中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

微波碱性体系消解-电感耦合等离子体发射光谱法测定固体废物中的六价铬

赵庆令, 李清彩, 谭现锋, 安茂国, 陈娟, 毛秀丽. 微波碱性体系消解-电感耦合等离子体发射光谱法测定固体废物中的六价铬[J]. 岩矿测试, 2021, 40(1): 103-110. doi: 10.15898/j.cnki.11-2131/td.201907290114
引用本文: 赵庆令, 李清彩, 谭现锋, 安茂国, 陈娟, 毛秀丽. 微波碱性体系消解-电感耦合等离子体发射光谱法测定固体废物中的六价铬[J]. 岩矿测试, 2021, 40(1): 103-110. doi: 10.15898/j.cnki.11-2131/td.201907290114
ZHAO Qing-ling, LI Qing-cai, TAN Xian-feng, AN Mao-guo, CHEN Juan, MAO Xiu-li. Determination of Hexavalent Chromium in Solid Waste by Inductively Coupled Plasma-Optical Emission Spectrometry with Microwave Digestion[J]. Rock and Mineral Analysis, 2021, 40(1): 103-110. doi: 10.15898/j.cnki.11-2131/td.201907290114
Citation: ZHAO Qing-ling, LI Qing-cai, TAN Xian-feng, AN Mao-guo, CHEN Juan, MAO Xiu-li. Determination of Hexavalent Chromium in Solid Waste by Inductively Coupled Plasma-Optical Emission Spectrometry with Microwave Digestion[J]. Rock and Mineral Analysis, 2021, 40(1): 103-110. doi: 10.15898/j.cnki.11-2131/td.201907290114

微波碱性体系消解-电感耦合等离子体发射光谱法测定固体废物中的六价铬

  • 基金项目:
    山东省地质勘查项目(鲁国土资字[2016]328号)
详细信息
    作者简介: 赵庆令, 硕士, 高级工程师, 从事地质实验测试及环境地质工作。E-mail: zqlzb@126.com
    通讯作者: 谭现锋, 硕士, 研究员, 从事环境地质工作。E-mail: geotan1977@126.com
  • 中图分类号: O614.242;O657.31

Determination of Hexavalent Chromium in Solid Waste by Inductively Coupled Plasma-Optical Emission Spectrometry with Microwave Digestion

More Information
  • 六价铬Cr (Ⅵ)是建设用地土壤及固体废物环境监测的必测指标之一,为了配套现行土壤环境质量标准,建立操作简便、准确精密的Cr (Ⅵ)前处理和分析测定方法势在必行。本文采用0.1mol/L磷酸氢二钠溶液(pH=9.0)作为提取剂,微波炉消解,在优化的微波消解温度和时间内,保证了对固体样品基体的破坏作用,将晶格中的Cr (Ⅵ)全部释放到溶液中,并有效抑制了Cr (Ⅲ)氧化。用0.45μm滤膜在pH=9.0条件进行过滤后,可以将六价铬(溶液)与三价铬(沉淀)分离,借助电感耦合等离子体发射光谱法(ICP-OES)完成样品溶液中Cr (Ⅵ)的定量。结果表明:当样品量为1.00g,微波消解温度为90℃,消解时间为20min时能够保证固体废物中Cr (Ⅵ)的完全提取及准确测定。方法检出限为0.057mg/kg,相对标准偏差(n=7)低于3.20%,与HJ 687标准方法进行比对,测得的相对偏差介于-5.6%~7.6%;实际固体废物中Cr (Ⅵ)的加标回收率为94.3%~96.6%。与前人相关的电感耦合等离子体发射光谱法(检出限0.83mg/kg,加标回收率均值87.2%)相比,本方法的检出限更低,样品前处理时间更短,自动化程度高,可应用于环境监测领域。

  • 加载中
  • 图 1  铬元素的pH-Eh相图(据文献[1]修改)

    Figure 1. 

    图 2  微波消解时间与Cr(Ⅵ)浓度的关系

    Figure 2. 

    图 3  微波消解温度与Cr(Ⅵ)浸出浓度的关系

    Figure 3. 

    图 4  三氧化二铬(Cr2O3)对Cr(Ⅵ)测定的影响

    Figure 4. 

