Determination of Cadmium in Soil Samples by ICP-MS/MS Using Oxygen Reaction Mode
-
摘要:
应用电感耦合等离子体质谱法(ICP-MS)分析土壤中的镉元素时,锆的氢氧化物、钼的氧化物、锡的同位素会对镉造成严重的干扰,导致准确测定土壤中镉的难度较大。本文采用电感耦合等离子体串接质谱法(ICP-MS/MS),选取无同质异位素干扰的111Cd为分析谱线,在MS/MS模式下碰撞反应池中通入的氧气可以与94Zr16O1H+、95Mo16O+进行电子转移、去氢、加氧等反应,抑制这些多原子离子对111Cd的重叠干扰。结果表明:氧气流量越大,去除多原子离子的效果越好,当氧气流量在0.45mL/min时,溶液中2000μg/L以下的锆、1000μg/L以下的钼在111Cd处形成的多原子重叠干扰小于0.005μg/L。实验在石墨消解仪中采用氢氟酸-硝酸-高氯酸消解样品,盐酸复溶,溶液定容稀释至1000倍测定,方法检出限(3δ)达到0.003μg/g;本方法经过国家土壤一级标准物质验证,11个国家土壤一级标准物质的测量值和认定值的相对误差在±7%以内,3个国家土壤一级标准物质的精密度(RSD,n=12)小于5%。本方法可以作为土壤样品中痕量镉元素的分析方法。
-
关键词:
- 土壤 /
- 镉 /
- 氧气反应模式 /
- 多原子离子 /
- 电感耦合等离子体串接质谱法
Abstract:BACKGROUND When using inductively coupled plasma-mass spectrometry (ICP-MS) to analyze soil, the zirconium hydroxide, molybdenum oxide, and tin isotopes can cause serious interference on cadmium, which makes it difficult to accurately determine cadmium in soil samples.
OBJECTIVES To develop a method for accurate determination of Cd in soil samples.
METHODS ICP-MS/MS was used, and 111Cd without isobaric interference was selected as the analysis line. In MS/MS mode, the oxygen introduced into the collision reaction cell can be reacted with 111Zr16O1H+, 111Mo16O+, inducing electron transfer, dehydrogenation, oxygenation and other reactions to inhibit the overlapping interference of these polyatomic ions on 111Cd.
RESULTS Oxygen flow was the key factor in this method. 0.45mL/min oxygen flow can reduce oxide interference to less than 0.005μg/L when zirconium concentration was lower than 2000μg/L and molybdenum concentration was below 1000μg/L. The method has been verified by the national reference materials. The relative error of the measured value and recognized value of the 11 national reference materials was within ±7%, and the relative standard deviation (n=12) of three soil reference materials was less than 5%.
CONCLUSIONS Triple quadrupole ICP-MS oxygen reaction mode can eliminate Zr and Mo polyatomic ion interference on Cd, and this method can be used for the determination of trace Cd in soil samples.
-
表 1 ZrOH/MoO和氧气主要产物的质量数及信号强度
Table 1. Main reaction products and signal intensity of ZrOH/MoO and oxygen
标准溶液 Q1和Q2分析的质量数
m/z信号强度
(cps)锆单标溶液 111 → 32 39817 111 → 127 4073 111 → 110 868 111 → 126 813 钼单标溶液 111 → 32 36109 111 → 127 1750 表 2 氧气流速的优化
Table 2. Optimization of oxygen flow
氧气流速
(mL/min)Zr单标m/z=111处
信号强度(cps)Cd单标m/z=111处
信号强度(cps)0.000 623.35 6288.14 0.075 670.02 6024.69 0.150 593.35 8971.34 0.225 335.50 12464.13 0.300 138.00 16208.14 0.375 45.00 18299.17 0.450 21.00 18905.01 0.525 4.50 18352.57 0.600 2.00 17020.81 0.675 2.00 16071.31 0.750 2.50 14624.65 表 3 不同模式下111Cd干扰情况对比
Table 3. Interference elimination effects in different modes
标准溶液 浓度
(μg/L)氦气模式下111Cd测定结果 干扰系数 氧气模式下111Cd测定结果 浓度(μg/L) 信号强度(cps) 浓度(μg/L) 信号强度(cps) 锆单标溶液 100 0.014 87 0.00014 0.000 3 200 0.028 173 0.00014 0.000 3 400 0.040 247 0.00010 0.001 10 800 0.095 580 0.00012 0.001 20 2000 0.171 1047 0.00009 0.004 60 钼单标溶液 20 0.006 37 0.0003 0.000 3 50 0.014 87 0.0003 0.000 3 100 0.020 120 0.0002 0.000 7 200 0.049 303 0.0002 0.001 13 1000 0.172 1053 0.0002 0.005 70 2000 0.353 2167 0.0002 0.018 237 注:表中分析的是Zr单标溶液和Mo单标溶液,镉的预测浓度都为0。 表 4 土壤一级标准物质镉分析结果
Table 4. Analytical results of Cd in soil national standard substances
标准物质编号 认定值
