个高磷铁矿石成分分析标准物质,样品分别采集于鄂西地区湖北宜昌秭归县野狼坪矿区、湖北恩施长岭矿区(武钢矿区)、湖北宜昌长阳县火烧坪矿区(宝钢长阳矿区),磷和铁含量均呈一定梯度,基本覆盖高磷铁矿的含量范围。均匀性和稳定性对SiO2、Al2O3、TiO2、P、K2O、Na2O、Fe、MnO、CaO、MgO、FeO、LOI、S、Cu、Pb、Zn、Cr、Ni、Co、Cd、Sr、Ba、V、As、Hg共25个组分进行检验,均匀性检验采用方差分析F检验法和测试结果的相对标准偏差进行评价,稳定性检验采用直线拟合,t检验法进行评估。经检验,样品均匀性、稳定性良好;定值采用11家实验室协作,采用2种以上不同原理的方法进行测试,定值组分包括主量元素、微量元素共25项,其中24项提供认定值及不确定度,Hg提供参考值。磷的含量分别为0.285%、不确定度0.010%,0.735%、不确定度0.020%,1.73%、不确定度0.05%,总铁含量分别为35.18%、不确定度0.20%,41.46%、不确定度0.20%,51.44%、不确定度0.13%。本次研制的高磷铁矿石标准物质可用于高磷铁矿的勘查、评价和综合利用开发中对标准物质的需求。
  • 加载中
  • 表 1  样品概况

    Table 1.  Information of samples

    样品编号
    Sample
    采样地点
    Sampling site
    矿物组成
    Mineral constituent
    铁含量
    Iron content(%)
    磷含量
    Phosphorus content(%)
    采样量
    Sample weight(kg)
    GPFe-1 湖北秭归
    Zigui county, Hubei Province
    金属矿物40%,石英25%,胶磷矿15%,鲕绿泥石20%,黏土矿物、磷灰石、碳酸盐矿物、岩屑、有机质少量(金属矿物有:赤铁矿、褐铁矿、黄铁矿)
    Metallic mineral (40%), quartz (25%), colloidal phosphate (15%), oolitic chlorite (20%), clay mineral, apatite, carbonate mineral, rock debris, a small amount of organic matter (Metal minerals include hematite, limonite and pyrite)
    31~37 0.1~0.5 170
    GPFe-2 湖北恩施
    Enshi county, Hubei Province
    赤铁矿40%,褐铁矿5%,脉石矿物55%,胶磷矿少量,黄铁矿少量
    Hematite (40%), limonite (5%), gangue mineral (55%), a small amount of collophanite and pyrite
    38~44 0.6~1.0 170
    GPFe-3 湖北长阳
    Changyang county, Hubei Province
    金属矿物70%(赤铁矿、褐铁矿、黄铁矿),石英5%,胶磷矿1%,绿泥石3%,岩屑1%,磷灰石、方解石少量
    Metallic minerals (70%)include hematite, limonite, and pyrite, quartz (5%), collophane (1%), chlorite (3%), cuttings (1%), a small amount of apatite and calcite
    48~55 1.4~2.0 170
    下载: 导出CSV

    表 2  高磷铁矿石样品粒度分布

    Table 2.  Grain distribution of phosphate rock

    粒径Partical size(μm) GPFe-1 GPFe-2 GPFe -3
    区间百分含量
    Interval percentage(%)
    累积百分含量
    Cumulative percentage(%)
    区间百分含量
    Interval percentage(%)
    累积百分含量
    Cumulative percentage(%)
    区间百分含量
    Interval percentage(%)
    累积百分含量
    Cumulative percentage(%)
    1.00~1.30 4.23 40.09 4.74 53.25 5.31 61.80
    1.30~2.50 6.99 47.08 6.78 60.03 6.63 68.43
    2.50~5.00 8.11 55.19 7.82 67.85 6.06 74.49
    5.00~6.50 4.15 59.34 3.44 71.29 2.78 77.27
    6.50~10.00 7.43 66.77 5.54 76.83 4.49 81.76
    10.00~13.00 4.87 71.64 3.95 80.78 3.66 85.42
    13.00~18.00 6.00 77.64 4.95 85.73 4.35 89.77
    18.00~20.00 1.94 79.58 1.65 87.38 1.39 91.16
    20.00~23.00 2.47 82.05 2.19 89.57 1.96 93.12
    23.00~28.00 3.20 85.25 2.96 92.53 2.90 96.02
    28.00~32.00 2.03 87.28 1.83 94.36 1.76 97.78
    32.00~38.00 2.50 89.78 2.11 96.47 1.40 99.18
    38.00~45.00 2.57 92.35 1.84 98.31 0.63 99.81
    45.00~53.00 2.68 95.03 1.08 99.39 0.17 99.98
    53.00~63.00 2.64 97.67 0.49 99.88 0.02 100
    63.00~75.00 1.57 99.24 0.12 100 0 100
    下载: 导出CSV