    表 1  消解试剂的选择

    Table 1.  Selection of digestion reagents

    消解试剂 铬盐 溶解度
    (g/mL)
    在含Cr(Ⅲ)水溶液中的反应 适用性
    硫酸钠 Cr2(SO4)3 220 Cr3++3H2O→Cr(OH)3↓+3H+ 不适用
    碳酸钠 Cr2(CO3)3 不存在 3CO32-+2Cr3+ +3H2O→2Cr(OH)3↓+3CO2 适用
    磷酸氢二钠 CrPO4 < 6.3×10-31 Cr3++HPO42-→CrPO4↓+H+
    Cr(OH)3+HPO42-→CrPO4↓+H2O+2OH-
    较适用
    下载: 导出CSV

    表 2  方法精密度及加标回收率试验

    Table 2.  Precision and recovery tests of the method

    测试项目 试样浓度A 试样浓度B 试样浓度C
    7次测定值
    (mg/kg)
    19.83  19.08
    20.43  19.38
    20.67  20.40
    19.37
    696.2  735.5
    722.9  714.8
    719.3  701.4
    694.3
    5567  5476
    5436  5551
    5523  5552
    5528
    平均值(mg/kg) 19.88 712.1 5519
    标准偏差(mg/kg) 0.62 15.30 46.97
    RSD(%) 3.14 2.15 0.85
    HJ 687测定值(mg/kg) 18.42 721.9 5837
    相对偏差(%) 7.62 -1.37 -5.60
    Cr(Ⅵ)加标量(μg) 20 500 5000
    加标后测定值(mg/kg) 38.91 1195 10232
    加标回收率(%) 95.2 96.6 94.3
    下载: 导出CSV
  • [1]

    Tran H N, Nguyen D T, Le G T, et al. Adsorption mechanism of hexavalent chromium onto layered double hydroxides-based adsorbents: A systematic in-depth review[J]. Journal of Hazardous Materials, 2019, 373: 258-270. doi: 10.1016/j.jhazmat.2019.03.018

    [2]

    Zhao P D, Zhang H, Yu J, et al. Conditions for mutual conversion of Cr(Ⅲ) and Cr(Ⅵ) in aluminum chromium slag[J]. Journal of Alloys and Compounds, 2019, 788: 506-513. doi: 10.1016/j.jallcom.2019.02.093

    [3]

    Dhal B, Thatoi H N, Das N N, et al. Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: A review[J]. Journal of Hazardous Materials, 2013, 250-251: 272-291. doi: 10.1016/j.jhazmat.2013.01.048

    [4]

    陈丽琼, 霍巨垣, 王欣, 等. 六价铬测定方法研究进展[J]. 理化检验(化学分册), 2015, 51(8): 1208-1212. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201508050.htm

    Chen L Q, Huo J Y, Wang X, et al. Recent advances of researches on determination of hexavalent chromium[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2015, 51(8): 1208-1212. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201508050.htm

    [5]

    Cao X Y, Wang S, Bi R C, et al. Toxic effects of Cr(Ⅵ) on the bovine hemoglobin and human vascular endothelial cells: Molecular interaction and cell damage[J]. Chemosphere, 2019, 222: 355-363. doi: 10.1016/j.chemosphere.2019.01.137

    [6]

    Rager J E, Mina S M, Chappell G A, et al. Review of transcriptomic responses to hexavalent chromium exposure in lung cells supports a role of epigenetic mediators in carcinogenesis[J]. Toxicology Letters, 2019, 305: 40-50. doi: 10.1016/j.toxlet.2019.01.011

    [7]

    Zhao Y, Yan J, Li A P, et al. Bone marrow mesenchymal stem cells could reduce the toxic effects of hexavalent chromium on the liver by decreasing endoplasmic reticulum stress-mediated apoptosis via SIRT1/HIF-1α signaling pathway in rats[J]. Toxicology Letters, 2019, 310: 31-38. doi: 10.1016/j.toxlet.2019.04.007

    [8]

    Yin F, Yan J, Zhao Y, et al. Bone marrow mesenchymal stem cells repair Cr(Ⅵ)-injured kidney by regulating mitochondria-mediated apoptosis and mitophagy mediated via the MAPK signaling pathway[J]. Ecotoxicology and Environmental Safety, 2019, 176: 234-241. doi: 10.1016/j.ecoenv.2019.03.093

    [9]

    des Marias T L, Costa M. Mechanisms of chromium-induced toxicity[J]. Current Opinion in Toxicology, 2019, 14: 1-7. doi: 10.1016/j.cotox.2019.05.003

    [10]