(μg/g)测定值
(μg/g)相对误差
(%)GBW07385 0.28 ± 0.02 0.285 1.8 0.282 0.7 GBW07388 0.066 ± 0.007 0.067 1.5 0.068 3.0 GBW07389 0.14 ± 0.01 0.143 2.1 0.141 0.7 GBW07407 0.08 ±0.02 0.079 -1.3 0.079 -1.3 GBW07408 0.13 ±0.02 0.131 0.8 0.132 1.5 GBW07426 0.15 ±0.02 0.149 -0.7 0.154 2.7 GBW07427 0.13 ±0.01 0.131 0.8 0.127 -2.3 GBW07449 0.108 ± 0.011 0.105 -2.8 0.108 0.0 GBW07451 0.065 ±0.012 0.061 -6.2 0.062 -4.6 GBW07452 0.15 ± 0.02 0.148 -1.3 0.152 1.3 GBW07453 0.106 ±0.007 0.103 -2.8 0.105 -0.9 表 5 方法检出限和精密度
Table 5. Detection limit and precision tests of the method
项目 Cd空白值
(μg/L)Cd测定值(μg/g) GBW07408 GBW07451 GBW7389 12次测定值 -0.0004 0.0018 0.0007 0.131 0.127 0.132 0.061 0.062 0.065 0.134 0.143 0.142 0.0021 -0.0012 0.0019 0.130 0.130 0.132 0.065 0.069 0.070 0.139 0.139 0.145 0.0011 0.0013 0.0015 0.133 0.132 0.126 0.067 0.071 0.066 0.146 0.138 0.141 0.0014 -0.0002 0.0010 0.127 0.130 0.132 0.068 0.065 0.064 0.136 0.142 0.140 标准偏差 0.0010 0.0024 0.0029 0.0034 -
[1] 邵文军, 张激光, 刘晶晶. 石墨炉原子吸收光谱法测定岩石和土壤中痕量镉[J]. 岩矿测试, 2008, 27(4): 310-312. http://www.ykcs.ac.cn/article/id/ykcs_200804102
Shao W J, Zhang J G, Liu J J. Determination of trace cadmium in rocks and soil by graphite furnace atomic absorption spectrometry[J]. Rock and Mineral Analysis, 2008, 27(4): 310-312. http://www.ykcs.ac.cn/article/id/ykcs_200804102
[2] 何恬叶, 张颖红, 胡子文. 微波消解ICP-OES法测定土壤样品中22种元素[J]. 分析试验室, 2018, 37(1): 84-87. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY201801018.htm
He T Y, Zhang Y H, Hu Z W. Determination of 22 elements in soil by ICP-OES with microwave digestion[J]. Chinese Journal of Analysis Laboratory, 2018, 37(1): 84-87. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY201801018.htm
[3] 张更宇, 刘伟, 崔世荣, 等. 分类消解-电感耦合等离子体原子发射光谱法测定环境土壤中15种金属元素的含量[J]. 理化检验(化学分册), 2018, 54(4): 428-432. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201804014.htm
Zhang G Y, Liu W, Cui S Y, et al. Determination of 15 metal elements in soil by inductively coupled plasma atomic emission spectrometry[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2018, 54(4): 428-432. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201804014.htm
[4] 乔军, 佟克兴, 李安. 电感耦合等离子体质谱(ICP-MS)法测定葡萄酒中的铜、镉、铅[J]. 中国无机分析化学, 2017, 7(4): 33-36. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFX201704007.htm
Qiao J, Tong K X, Li A. Determination of copper, cadmium, lead in wine by inductively coupled plasma-mass spectrometry (ICP-MS)[J]. Chinese Journal of Inorganic Analytical Chemistry, 2017, 7(4): 33-36. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFX201704007.htm
[5] 宋阳, 李现忠, 黄文氢, 等. ICP-MS技术在石油化工中的应用[J]. 石油化工, 2016, 45(10): 1279-1287. https://www.cnki.com.cn/Article/CJFDTOTAL-SYHG201610025.htm
Song Y, Li X Z, Huang W Q, et al. Application of ICP-MS in petrochemical industry[J]. Petrochemical Technology, 2016, 45(10): 1279-1287. https://www.cnki.com.cn/Article/CJFDTOTAL-SYHG201610025.htm
[6] 赵志南, 严冬, 何群华, 等. ICP-MS测定《全国土壤污染状况详查》项目中14种元素[J]. 环境化学, 2017, 36(2): 448-452. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX201702028.htm
Zhao Z N, Yan D, He Q H, et al. Determination of 14 elements in China Soil Pollution Survey by ICP-MS[J]. Environmental Chemistry, 2017, 36(2): 448-452. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX201702028.htm