    表 3  均匀性检验结果

    Table 3.  Homogeneity test results of candidates

    样品编号
    Sample
    项目
    Parameter
    组分含量
    Component content (%)
    组分含量
    Component content (%)
    SiO2 Al2O3 TiO2 P K2O Na2O Fe MnO CaO MgO FeO LOI S Cu Pb Zn Cr Ni Co Cd Sr Ba V As Hg
    GPFe-1 x 40.9 4.25 0.133 0.273 0.032 0.008 35.1 0.042 0.273 0.224 0.273 3.31 56.7 20.7 20.7 91.3 46.7 41.8 35.1 75.1 120 110 324 12.4 0.058
    RSD(%) 0.25 0.63 2.33 1.43 2.79 2.92 0.25 3.37 1.83 2.9 2.3 1.26 2.32 3.73 3.35 2.08 1.67 2.62 2.2 1.68 1.4 1.25 0.31 2.87 4.84
    F 1.35 1.29 1.09 1.45 1.58 1.08 1.01 1.19 1.53 1.68 1.48 1.39 1.21 1.72 1.39 1.07 1.62 1.05 1.38 1.2 1.75 1.77 1.85 1.27 1.67
    ubb 0.04 0.01 0.0006 0.002 0.0004 0.0001 0.006 0.0004 0.002 0.003 0.003 0.02 0.40 0.40 0.30 0.30 0.40 0.20 0.30 0.40 0.90 0.70 0.50 0.10 0.001
    GPFe-2 x 28.6 4.75 0.15 0.74 0.23 0.06 41.5 0.07 1.89 0.34 0.56 2.78 136 5.5 26.5 114 50 84.4 35 32 188 83.8 438 50.6 0.02
    RSD(%) 0.27 1.28 3.09 1.03 3.77 3.96 0.17 4.28 1.21 2.13 1.74 1.09 1.8 1.93 2.59 1.56 4.04 1.29 3.55 2.91 1 1.08 0.46 3.54 4.35
    F 1.07 1.52 1.7 1.75 1.16 1.02 1.53 1.32 1.66 1.4 1.17 1.57 1.17 1.17 1.77 1.38 1.59 1.4 1.63 1.63 1.5 1.46 1.17 1.07 1.16
    ubb 0.01 0.03 0.002 0.004 0.002 0.0002 0.03 0.001 0.01 0.003 0.003 0.01 0.70 0.03 0.40 0.70 1.00 0.40 0.60 0.50 0.80 0.40 0.60 0.30 0.0003
    GPFe-3 x 9.46 3.76 0.126 1.71 0.176 0.06 51.4 0.505 5.36 0.497 0.345 2.33 41 7.04 104 115 30.4 60.4 40.6 41.1 162 172 485 125 9.5
    RSD(%) 0.72 1.36 3.28 1.85 2.92 4.6 0.15 1.3 0.66 2.14 2.1 1.43 3.11 0.84 1.14 0.92 2.96 1.86 2.28 3.34 1.29 0.98 0.43 1.5 0.83
    F 1.08 1.71 1.71 1.28 1.04 1.29 1.47 1.29 1.3 1.64 1.3 1.17 1.51 1.32 1.27 1.43 1.16 1.58 1.42 1.44 1.43 1.49 1.4 1.42 1.74
    ubb 0.01 0.03 0.002 0.01 0.001 0.001 0.03 0.002 0.01 0.005 0.003 0.009 0.60 0.02 0.40 0.40 0.20 0.50 0.40 0.60 0.90 0.80 0.90 0.80 0.04
    下载: 导出CSV

