Application of X-ray Powder Diffraction Method in Identification and Classification of Leptite
-
摘要: 变粒岩的鉴定通常以显微镜鉴定技术为主,但在显微镜下区分颗粒细小的长石、石英及绿泥石、蒙脱石、云母等层状硅酸盐矿物十分困难,仅通过显微鉴定技术对变粒岩进行定名可能产生较大误差,这对地质填图和原岩恢复工作会造成一些偏差,导致得出错误的地质结论。随着X射线衍射分析技术的发展,该技术已广泛应用于矿物学和岩石学的研究,本研究将结合X射线粉晶衍射技术,对显微镜下难以区分的细小矿物进行鉴定。共选用23件变粒岩样品,利用X射线粉晶衍射分析和显微镜岩石薄片鉴定技术,对变粒岩矿物组分进行检测,用X射线粉晶衍射矿物半定量分析结果验证岩石薄片鉴定结果准确性。显微镜岩石薄片鉴定结果与X射线粉晶衍射物相分析结果对比显示,10件样品定名一致,其余13件样品详细定名有差异。通过分析产生差异的原因,可以认为显微镜岩石薄片鉴定优势在于能确定岩石结构和构造,以及常见矿物组分;X射线粉晶衍射法的优势在于能检测出显微镜下较难区分的细小石英和长石颗粒的相对含量,并能检测出颗粒较小的绿泥石、蒙脱石及云母等层状硅酸盐矿物,该方法对含量较少、颗粒较细的矿物检测效果较好。实验证明将显微岩石薄片鉴定技术和X射线粉晶衍射技术相结合,才能更准确对变粒岩进行定名,为地学研究提供更符合客观实际的技术数据和分析结论。Abstract:
BACKGROUNDThe identification of leptite is usually based on microscopic identification technology, but it is very difficult to distinguish tiny feldspar, quartz, and layered silicate minerals such as chlorite, montmorillonite and mica using a microscope. There could be a large error in the naming of leptite by microscopic identification methods, which will cause errors in geological mapping and original rock recovery, leading to incorrect geological conclusions. The development of X-ray powder diffraction analysis technology has led to its wide use in the study of mineralogy and petrology. OBJECTIVESTo identify tiny minerals that are difficult to distinguish under the microscope by using X-ray powder diffraction technology. METHODSA total of 23 leptite samples were selected. The mineral composition of leptite was detected by X-ray powder diffraction analysis and microscopic rock thin section identification technology. Semi-quantitative X-ray powder diffraction was used to verify the accuracy of the rock slice identification results. RESULTSThe comparison between the identification results of the microscopic rock slices and the X-ray powder diffraction phase analysis results showed that 10 out of 23 samples had the same name. Analyzing the reasons for the difference, it can be found that the advantage of microscopic rock identification was that it can be used to determine rock texture and structure, as well as common mineral components. The advantage of the X-ray powder diffraction method was that it can be used to detect the relative content of tiny quartz and feldspar particles that were difficult to distinguish under the microscope, and can detect tiny layered silicate minerals such as chlorite, montmorillonite and mica, which was effective for detecting minerals with less content and finer particles. CONCLUSIONSOnly by combining the microscopic rock thin identification technology and the X-ray powder diffraction technology can the leptite be named and classified more accurately. The combination of two techniques provides more objective technical data and analytical conclusions for geoscience research. -
-
表 1 显微鉴定变粒岩岩石矿物成分
Table 1. Microscopic identification of mineral composition of leptite