[7] 张保科, 温宏利, 王蕾, 等. 封闭压力酸溶-盐酸提取-电感耦合等离子体质谱法测定地质样品中的多元素[J]. 岩矿测试, 2011, 30(6): 737-744. http://www.ykcs.ac.cn/article/id/ykcs_20110615
Zhang B K, Wen H L, Wang L, et al. Determination of multiple elements in geological samples by closed pressure acid solution-hydrochloric acid extraction inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2011, 30(6): 737-744. http://www.ykcs.ac.cn/article/id/ykcs_20110615
[8] 戴冠苹, 高敬铭, 张红云, 等. ICP-MS和GFAAS测定粮食中镉的对比研究[J]. 粮油食品科技, 2018, 26(4): 36-39. https://www.cnki.com.cn/Article/CJFDTOTAL-SYKJ201804009.htm
Dai G P, Gao J M, Zhang H Y, et al. Comparative study on the determination of cadmium in grain by ICP-MS and GFAAS[J]. Science and Technology of Cereals, Oils and Foods, 2018, 26(4): 36-39. https://www.cnki.com.cn/Article/CJFDTOTAL-SYKJ201804009.htm
[9] 徐迪伟, 陈荣乐. ICP-MS检测饮用水中31种元素的方法研究[J]. 中国卫生检验杂志, 2018, 27(19): 2761-2764. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWJZ201719006.htm
Xu D W, Chen R L. Study on the determination of 31 metal elements in drinking water by inductively coupled plasma-mass spectrometry[J]. Chinese Journal of Health Laboratory Technology, 2018, 27(19): 2761-2764. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWJZ201719006.htm
[10] 鲁淼娟, 凌飞, 柳展飞. 电感耦合等离子体质谱法测定水中20种金属元素[J]. 能源环境保护, 2016, 30(4): 56-58. https://www.cnki.com.cn/Article/CJFDTOTAL-NYBH201606016.htm
Lu M J, Ling F, Liu Z F. Study on determination of 20 kinds of elements in the water by ICP-MS[J]. Energy Environmental Protection, 2016, 30(4): 56-58. https://www.cnki.com.cn/Article/CJFDTOTAL-NYBH201606016.htm
[11] 王静, 王鑫, 耿哲, 等. 碰撞池-电感耦合等离子体质谱测定海水重金属[J]. 环境工程学报, 2016, 10(4): 2139-2143. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ201604089.htm
Wang J, Wang X, Geng Z, et al. Determination of heavy metal in marine waters by collision cell inductively coupled plasma-mass spectrometry[J]. Chinese Journal of Environmental Engineering, 2016, 10(4): 2139-2143. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ201604089.htm
[12] 王佳翰, 冯俊, 王达成, 等. 电感耦合等离子体质谱法测定地球化学样品中钼镉钨铀锡[J]. 冶金分析, 2017, 37(6): 20-25. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201706004.htm
Wang J H, Feng J, Wang D C, et al. Determination of molybdenum, cadmium, tungsten, uranium and tin in geochemical samples by inductively coupled plasma-mass spectrometry[J]. Metallurgical Analysis, 2017, 37(6): 20-25. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201706004.htm
[13] 李刚, 曹小燕. 电感耦合等离子体质谱法测定地质样品中锗和镉的干扰及校正[J]. 岩矿测试, 2008, 27(3): 197-200. http://www.ykcs.ac.cn/article/id/ykcs_20080369
Li G, Cao X Y. Interference and its elimination in determination of germanium and cadmium in geological samples by inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2008, 27(3): 197-200. http://www.ykcs.ac.cn/article/id/ykcs_20080369
[14] 孙朝阳, 董利明, 贺颖婷, 等. 电感耦合等离子体质谱法测定地质样品中钪镓锗铟镉铊时的干扰及其消除方法[J]. 理化检验(化学分册), 2016, 52(9): 1026-1030. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201609007.htm
Sun Z Y, Dong L M, He Y T, et al. Interference and elimination method of Sc, Ga, Ge, In, Cd, Tl in geological samples by inductively coupled plasma-mass spectrometry[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2016, 52(9): 1026-1030. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201609007.htm