    Chen Q Y, Murphy A, Sun H, et al. Molecular and epigenetic mechanisms of Cr(Ⅵ)-induced carcinogenesis[J]. Toxicology and Applied Pharmacology, 2019, 377: 114636. doi: 10.1016/j.taap.2019.114636

    [11]

    Santonen T, Alimonti A, Bocca B, et al. Setting up a collaborative European human biological monitoring study on occupational exposure to hexavalent chromium[J]. Environmental Research, 2019, 177: 108583. doi: 10.1016/j.envres.2019.108583

    [12]

    张杰芳, 闫玉乐, 夏承莉, 等. 微波碱消解-电感耦合等离子体发射光谱法测定煤灰中的六价铬[J]. 岩矿测试, 2017, 36(1): 46-51. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201701006.htm

    Zhang J F, Yan Y L, Xia C L, et al. Determination of Cr(Ⅵ) in coal ashby microwave alkaline digestion and inductively coupled plasma-optical emission spectrometry[J]. Rock and Mineral Analysis, 2017, 36(1): 46-51. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201701006.htm

    [13]

    张涛, 蔡五田, 刘金巍, 等. 超声辅助提取离子色谱法测定铬污染土壤中的六价铬[J]. 分析测试学报, 2013, 32(11): 1384-1387. https://www.cnki.com.cn/Article/CJFDTOTAL-TEST201311029.htm

    Zhang T, Cai W T, Liu J W, et al. Determination of hexavalent chromium in soil samples by ultrasound-assisted extraction ion chromatography[J]. Journal of Instrumental Analysis, 2013, 32(11): 1384-1387. https://www.cnki.com.cn/Article/CJFDTOTAL-TEST201311029.htm

    [14]

    Miyake Y, Tokumura M, Iwazaki Y, et al. Determination of hexavalent chromium concentration in industrial waste incinerator stack gas by using a modified ion chromatography with post-column derivatization method[J]. Journal of Chromatography A, 2017, 1502: 24-29. doi: 10.1016/j.chroma.2017.04.046

    [15]

    巢静波, 史乃捷, 陈扬, 等. 衍生液注入控制-离子色谱法同时测定环境水样中的三价铬和六价铬[J]. 环境化学, 2016, 35(1): 67-74. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX201601009.htm

    Chao J B, Shi N J, Chen Y, et al. Simultaneous determination of trivalent and hexavalent chromium in environmental waters by ion chromatography with derivatization reagent injection-control technique[J]. Environmental Chemistry, 2016, 35(1): 67-74. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX201601009.htm

    [16]

    虞锐鹏, 胡忠阳, 叶明立, 等. 快速溶剂萃取-离子色谱法同时测定塑料中的三价铬和六价铬[J]. 色谱, 2012, 30(4): 409-413. https://www.cnki.com.cn/Article/CJFDTOTAL-SPZZ201204017.htm

    Yu R P, Hu Z Y, Ye M L, et al. Simultaneous determination of trivalent chromium and hexavalent chromium in plastics by accelerated solvent extraction-ion chromatography[J]. Chinese Journal of Chromatography, 2012, 30(4): 409-413. https://www.cnki.com.cn/Article/CJFDTOTAL-SPZZ201204017.htm

    [17]

    Olonkwoh S S, Bakar N K A. A simple method for chromium speciation analysis in contaminated water using APDC and a pre-heated glass tube followed by HPLC-PDA[J]. Talanta, 2018, 181: 401-409. doi: 10.1016/j.talanta.2018.01.041

    [18]

    田勇, 刘崇华, 方晗, 等. 共沉淀法辅助分离-离子色谱与电感耦合等离子体质谱联用测定玩具材料中三价铬及超痕量六价铬[J]. 分析测试学报, 2015, 34(6): 706-710. https://www.cnki.com.cn/Article/CJFDTOTAL-TEST201506015.htm

    Tian Y, Liu C H, Fang H, et al. Determination of Cr(Ⅲ) and ultratrace Cr(Ⅵ) in toy materials by co-precipitation assisted separation-ion chromatography-inductively coupled plasma mass spectrometry[J]. Journal of Instrumental Analysis, 2015, 34(6): 706-710. https://www.cnki.com.cn/Article/CJFDTOTAL-TEST201506015.htm

    [19]

    刀谞, 吕怡兵, 滕恩江, 等. 离子色谱-电感耦合等离子体质谱联用测定大气颗粒物PM2.5和PM10中的六价铬[J]. 色谱, 2014, 32(9): 936-941. https://www.cnki.com.cn/Article/CJFDTOTAL-SPZZ201409008.htm