    表 4  稳定性检验结果

    Table 4.  Stability test results of candidates

    样品编号
    Sample
    项目
    Parameter
    组分含量Component content (%)
    SiO2 Al2O3 TiO2 P K2O Na2O Fe MnO CaO MgO FeO LOI S Cu Pb Zn Cr Ni Co Cd Sr Ba V As Hg
    GPFe-1 x 40.7 4.22 0.131 0.276 0.031 0.009 35.1 0.041 0.279 0.227 0.278 3.31 57 14.8 20.8 91.1 46.3 41.3 34.8 75.3 121 111 322 12.6 0.052
    b1 -0.0067 0.0001 -0.0004 0.0003 -0.00001 -0.00004 0.0071 -0.00002 0.0001 -0.0003 0.0012 -0.0037 -0.0105 0.0071 -0.051 0.121 0.1138 -0.0062 0.0324 0.0048 -0.1319 0.0433 -0.0876 0.0114 0.0001
    t0.05×s(b1) 0.0248 0.0044 0.0017 0.0007 0.0004 0.0001 0.0183 0.0002 0.0024 0.0022 0.0025 0.0217 0.5312 0.0709 0.2227 0.4711 0.2117 0.2308 0.0922 0.5526 0.302 0.3157 0.1732 0.0539 0.0003
    us 0.10 0.01 0.005 0.002 0.001 0.0002 0.10 0.001 0.01 0.01 0.01 0.10 1.5 0.20 0.60 1.3 0.60 0.60 0.30 1.5 0.80 0.90 0.50 0.20 0
    GPFe-2 x 28.6 4.8 0.146 0.74 0.231 0.066 41.5 0.073 1.87 0.336 0.554 2.78 136 5.53 25.6 113 48.9 84.5 35.1 31.9 187 83.9 439 50.9 0.024
    b1 -0.0002 0.0032 0.0007 -0.0011 0.0002 0.0004 0.0086 0.0001 0.0015 0.0001 -0.0004 -0.0011 0.1643 -0.0139 0.0095 -0.0476 0.02 0.1148 -0.05 -0.0667 -0.0343 -0.0033 -0.1891 -0.0067 0.00007
    t0.05×s(b1) 0.0156 0.018 0.002 0.0036 0.0041 0.0008 0.036 0.0006 0.0114 0.0022 0.0029 0.0071 0.4247 0.0371 0.0572 0.5118 0.5342 0.2856 0.1392 0.1923 0.1821 0.3546 0.549 0.5545 0.0002
    us 0.04 0.05 0.01 0.01 0.01 0.002 0.10 0.002 0.03 0.01 0.01 0.02 1.2 0.10 0.20 1.4 1.5 0.80 0.40 0.50 0.50 1.00 1.50 1.50 0.001
    GPFe-3 x 9.48 3.77 0.124 1.7 0.175 0.057 51.4 0.504 5.36 0.487 0.346 2.35 41.5 7.03 104 115 30.5 60.1 40.7 40.8 163 172 486 125 9.46
    b1 -0.0061 0.0042 0.00003 -0.0035 0.0001 0.0001 0.0041 0.0002 0.0053 0.0003 0.0008 0.0017 0.0319 0.0034 0.0314 -0.0729 0.0081 0.1133 0.0076 0.21 0.0205 0.1552 0.0157 0.0795 0.0022
    t0.05×s(b1) 0.0155 0.006 0.0004 0.0044 0.0006 0.0013 0.0126 0.0019 0.0078 0.0065 0.002 0.0098 0.2625 0.0245 0.7101 0.1181 0.3522 0.1574 0.3892 0.2321 0.2109 0.6929 0.5857 0.176 0.0134
    us 0.04 0.02 0.001 0.01 0 0 0.04 0.01 0.02 0.02 0.01 0.03 0.70 0.07 2.00 0.30 1.00 0.40 1.1 0.60 0.60 1.9 1.6 0.50 0.04
    下载: 导出CSV