[15] 常学东. ICP-MS方法测定镉的干扰现象分析[J]. 新疆有色金属, 2011(6): 47-49. https://www.cnki.com.cn/Article/CJFDTOTAL-XJYS201106018.htm
Chang X D. Analysis of interference phenomena in determination of cadmium by ICP-MS method[J]. Xinjiang Nonferrous Metals, 2011(6): 47-49. https://www.cnki.com.cn/Article/CJFDTOTAL-XJYS201106018.htm
[16] 罗策, 雷小燕, 黄永红, 等. 电感耦合等离子体质谱法测定锆及锆合金中镉含量的质谱干扰分析[J]. 分析科学学报, 2016, 32(4): 515-519. https://www.cnki.com.cn/Article/CJFDTOTAL-FXKX201604015.htm
Luo C, Lei X Y, Huang Y H, et al. Determination of cadmium in zirconium and zirconium alloys by ICP-MS[J]. Journal of Analytical Science, 2016, 32(4): 515-519. https://www.cnki.com.cn/Article/CJFDTOTAL-FXKX201604015.htm
[17] 靳兰兰, 王秀季, 李会来, 等. 电感耦合等离子体质谱技术进展及其在冶金分析中的应用[J]. 冶金分析, 2016, 36(7): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201607001.htm
Jin L L, Wang X J, Li H L, et al. Progress in inductively coupled plasma-mass spectrometry technology and its application in metallurgical analysis[J]. Metallurgical Analysis, 2016, 36(7): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201607001.htm
[18] Jackson S L, Spence J, Janssen D J, et al. Determination of Mn, Fe, Ni, Cu, Zn, Cd and Pb in seawater using offline extraction and triple quadrupole ICP-MS/MS[J]. Journal of Analytical Atomic Spectrometry, 2018, 33: 304-313. doi: 10.1039/C7JA00237H
[19] Luo M Y, Xing S, Yang Y G, et al. Sequential analyses of actinides in large-size soil and sediment samples with total sample dissolution[J]. Journal of Environmental Radioactivity, 2018, 187: 73-80. doi: 10.1016/j.jenvrad.2018.01.028
[20] Taylor V F, Li Z G, Sayarath V, et al. Distinct arsenic metabolites following seaweed consumption in humans[J]. Scientific Reports, 2017, 7: 3920. doi: 10.1038/s41598-017-03883-7
[21] Gondikas A, Kammer F, Kaegi R, et al. Where is the nano? Analytical approaches for the detection and quantification of TiO2 engineered nanoparticles in surface waters[J]. Environmental Science Nano, 2018, 5: 313-326. doi: 10.1039/C7EN00952F
[22] Thomas Z, Johan H K. Laser ablation Rb/Sr dating by online chemical separation of Rb and Sr in an oxygen-filled reaction cell[J]. Chemical Geology, 2016, 437: 120-133. doi: 10.1016/j.chemgeo.2016.05.027
[23] Amr M A, Dawood N D A, Helal A I, et al. Rare earth elements and 143Nd/144Nd isotope ratio measurements using tandem ICP-CRC-MS/MS: Characterization of Date Palm (Phoenix Dactylifera L. )[J]. Journal of Analytical Atomic Spectrometry, 2017, 32: 1554-1565. doi: 10.1039/C7JA00126F
[24] Pinheiro F C, Amaral C D B, Schiavo D, et al. Determination of arsenic in fruit juices using inductively coupled plasma-tandem mass spectrometry (ICP-MS/MS)[J]. Food Analytical Methods, 2017, 10(4): 992-998. doi: 10.1007/s12161-016-0663-7
[25] Guo W, Jin L L, Hu S H, et al. Method development for the determination of total fluorine in foods by tandem ICP-mass spectrometry with mass-shift strategy[J]. Journal of Agricultural and Food Chemistry, 2017, 65(16): 3406-3412. doi: 10.1021/acs.jafc.7b00535
[26] 宋威, 胡长春. 电感耦合等离子体质谱法测定土壤中的镉[J]. 广州化工, 2018, 46(6): 95-96. https://www.cnki.com.cn/Article/CJFDTOTAL-GZHA201806035.htm
Song W, Hu C C. Determination of cadmium in soil by inductively coupled plasma-mass spectrometry[J]. Guangzhou Chemical Industry, 2018, 46(6): 95-96. https://www.cnki.com.cn/Article/CJFDTOTAL-GZHA201806035.htm