样品编号 岩石名称 矿物含量(%) 石英 微斜长石 斜长石 金属矿物 白云母 黑云母 电气石 透闪石 绿帘石 b67 黑云斜长变粒岩 25 - 55 - 2 18 - - - b93 电黑二长变粒岩 20 40 12 3 - 10 15 - - b94 电黑二长变粒岩 20 40 10 3 - 12 15 - - b95 电黑二长变粒岩 20 40 15 5 - 10 10 - - b97 电黑二长变粒岩 20 45 15 6 - 4 10 - - b103 黑云二长变粒岩 25 45 15 5 - 10 - - - b113 电气微斜变粒岩 21 60 - 2 - 2 15 - - b114 黑云斜长变粒岩 20 6 60 3 - 8 1 2 - p2 磁铁微斜变粒岩 25 65 10 - - - - - p3 电气二长变粒岩 25 35 20 2 - 3 15 - - p4 电气二长变粒岩 24 45 10 5 - 1 15 - - p5 电气二长变粒岩 25 45 10 6 - 4 10 - - p9 磁铁微斜变粒岩 23 65 - 10 - 2 - - - p97 黑云斜长变粒岩 35 - 50 5 - 10 - - - p98 黑云斜长变粒岩 36 - 50 2 2 8 - - 2(黝帘石) p99 二云二长变粒岩 33 15 30 5 5 10 - - 2(黝帘石) p100 白云二长变粒岩 35 40 10 5 10 - - - - p102 白云二长变粒岩 35 35 15 5 10 - - - - p103 白云二长变粒岩 35 25 20 5 13 2 - - - p105 二云二长变粒岩 20 50 10 5 10 5 - - - p106 二云二长变粒岩 25 40 15 5 8 7 - - - p123 角闪二长变粒岩 5 50 10 2 - - - 8 25 p124 角闪二长变粒岩 5 60 10 1 - - - 10 14 表 2 变粒岩矿物成分X射线粉晶衍射分析结果
Table 2. Analytical results of mineral composition of leptite by X-ray powder diffractometer
样品编号 岩石名称 矿物含量(%) 石英 钾长石 斜长石 云母 绿帘石 绿泥石 电气石 磁铁矿 角闪石 黏土矿物 b67 黑云斜长变粒岩 32.7 - 38.7 14.1 2.6 11.9 - - - - b93 电气二长变粒岩 24.7 29.4 38.4 1.4 - - 3.4 - - 2.7 b94 电气二长变粒岩 32.2 24.1 31.1 4.9 - - 2.9 - - 4.7 b95 电气二长变粒岩 35.3 17.3 40.0 - - - 3.5 0.5 - 3.4 b97 电气二长变粒岩 36.2 20.7 28.3 2.1 - - 8.4 0.6 - 3.7 b103 黑云二长变粒岩 27.3 15.2 49.8 5.8 - - - - - 1.9 b113 辉石微斜变粒岩 17.4 60.3 3.1 2.8 - - - 2.1 12.7 1.6 b114 黑云斜长变粒岩 12.5 8.3 59.1 13.6 - 1.6 - - 4.8 - P2 磁铁微斜变粒岩 21.0 70.8 - - - - - 5.8 - 2.5 P3 电气微斜变粒岩 16.2 70.5 - - - - 10.8 - - 2.5 P4 电气微斜变粒岩 27.0 58.8 - - - - 9.4 3.0 - 1.8 P5 电气微斜变粒岩 20.3 64.0 - - - 2.1 10.5 3.1 - - P9 磁铁二长变粒岩 20.4 42.3 27.4 - - - - 6.3 - - P97 黑云斜长变粒岩 50.3 - 43.4 5.1 - - - - - 1.2 P98 二长浅粒岩 27.5 45.4 22.6 0.8 - - - - - 3.7 P99 二云二长变粒岩 46.4 25.8 13.5 11.9 - - - - - 2.3 P100 白云微斜浅粒岩 64.3 26.0 - 7.3 - - - - - 2.4 P102 白云斜长变粒岩 56.0 7.5 14.4 19.9 - - - - - 2.2 P103 白云二长变粒岩 43.5 25.3 20.9 7.7 - - - - - 2.6 P105 二云斜长变粒岩 56.5 8.3 25.7 5.8 - - - - - 3.7 P106 二云斜长变粒岩 53.7 7.3 19.3 17.9 - - - - - 1.8 P123 角闪微斜变粒岩 4.7 66.8 4.3 - 10.1 - - - 11.6 2.4 P124 角闪微斜变粒岩 4.5 58.1 9.9 - 8.9 - - - 15.5 3.1 表 3 变粒岩显微鉴定定名与X射线粉晶衍射分析定名对比
Table 3. Comparison of leptite naming by microscopic identification and X-ray powder diffraction analysis
样品编号 岩石薄片定名 XRD+岩石薄片定名 b67 黑云斜长变粒岩 黑云斜长变粒岩 b93 电黑二长变粒岩 电气二长变粒岩 b94 电黑二长变粒岩 电气二长变粒岩 b95 电黑二长变粒岩 电气二长变粒岩 b97 电黑二长变粒岩 电气二长变粒岩 b103 黑云二长变粒岩 黑云二长变粒岩 b113 电气微斜变粒岩 辉石微斜变粒岩 b114 黑云斜长变粒岩 黑云斜长变粒岩 P2 磁铁微斜变粒岩 磁铁微斜变粒岩 P3 电气二长变粒岩 电气微斜变粒岩 P4 电气二长变粒岩 电气微斜变粒岩 P5 电气二长变粒岩 电气微斜变粒岩 P9 磁铁微斜变粒岩 磁铁二长变粒岩 P97 黑云斜长变粒岩 黑云斜长变粒岩 P98 黑云斜长变粒岩 二长浅粒岩 P99 二云二长变粒岩 二云二长变粒岩 P100 白云二长变粒岩 白云微斜浅粒岩 P102 白云二长变粒岩 白云二长变粒岩 P103 白云二长变粒岩 白云二长变粒岩 P105 二云二长变粒岩 二云二长变粒岩 P106 二云二长变粒岩 二云二长变粒岩 P123 角闪二长变粒岩 角闪微斜变粒岩 P124 角闪二长变粒岩 角闪微斜变粒岩 表 4 变粒岩显微鉴定与X射线粉晶衍射分析优势对比
Table 4. Comparison of the advantages of microgranularity identification and X-ray powder diffraction analysis
样品
编号鉴定方法 矿物含量(%) 钾长石 斜长石 白云母 黑云母 绿泥石 黏土矿物 副矿物 帘石 b93 显微鉴定 40 12 - 10 - - 3 - XRD 29.4 38.4 1.4 - 2.7 - - b113 显微鉴定 60 - - 10 - - 2 - XRD 60.3 3.1 2.8 - 1.6 2.1 - p5 显微鉴定 45 10 - 4 - - 6 - XRD 64 - - 2.1 - 3.1 - p9 显微鉴定 65 - - 2 - - 10 - XRD 42.3 27.4 - - - 6.3 - p98 显微鉴定 - 50 2 8 - - 2 黝2 XRD 45.4 22.6 0.8 - 3.7 - - p100 显微鉴定 40 10 10 - - - 5 - XRD 26 - 7.3 - 2.4 - - p123 显微鉴定 50 10 - - - - 2 绿25 XRD 66.8 4.3 - - 2.4 - 绿10.1 注:由于X射线衍射分析没有区分出白云母和黑云母,其测量结果显示为云母的总含量。 -