    表 5  各元素定值采用的样品分解和分析方法

    Table 5.  Sample decomposition and analytical methods used for the certification of high-phosphorus iron ore reference materials

    组分
    Component
    样品分解方法
    Decomposition method
    测定方法
    Analytical method
    SiO2 DMA, FUS GR, XRF
    Al2O3 DF, FUS COV, ICP-OES, XRF
    TiO2 DMA, FUS COL, ICP-OES, XRF
    P FU, FUS COL, XRF
    K2O DF, FU, FUS AAS, ICP-OES, XRF
    Na2O DF, FU, FUS AAS, ICP-OES, XRF
    Fe DF, FU COV, ICP-OES
    MnO FU, FUS AAS, ICP-OES, XRF
    CaO DMA, FU, FUP AAS, COV, ICP-OES
    MgO DMA, FU AAS, ICP-OES
    FeO DF COV
    LOI COB GR
    Cu DF, DFC AAS, ICP-MS
    Pb DF, DFC AAS, ICP-MS
    Zn DF, FU AAS, ICP-OES
    Cr DF, FU, DFC AAS, ICP-MS
    Ni DF, FU, DFC AAS, ICP-MS, ICP-OES
    Co DF, DFC AAS, ICP-MS
    Cd DF, DFC GAAS, ICP-MS
    Sr DF, DFC ICP-MS, ICP-OES
    Ba DF, DFC ICP-MS, ICP-OES
    V DF, DFC ICP-MS, ICP-OES
    As DA, DFC AFS, ICP-MS
    Hg DA AFS
    S COB COV, CS
    注:样品分解方法为DA—王水分解;DF—含氢氟酸的混合酸分解;DFC—混合酸密闭分解;FUP—氨水溶解;FU—熔融;COB—燃烧法;DMA—混合酸分解;FUS—熔片法。
    测定方法为XRF—X射线荧光光谱法;GR—重量法;ICP-MS—电感耦合等离子体质谱法;ICP-OES—电感耦合等离子体发射光谱法;AFS—原子荧光光谱法;AAS—火焰原子吸收光谱法;COL—比色法;COV—容量法;CS—高频红外吸收光谱法;GAAS—石墨炉原子吸收光谱法。
    下载: 导出CSV

    表 6  标准物质的认定值与扩展不确定度

    Table 6.  Certified values and expanded uncertainty of the reference materials

    定值指标
    Component
    定值单位
    Unit
    认定值与扩展不确定度
    Certified value and expanded uncertainty
    GPFe-1 GPFe-2 GPFe-3
    SiO2 % 40.74±0.20 28.57±0.20 9.37±0.10
    Al2O3 % 4.22±0.03 4.78±0.08 3.78±0.10
    TiO2 % 0.138±0.010 0.146±0.010 0.137±0.010
    P % 0.285±0.010 0.735±0.020 1.73±0.05
    K2O % 0.033±0.003 0.225±0.010 0.174±0.010
    Na2O % (0.008) 0.057±0.002 0.055±0.010
    Fe % 35.18±0.20 41.46±0.20 51.44±0.13
    MnO % 0.043±0.002 0.074±0.003 0.471±0.040
    CaO % 0.249±0.020 1.94±0.04 5.33±0.07
    MgO % 0.225±0.020 0.332±0.020 0.516±0.040
    FeO % 0.255±0.020 0.543±0.030 (0.335)
    LOI % 3.26±0.20 2.75±0.20 2.36±0.10
    S μg/g (57) 135.9±3.3 41.5±1.8
    Cu μg/g 11.26±1.00 5.52±0.40 6.9±0.4
    Pb μg/g 19.1±1.6 27.59±1.70 103.8±5.0
    Zn μg/g 93.33±6.00 114.1±3.8 116.4±5.4
    Cr μg/g 47.79±3.10 50.66±3.40 31.36±3.60
    Ni μg/g 40.63±1.70 84.75±1.60 61.6±1.7
    Co μg/g 35.08±1.50 37.23±1.70 41.45±2.90
    Cd μg/g 65.3±9.9 (29.51) 38.42±3.00
    Sr μg/g 117.3±3.6 189.4±6.8 162.4±4.4
    Ba μg/g 108.1±4.8 81.15±3.20 173.2±5.4
    V μg/g 323.7±6.4 431.9±10.6 493.7±14.3
    As μg/g 12.51±0.50 51.38±1.90 129.9±11.2
    Hg μg/g (0.053) (0.02) (0.01)
    下载: 导出CSV