[27] 乐淑葵, 段永梅. 电感耦合等离子体质谱法(ICP-MS)测定土壤中的重金属元素[J]. 中国无机分析化学, 2015, 5(3): 16-19. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFX201503005.htm
Le S K, Duan Y M. Determination of heavy metal elements in soil by ICP-MS[J]. Chinese Journal of Inorganic Analytical Chemistry, 2015, 5(3): 16-19. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFX201503005.htm
[28] 侯鹏飞, 江冶, 曹磊. 无高氯酸常压酸溶-ICP-MS法同时测定土壤中的As, Cd, Pb, Cr, Zn, Cu, Ni[J]. 地质学刊, 2019, 43(1): 166-170. https://www.cnki.com.cn/Article/CJFDTOTAL-JSDZ201901026.htm
Hou P F, Jiang Y, Cao L. Determination of As, Cd, Pb, Cr, Zn, Cu and Ni in soil by ICP-MS method without perchloric acid[J]. Journal of Geology, 2019, 43(1): 166-170. https://www.cnki.com.cn/Article/CJFDTOTAL-JSDZ201901026.htm
[29] 李自强, 李小英, 钟琦, 等. 电感耦合等离子体质谱法测定土壤重金属普查样品中铬铜镉铅的关键环节研究[J]. 岩矿测试, 2016, 35(1): 37-41. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2016.01.007
Li Z Q, Li X Y, Zhong Q, et al. Determination of Cr, Cu, Cd and Pb in soil samples by inductively coupled plasma-mass spectrometry for an investigation of heavy metal pollution[J]. Rock and Mineral Analysis, 2016, 35(1): 37-41. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2016.01.007
[30] 王妃, 王德淑, 汤德能. 浅析锡对电感耦合等离子体质谱法测定镉的干扰[J]. 中国无机分析化学, 2015, 5(2): 12-18. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFX201502004.htm
Wang F, Wang D S, Tang D N. Study on interference of tin in the determination of cadmium by inductively coupled plasma-mass spectrometry[J]. Chinese Journal of Inorganic Analytical Chemistry, 2015, 5(2): 12-18. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFX201502004.htm
[31] 禹莲玲, 郭斌, 柳昭, 等. 电感耦合等离子体质谱法测定高锡地质样品中的痕量镉[J]. 岩矿测试, 2020, 39(1): 77-84. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201906270094
Yu L L, Guo B, Liu Z, et al. Trace cadmium in geological samples with high content of tin determined by inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2020, 39(1): 77-84. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201906270094
[32] 王岚, 杨丽芳, 谭西早, 等. 膜去溶-电感耦合等离子体质谱法测定环境地质样品中的镉[J]. 岩矿测试, 2017, 36(6): 574-580. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201703130032
Wang L, Yang L F, Tan X Z, et al. Determination of cadmium in environmental geological samples by inductively coupled plasma-mass spectrometry with desolvation[J]. Rock and Mineral Analysis, 2017, 36(6): 574-580. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201703130032
[33] 马晓龙, 李刚, 李艳, 等. 碰撞反应池-电感耦合等离子体质谱法测定锆基合金中痕量镉[J]. 理化检验(化学分册), 2014, 50(3): 345-348. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201403024.htm
Ma X L, Li G, Li Y, et al. Determination of trace cadmium in zirconium-based alloys by impact reactor inductively coupled plasma-mass spectrometry[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2014, 50(3): 345-348. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201403024.htm
[34] 徐进力, 邢夏, 唐瑞玲, 等. 动能歧视模式ICP-MS测定地球化学样品中14种痕量元素[J]. 岩矿测试, 2019, 38(4): 394-402. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201812070131
Xu J L, Xing X, Tang R L, et al. Determination of 14 trace elements in geochemical samples by ICP-MS using kinetic energy discrimination mode[J]. Rock and Mineral Analysis, 2019, 38(4): 394-402. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201812070131