    Dao X, Lv Y B, Teng E J, et al. Determination of hexavalent chromium in atmospheric particles PM2.5 and PM10 by ion chromatography with inductively coupled plasma mass spectrometry[J]. Chinese Journal of Chromatography, 2014, 32(9): 936-941. https://www.cnki.com.cn/Article/CJFDTOTAL-SPZZ201409008.htm

    [20]

    倪张林, 汤富彬, 屈明华, 等. 微波灰化-液相色谱-电感耦合等离子体质谱联用测定干食用菌中的三价铬和六价铬[J]. 色谱, 2014, 32(2): 174-178. https://www.cnki.com.cn/Article/CJFDTOTAL-SPZZ201402012.htm

    Ni Z L, Tang F B, Qu M H, et al. Determination of trivalent chromium and hexavalent chromium in dried edible fungi by microwave ashing-liquid chromatography with inductively coupled plasma mass spectrometry[J]. Chinese Journal of Chromatography, 2014, 32(2): 174-178. https://www.cnki.com.cn/Article/CJFDTOTAL-SPZZ201402012.htm

    [21]

    Gao L, Gao B, Xu D Y, et al. In-situ measurement of labile Cr(Ⅲ) and Cr(Ⅵ) in water using diffusive gradients in thin-films (DGT)[J]. Science of the Total Environment, 2019, 653: 1161-1167. doi: 10.1016/j.scitotenv.2018.10.392

    [22]

    Catalani S, Fostinelli J, Gilberti M E, et al. Application of a metal free high performance liquid chromatography with inductively coupled plasma mass spectrometry (HPLC-ICP-MS) for the determination of chromium species in drinking and tap water[J]. International Journal of Mass Spectrometry, 2015, 387: 31-37. doi: 10.1016/j.ijms.2015.06.015

    [23]

    Heitland P, Blohm M, Breuer C, et al. Application of ICP-MS and HPLC-ICP-MS for diagnosis and therapy of a severe intoxication with hexavalent chromium and inorganic arsenic[J]. Journal of Trace Elements in Medicine and Biology, 2017, 41: 36-40. doi: 10.1016/j.jtemb.2017.02.008

    [24]

    Drinčić A, Zuliani T, Šančar J, et al. Determination of hexavalent Cr in river sediments by speciated isotope dilution inductively coupled plasma mass spectrometry[J]. Science of the Total Environment, 2018, 637-638: 1286-1294. doi: 10.1016/j.scitotenv.2018.05.112

    [25]

    Lu Y, Li G, Liu W, et al. The application of micro-wave digestion in decomposing some refractory ore samples with solid fusion agent[J]. Talanta, 2018, 186: 538-544. doi: 10.1016/j.talanta.2018.03.074

    [26]

    Muller E I, Muller C C, Souza J P, et al. Green microwave-assisted wet digestion method of carbohydrate-rich foods with hydrogen peroxide using single reaction chamber and further elemental determination using ICP-OES and ICP-MS[J]. Microchemical Journal, 2017, 134: 257-261. doi: 10.1016/j.microc.2017.06.012

    [27]

    赵庆令, 安茂国, 陈洪年, 等. 济南市某废弃化工厂区域土壤地球化学特征研究[J]. 岩矿测试, 2018, 37(2): 201-208. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201708240135

    Zhao Q L, An M G, Chen H N, et al. Research on geochemical characteristic of soil in a chemical industrial factory site in Jinan City[J]. Rock and Mineral Analysis, 2018, 37(2): 201-208. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201708240135

    [28]

    安茂国, 赵庆令, 谭现锋, 等. 化学还原-稳定化联合修复铬污染场地土壤的效果研究[J]. 岩矿测试, 2019, 38(2): 204-211. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201806040068

    An M G, Zhao Q L, Tan X F, et al. Research on the effect of chemical reduction-stabilization combined remediation of Cr-contaminated soil[J]. Rock and Mineral Analysis, 2019, 38(2): 204-211. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201806040068

  • 加载中

(4)

(2)

计量
  • 文章访问数:  1403
  • PDF下载数:  20
  • 施引文献:  0
出版历程
收稿日期:  2019-07-29
修回日期:  2020-11-12
录用日期:  2020-12-06
刊出日期:  2021-01-28

目录