    表 7  标准物质质量监控结果

    Table 7.  Quality control results of the reference materials

    样品编号
    Sample
    项目
    Parameter
    组分含量
    Component content (%)
    SiO2 Al2O3 TiO2 P K2O Na2O Fe MnO CaO MgO FeO S Cu*
    GBW07825 认定值
    Certified value
    16.3 2.58 0.138 0.138 0.91 0.035 49.5 0.256 0.91 0.98 7.66 0.065 14
    x 16.18 2.55 0.14 0.135 0.92 0.034 49.4 0.26 0.9 1.01 7.6 0.067 16
    RE(%) 0.74 1.16 1.45 2.17 1.1 2.86 0.2 1.56 1.1 3.06 0.78 3.08 7.14
    GBW07112 认定值
    Certified value
    35.69 14.14 7.69 0.012 0.15 2.11 17.31 0.193 9.86 5.25 13.36 0.37 28.3
    x 35.52 14.21 7.68 0.012 0.15 2.1 17.32 0.19 9.85 5.18 13.35 0.368 28.5
    RE(%) 0.64 0.49 0.13 0 0 0.47 0.06 1.6 0.1 1.33 0.07 0.54 0.71
    样品编号
    Sample
    项目
    Parameter
    组分含量
    Component content (%)
    Pb Zn Cr Ni Co Cd Sr Ba V As Hg
    GBW07112 认定值
    Certified value
    5.16 118 14.5 69 93 0.09 612 86.2 768 0.21 0.0050
    x 5 114 14.3 70.1 91.9 0.07 634 84.8 758 0.23 0.005
    RE(%) 3.1 3.39 1.38 1.59 1.2 22.22 3.59 1.62 1.3 9.52 0
    注:*组分含量单位为μg/g。
    下载: 导出CSV
  • [1]

    张亮, 杨卉芃, 冯安生, 等.全球铁矿资源开发利用现状及供需分析[J].矿产保护与利用, 2016(6):57-63. http://d.old.wanfangdata.com.cn/Periodical/kcbhyly201606012

    Zhang L, Yang H P, Feng A S, et al.Study on utilization and analysis of supply and demand of global iron ore resources[J].Conservation and Utilization of Mineral Resources, 2016(6):57-63. http://d.old.wanfangdata.com.cn/Periodical/kcbhyly201606012

    [2]

    崔立伟, 夏浩东, 王聪, 等.中国铁矿资源现状与铁矿实物地质资料筛选[J].地质与勘探, 2012, 48(5):894-905. http://d.old.wanfangdata.com.cn/Periodical/dzykt201205004

    Cui L W, Xia H D, Wang C, et al.Current status of iron-ore resources in China and screening of object iron-ore geological data[J].Geology and Exploration, 2012, 48(5):894-905. http://d.old.wanfangdata.com.cn/Periodical/dzykt201205004

    [3]

    阴江宁, 肖克炎, 娄德波.中国铁矿预测模型与资源潜力分析[J].地学前缘, 2018, 25(3):107-117. http://d.old.wanfangdata.com.cn/Periodical/dxqy201803009

    Yin J N, Xiao K Y, Lou D B.Prediction model and resource potential of iron in China[J].Earth Science Frontiers, 2018, 25(3):107-117. http://d.old.wanfangdata.com.cn/Periodical/dxqy201803009

    [4]

    范松梅, 沙景华, 闫晶晶, 等.中国铁矿石资源供应风险评价与治理研究[J].资源科学, 2018, 40(3):507-515. http://d.old.wanfangdata.com.cn/Periodical/zykx201803006

    Fan S M, Sha J H, Yan J J, et al.Risk assessment and management of iron ore resource supply in China[J].Resources Science, 2018, 40(3):507-515. http://d.old.wanfangdata.com.cn/Periodical/zykx201803006

    [5]

    刘云勇, 贺爱平, 秦元奎, 等.中国宁乡式铁矿[M].北京:冶金工业出版社, 2017.