[1] 何丽, 徐翠, 修迪, 等.将X粉晶射线法、电子探针分析与岩矿鉴定法应用于矿物分析[J].中国锰业, 2016, 34(3):159-163. http://www.cnki.com.cn/Article/CJFDTotal-ZGMM201603046.htm
He L, Xu C, Xiu D, et al.Discussin on how to apply the X-ray powder diffraction, the electron microprobe analysis and the rock ore appraisal to the rock and mineral analysis reasonably[J].China's Manganese Industry, 2016, 34(3):159-163. http://www.cnki.com.cn/Article/CJFDTotal-ZGMM201603046.htm
[2] 陈爱清, 江向峰, 李国武, 等.微量样品的X射线粉晶衍射分析研究[J].矿物学报, 2017, 37(1/2):1-6. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwxb201701001
Chen A Q, Jiang X F, Li G W, et al.A study on X-ray powder diffraction of micro sample[J].Acta Mineralogica Sinica, 2017, 37(1/2):1-6. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwxb201701001
[3] 沈春玉, 储刚.X射线衍射定量相分析新方法[J].分析测试学报, 2003, 22(6):80-82. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fxcsxb200306024
Shen C Y, Chu G.A new method for quantitative X-ray diffraction phase analysis[J].Journal of Instrumental Analysis, 2003, 22(6):80-82. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fxcsxb200306024
[4] 孙以谏.X射线晶体学对造岩矿物研究的应用[J].资源调查与环境, 2002, 23(3):172-178. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hsdzykc200203003
Sun Y J.Application of X-ray crystallography on studying rock-forming mineral[J].Resources Survey & Environment, 2002, 23(3):172-178. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hsdzykc200203003
[5] 李杨.X射线粉晶衍射法结合显微镜薄片观测运用于具隐晶质岩石的鉴定[J].中国金属通报, 2018(2):246-247. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgjstb201802156
Li Y.X-ray powder crystal diffraction method combined with microscopy observation for identification of cryptocrystalline rocks[J].China Metal Bulletin, 2018(2):246-247. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgjstb201802156
[6] 何丽, 范超, 田颖, 等.X射线粉晶衍射法结合运用于岩矿鉴定的薄弱部分——隐晶质岩石[J].中国锰业, 2017, 35(6):132-135. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgmengy201706037
He L, Fan C, Tian Y, et al.X-ray powder diffraction to vulnerable part of mineral and rock identification-Cryptocrystalline rocks[J].China's Manganese Industry, 2017, 35(6):132-135. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgmengy201706037
[7] 胡耀东.光学显微镜鉴定、扫描电镜(能谱)及微区衍射在微量矿物检测中的联合应用[J].云南冶金, 2015, 44(1):63-66. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ynyj201501015
Hu Y D.The combied application of optical microscope indentification, scanning electron microscope (energy spectrum) and micro mineral detection[J].Yunnan Metallurgy, 2015, 44(1):63-66. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ynyj201501015
[8] 宋颖.岩石矿物鉴定方法综述[J].化工管理, 2018, 23(8):237-238. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hggl201823166
Song Y.Summary of rock mineral identification methods[J].Chemical Enterprise Management, 2018, 23(8):237-238. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hggl201823166
[9] 廖冰冰.岩矿鉴定工作现状及其发展趋势分析[J].资源信息与工程, 2018, 33(2):27-28. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0120181102709837
Liao B B.Analysis of the status and development trend of rock and mineral identification[J].Resource Information and Engineering, 2018, 33(2):27-28. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0120181102709837