    Liu Y Y, He A P, Qin Y K, et al.Chinese Ningxiang Iron Ore[M].Beijing:Metallurgical Industry Press, 2017.

    [6]

    韩跃新, 孙永升, 高鹏, 等.高磷鲕状赤铁矿开发利用现状及发展趋势[J].金属矿山, 2012(3):1-5. http://d.old.wanfangdata.com.cn/Periodical/jsks201203001

    Han Y X, Sun Y S, Gao P, et al.Exploitation situation and development trend of high phosphorus oolitic hematite[J].Metal Mine, 2012(3):1-5. http://d.old.wanfangdata.com.cn/Periodical/jsks201203001

    [7]

    杨舒萍, 卿山, 邓文龙, 等.高磷铁矿工艺矿物学研究[J].工业加热, 2015, 44(1):44-47. doi: 10.3969/j.issn.1002-1639.2015.01.013

    Yang S P, Qing S, Deng W L, et al.Study on technological mineralogy of high phosphorus iron ore[J].Industrial Heating, 2015, 44(1):44-47. doi: 10.3969/j.issn.1002-1639.2015.01.013

    [8]

    贺爱平.鄂西高磷铁矿选冶技术及开发方式探讨[J].资源环境与工程, 2013, 27(5):688-693. doi: 10.3969/j.issn.1671-1211.2013.05.017

    He A P.Disussion on beneficiation & metallurgy technology and development mode of high phosphorus iron ore, Western Hubei[J].Resources Environment & Engineering, 2013, 27(5):688-693. doi: 10.3969/j.issn.1671-1211.2013.05.017

    [9]

    艾光华, 李晓波, 周源.高磷铁矿石脱磷技术研究现状及发展趋势[J].有色金属科学与工程, 2011, 2(4):53-58. http://d.old.wanfangdata.com.cn/Periodical/jxysjs201104013

    Ai G H, Li X B, Zhou Y.Research status and trend of the dephosphorization technology of high-phosphorus iron ore[J].Nonferrous Metals Science and Engineering, 2011, 2(4):53-58. http://d.old.wanfangdata.com.cn/Periodical/jxysjs201104013

    [10]

    黄凯, 修祎帆, 郭占成, 等.高磷铁矿脱磷技术现状及磷资源化提取新方法[J].钢铁, 2016, 51(10):1-5. http://d.old.wanfangdata.com.cn/Periodical/gt201610002

    Huang K, Xiu Y F, Guo Z C, et al.Advance in dephosphorisation of high phosphorus iron ore and new technology of recovering phosphorus as a resource[J].Iron and Steel, 2016, 51(10):1-5. http://d.old.wanfangdata.com.cn/Periodical/gt201610002

    [11]

    郭威, 孙永升, 杨耀辉.高磷鲕状赤铁矿脱磷处理研究进展[J].矿产综合利用, 2014(6):15-19. doi: 10.3969/j.issn.1000-6532.2014.06.004

    Guo W, Sun Y S, Yang Y H.Research progress of dephosphorization of high phosphorus oolitic hematite[J].Multipurpose Utilization of Mineral Resources, 2014(6):15-19. doi: 10.3969/j.issn.1000-6532.2014.06.004

    [12]

    朱德庆, 王浩, 潘建, 等.机械活化强化高磷粗铁精矿酸浸脱磷的工艺及机理[J].中南大学学报(自然科学版), 2017, 48(3):553-561. http://d.old.wanfangdata.com.cn/Periodical/zngydxxb201703001

    Zhu D Q, Wang H, Pan J, et al.Technology and mechanism of mechanical activation enhancing acid leaching dephosphorization of high phosphorus rough iron ore concentrate[J].Journal of Central South University (Science and Technology), 2017, 48(3):553-561. http://d.old.wanfangdata.com.cn/Periodical/zngydxxb201703001

    [13]

    向杰, 肖春桥, 刘婷婷, 等.4种添加剂对黑曲霉脱除高磷铁矿中磷的影响[J].矿冶工程, 2016, 36(4):76-79. doi: 10.3969/j.issn.0253-6099.2016.04.020

    Xiang J, Xiao C Q, Liu T T, et al.Effects of four additives on dephosphorization of high-phosphorus iron ore by aspergillus niger[J].Mining and Metallurgical Engineering, 2016, 36(4):76-79. doi: 10.3969/j.issn.0253-6099.2016.04.020

    [14]

    肖婉琴.云南某高磷铁矿直接还原同步脱磷试验研究[J].矿冶, 2017, 26(3):5-8. doi: 10.3969/j.issn.1005-7854.2017.03.002

    Xiao W Q.Study of direct reduction and synchronous dephosphorization for high-phosphorus hematite from Yunnan[J].Mining and Metallurgy, 2017, 26(3):5-8. doi: 10.3969/j.issn.1005-7854.2017.03.002

    [15]

    王辉, 张建松, 孙瑞靖, 等.高磷铁矿气化脱磷理论及试验研究[J].钢铁钒钛, 2018, 39(2):110-114. http://d.old.wanfangdata.com.cn/Periodical/gtft201802019

    Wang H, Zhang J S, Sun R J, et al.Theoretical and experimental study on gasification dephosphorization in high-phosphorus iron ore[J].Iron Steel Vanadium Titanium, 2018, 39(2):110-114. http://d.old.wanfangdata.com.cn/Periodical/gtft201802019

    [16]

    Jochum K P, Weis U, Schwager B, et al.Reference values following ISO guidelines for frequently requested rock reference materials[J].Geostandards and Geoanalytical Research, 2016, 40(3):333-350. doi: 10.1111/ggr.2016.40.issue-3

    [17]

    Weis U, Schwager B, Nohl U, et al.Geostandards and geoanalytical research bibliographic review 2015[J].Geostandards and Geoanalytical Research, 2016, 40(4):599-601. doi: 10.1111/ggr.2016.40.issue-4

    [18]

    黄宏库, 程志中, 刘妹, 等.铬铁矿标准物质研制[J].化学分析计量, 2010, 19(5):4-6. doi: 10.3969/j.issn.1008-6145.2010.05.001

    Huang H K, Cheng Z Z, Liu M, et al.Development of reference materials of chrimote[J].Chemical Analysis and Meterage, 2010, 19(5):4-6. doi: 10.3969/j.issn.1008-6145.2010.05.001

    [19]

    洪飞, 刘耀华, 吕振生, 等.钛铁矿化学成分标准物质研制[J].岩矿测试, 2014, 33(1):67-73. doi: 10.3969/j.issn.0254-5357.2014.01.012 http://www.ykcs.ac.cn/article/id/82cf00b1-ad39-479b-b13c-db18e56b96b4

    Hong F, Liu Y H, Lü Z S, et al.Certified reference materials preparation of ilmenite chemical composition[J].Rock and Mineral Analysis, 2014, 33(1):67-73. doi: 10.3969/j.issn.0254-5357.2014.01.012 http://www.ykcs.ac.cn/article/id/82cf00b1-ad39-479b-b13c-db18e56b96b4

    [20]

    程志中, 顾铁新, 范永贵, 等.九个铁矿石标准物质研制[J].岩矿测试, 2010, 29(3):305-308. doi: 10.3969/j.issn.0254-5357.2010.03.023 http://www.ykcs.ac.cn/article/id/ykcs_20100323

    Cheng Z Z, Gu T X, Fan Y G, et al.Preparation of nine iron reference materials of GFe1-GFe9[J].Rock and Mineral Analysis, 2010, 29(3):305-308. doi: 10.3969/j.issn.0254-5357.2010.03.023 http://www.ykcs.ac.cn/article/id/ykcs_20100323

    [21]

    谢承祥, 李厚民, 王瑞江, 等.中国查明铁矿资源储量的数量、分布及保障程度分析[J].地球学报, 2009, 30(3):387-394. doi: 10.3321/j.issn:1006-3021.2009.03.013

    Xie C X, Li H M, Wang R J, et al.Analysis of the quantity and distribution of the total identified iron resources in China and their supply capability[J].Acta Geoscientica Sinica, 2009, 30(3):387-394. doi: 10.3321/j.issn:1006-3021.2009.03.013