[10] 殷悦.浅谈岩石矿物鉴定的方法与应用[J].化工设计通讯, 2017, 43(6):136. http://d.wanfangdata.com.cn/periodical/hgsjtx201706124
Yin Y.Analysis on the method and application of rock mineral indentification[J].Chemical Engineering Design Communications, 2017, 43(6):136. http://d.wanfangdata.com.cn/periodical/hgsjtx201706124
[11] 游振东.变质岩电子岩相学初探[J].地质科技情报, 1984(3):11-17. http://www.cnki.com.cn/Article/CJFDTotal-DZKQ198403004.htm
You Z D.Preliminary study on electronic petrography of metamorphic rocks[J].Geological Science and Technology Information, 1984(3):11-17. http://www.cnki.com.cn/Article/CJFDTotal-DZKQ198403004.htm
[12] 陈曼云, 金巍, 郑常青.变质岩鉴定手册[M].北京:地质出版社, 2009:69-71.
Chen M Y, Jin W, Zheng C Q.Metamorphic rock identification manual[M].Beijing:Geological Publishing House, 2009:69-71.
[13] He B B.Introduction to two-dimensional X-ray diffraction[J].Powder Diffraction, 2003, 18(2):71-80. doi: 10.1154/1.1577355
[14] 廖立兵, 李国武.X射线衍射方法与应用[M].北京:地质出版社, 2008:134-136.
Liao L B, Li G W.X-ray diffraction methods and their application[M].Beijng:Geological Publishing House, 2008:134-136.
[15] 马礼敦.X射线粉晶衍射的新起点——Rietveld全谱拟合[J].物理学进展, 1996, 16(2):251-256. http://www.cqvip.com/Main/Detail.aspx?id=2019071
Ma L D.The new starting point of X-ray powder diffraction-Rietveld whole pattern fitting[J].Progress in Physics, 1996, 16(2):251-256. http://www.cqvip.com/Main/Detail.aspx?id=2019071
[16] 伍月, 刘欣, 张波, 等.X射线粉晶衍射基体清洗法在矿物定量分析中的应用[J].地质与资源, 2017, 26(3):323-328. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gjsdz201703017
Wu Y, Liu X, Zhang B, et al.The application and research of X-ray powder diffraction matrix flushing method in quantitative analysis[J].Geology and Resources, 2017, 26(3):323-328. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gjsdz201703017
[17] 林伟伟, 宋友佳.沉积物中X射线衍射物相定量分析中的两种方法对比研究[J].地球环境学报, 2017, 8(1):83-86. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqhjxb201701010
Lin W W, Song Y J.A comparative study on X-ray diffraction mineral quantitative analysis of two methods in sediments[J].Journal of Earth Enviroment, 2017, 8(1):83-86. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqhjxb201701010
[18] 邱贤荣, 齐砚勇, 唐志强.全谱拟合定量分析石灰石[J].分析科学学报, 2013, 29(1):146-148. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fxkxxb201301035
Qiu X R, Qi Y Y, Tang Z Q.Rietveld quantitative analysis of limestone[J].Journal of Analytical Science, 2013, 29(1):146-148. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fxkxxb201301035
[19] 冉敬, 郭创锋, 杜谷, 等.X射线衍射全谱拟合法分析蓝晶石的矿物含量[J].岩矿测试, 2019, 38(6):660-667. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201902220025
Ran J, Guo C F, Du G, et al.Quantitative analysis of mineral composition of kyanite by X-ray diffraction with Rietveld refinement method[J].Rock and Mineral Analysis, 2019, 38(6):660-667. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201902220025
[20] Gualtieri M L, Romagnoli M, Miselli P, et al.Full quantitative phase analysis of hydrated lime using the Rietveld method[J].Cement & Concrete Research, 2012, 42(9):1273-1279. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=70d31ed7a08e6334b2700a3083fec6dc
[21] Woodruff L, Cannon W F, Smith D B, et al.The distribution of selected elements and minerals in soil of the conterminous United States[J].Journal of Geochemical Exploration, 2015, 154:49-60. doi: 10.1016/j.gexplo.2015.01.006
[22] Santini T C.Application of the Rietveld refinement method for quantification of mineral concentrations in bauxite residues (alumina refining tailings)[J].International Journal of Mineral Processing, 2015, 139:1-10. doi: 10.1016/j.minpro.2015.04.004
[23] 许乃岑, 沈加林, 张静.X射线衍射-X射线荧光光谱-电子探针等分析测试技术在玄武岩矿物鉴定中的应用[J].岩矿测试, 2015, 34(1):75-81. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2015.01.010
Xu N C, Shen J L, Zhang J.Application of X-ray diffraction, X-ray fluorescence spectrometry and electron microprobe in the identification of basalt[J].Rock and Mineral Analysis, 2015, 34(1):75-81. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2015.01.010
[24] 万洪波, 廖立兵.膨润土中蒙脱石物相的定量分析[J].硅酸盐学报, 2009, 37(12):2055-2060. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gsyxb200912017
Wan H B, Liao L B.Quantitative phase analysis of montmorillonite in bentonite[J].Journal of the Chinese Ceramic Society, 2009, 37(12):2055-2060. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gsyxb200912017
[25] 邓苗, 汪灵, 林金辉.川西微晶白云母的X射线粉晶衍射分析[J].矿物学报, 2006, 26(2):131-136. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwxb200602003
Deng M, Wang L, Lin J H.Characteristics of micro-crystal muscovite in west Sichuan, China:An X-ray powder diffraction analysis[J].Acta Mineralogical Sinica, 2006, 26(2):131-136. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwxb200602003
[26] 迟广成, 肖刚, 伍月, 等.X射线粉晶衍射仪在大理岩鉴定与分类中的应用[J].岩矿测试, 2014, 33(5):698-705. http://www.ykcs.ac.cn/article/id/13d400eb-eaeb-473e-9212-7624c93d3f47
Chi G C, Xiao G, Wu Y, et al.The application of X-ray powder diffraction to marble definition and classification[J].Rock and Mineral Analysis, 2014, 33(5):698-705. http://www.ykcs.ac.cn/article/id/13d400eb-eaeb-473e-9212-7624c93d3f47
[27] 迟广成, 肖刚, 汪寅夫, 等.铁矿石矿物组分的X射线粉晶衍射半定量分析[J].冶金分析, 2015, 35(1):38-44. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yjfx201501007
Chi G C, Xiao G, Wang Y F, et al.Semi-quantitative analysis of the mineral components of iron ores by X-ray powder diffraction[J].Metallurgical Analysis, 2015, 35(1):38-44. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yjfx201501007
[28] 郝原芳, 赵爱林.方解石、白云石定量分析——X射线衍射法快速分析[J].有色矿冶, 2005, 21(5):58-60. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysky200505020
Hao Y F, Zhao A L.A simple method of quantitative analysis for calcite and dolomite in rock by X-ray diffraction[J].Non-Ferrous Mining and Metallurgy, 2005, 21(5):58-60. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysky200505020
[29] 杜谷, 王坤阳, 冉敬, 等.红外光谱/扫描电镜等现代大型仪器岩石矿物鉴定技术及其应用[J].岩矿测试, 2014, 33(5):625-633. http://www.ykcs.ac.cn/article/id/3980f0fc-b8e1-4632-be00-cf45aba72902
Du G, Wang K Y, Ran J, et al.Application of IR/SEM and other modern instruments for mineral identification[J].Rock and Mineral Analysis, 2014, 33(5):625-633. http://www.ykcs.ac.cn/article/id/3980f0fc-b8e1-4632-be00-cf45aba72902
-