    [22]

    刘云勇, 姚敬劬, 万传辉.鄂西泥盆纪沉积铁矿成矿元素和主要伴生元素分布规律[J].资源环境与工程, 2016, 30(1):17-24. http://d.old.wanfangdata.com.cn/Periodical/hbdk201601004

    Liu Y Y, Yao J Q, Wan C H.Distribution law of the ore-forming element and major associated elements in the devonian sedimentary iron deposits, Western Hubei[J].Resources Environment and Engineering, 2016, 30(1):17-24. http://d.old.wanfangdata.com.cn/Periodical/hbdk201601004

    [23]

    郑赫.鄂西宁乡式铁矿地球化学特征及对成矿环境的指示[D].北京: 中国地质大学(北京), 2016.https://www.ixueshu.com/document/23109049a39394839e908a3c0d3d464d.html

    Zheng H.Geochemical Characteristics of Ningxiang-type Iron Deposits in the West of Hubei Province and Their Implication for Metallogenic Environment[D].Beijing: China University of Geosciences (Beijing), 2016.

    [24]

    王树林, 黄志良, 杨超, 等.鄂西某高磷铁矿中磷的赋存状态[J].有色金属工程, 2014, 4(2):58-60. doi: 10.3969/j.issn.2095-1744.2014.02.013

    Wang S L, Huang Z L, Yang C, et al.The existent states of phosphorus in a high phosphorus iron ore in Western Hubei[J].Nonferrous Metals Engineering, 2014, 4(2):58-60. doi: 10.3969/j.issn.2095-1744.2014.02.013

    [25]

    Botha A, Ellison S, Linsinger T, et al.Outline for the revision of ISO Guide 35[J].Accreditation and Quality Assurance, 2013, 18:115-118. doi: 10.1007/s00769-012-0940-0

    [26]

    宋丽华, 郝原芳, 杨柳, 等.地质标准物质的研制方法[J].地质与资源, 2013, 22(5):419-421. doi: 10.3969/j.issn.1671-1947.2013.05.013

    Song L H, Hao Y F, Yang L, et al.Preparation on method of geochemical reference materials[J].Geology and Resources, 2013, 22(5):419-421. doi: 10.3969/j.issn.1671-1947.2013.05.013

    [27]

    刘妹, 顾铁新, 潘含江, 等.泛滥平原沉积物标准物质研制[J].岩矿测试, 2018, 37(5):558-571. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201801080002

    Liu M, Gu T X, Pan H J, et al.Preparation of seven reference materials for floodplain sediments[J].Rock and Mineral Analysis, 2018, 37(5):558-571. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201801080002

    [28]

    杨理勤.常量金标准物质标准值的不确定度评定方法[J].黄金, 2015, 36(9):80-82. http://d.old.wanfangdata.com.cn/Periodical/huangj201509019

    Yang L Q.Discussion about the assessment method of the uncertainty degree of certified values from ore gold reference materials[J].Gold, 2015, 36(9):80-82. http://d.old.wanfangdata.com.cn/Periodical/huangj201509019

    [29]

    曾美云, 刘金, 邵鑫, 等.磷矿石化学成分分析标准物质研制[J].岩矿测试, 2017, 36(6):633-640. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201705170082

    Zeng M Y, Liu J, Shao X, et al.Preparation of phosphate ore concentrate reference materials[J].Rock and Mineral Analysis, 2017, 36(6):633-640. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201705170082

    [30]

    赵晓亮, 李志伟, 王烨, 等.铌钽精矿标准物质研制[J].岩矿测试, 2018, 37(6):687-694. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201711230185

    Zhao X L, Li Z W, Wang Y, et al.Preparation and certification of niobium-tantalum concentrate reference materials[J].Rock and Mineral Analysis, 2018, 37(6):687-694. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201711230185

  • 加载中

(7)

计量
  • 文章访问数:  2279
  • PDF下载数:  81
  • 施引文献:  0
出版历程
收稿日期:  2018-08-15
修回日期:  2018-12-22
录用日期:  2019-01-04

目录