Simultaneous Determination of Silver, Boron, Tin, Molybdenum and Lead in Geological Samples by Atomic Emission Spectrometer with Full Spectrum
-
摘要: 掌握地质样品中银锡硼钼铅的含量对于研究成矿规律和地球化学找矿极其重要,目前的分析方法很少能一次性准确高效检出银锡硼钼铅。本文在前人研究基础上建立了应用全谱发射光谱仪固体粉末进样,一次性高效、准确地分析检测地质样品中银锡硼钼铅的方法。采用国家一级标准物质(岩石、土壤和水系沉积物)对合成硅酸盐标准曲线进行第二次拟合以降低基体的干扰;设置元素分析谱线转换值实现元素分析谱线的简单切换,不同的样品含量使用不同的分析谱线,达到分析结果更加接近样品真值的效果,同时扩大了标准曲线线性范围。结果表明:银锡硼钼铅的检出限分别为0.0077μg/g、0.19μg/g、0.68μg/g、0.058μg/g、0.49μg/g,方法精密度在3.23%~9.39%之间。应用本方法分析土壤、水系沉积物、岩石国家一级标准物质的测定值与其认定值相符,△logC值的绝对值均小于0.10;实际样品和外控样的一次测试结果合格率分别为92%~98%、100%。本方法简单,分析速度快,避免了样品稀释带来的污染,使用多条分析谱线测定国家标准物质,相比传统发射光谱法使用单分析谱线的测定值更加接近认定值,检出限优于《地质矿产实验室测试质量管理规范》的规定值。Abstract:
BACKGROUNDThe contents of silver, tin, boron, molybdenum, and lead in geological samples are extremely important for studying the metallogenic regularity and for geochemical prospecting. Current analytical methods rarely determine silver, tin, boron, molybdenum, and lead simultaneously. OBJECTIVESTo establish a method to simultaneously determine silver, tin, boron, molybdenum and lead in geological samples. METHODSTo eliminate the matrix interference, first-class standard materials (rock, soil and water sediments) were used for linear fitting of the synthetic silicate standard materials curve. By setting analytical line conversion values, different analytical line can be used for samples with different contents. RESULTSThe detection limits of silver, tin, boron, molybdenum, and lead were 0.0077μg/g, 0.19μg/g, 0.68μg/g, 0.058μg/g, 0.49μg/g, respectively. The precisions of the method were 3.23%-9.39%. The measured value of national first class standard materials including soil, water sediments and rock by this method was in accordance with standard values, with an absolute value of △logC < 0.10. The qualified rates of actual sample were 92%-98%, and the qualified rate of the inspection sample was 100%. CONCLUSIONSThis method is easy to apply and can be used to analyze samples rapidly. It can also be used to avoid contamination during sample dilution. Compared with traditional atomic emission spectrometry that uses a single analytical spectrum line, this method can be used to obtain a value which is closer to the standard value of national standard materials. The detection limit of this method is much lower than the standard value of the specification of testing quality management for geological laboratories. -
-
表 1 分析谱线、参考线、分析谱线转换值和测试范围
Table 1. Table 1 Analytical line, reference line, conversion value and the measurement range of the method
待测元素 工作谱线(nm) 参考线(nm) 转换值(μg/g) 测试范围(μg/g) Ag 328.068 326.9494 - 0~0.5 338.289 326.9494 0.5 0.5~10 Sn 283.999 270.9626 8.5 8.5~100 317.502 326.9494 - 0~8.5 B 249.678 270.9626 80 80~500 249.773 270.9626 - 0~80 Mo 313.2594 326.9494 10 10~100 317.0347 326.9494 - 0~10 Pb 266.3166 270.9626 Δ Δ 280.1990 270.9626 30 30~600 283.3069 270.9626 - 0~30 注:“Δ”表示不使用该线,“-”表示在小于转换值使用该线。 表 2 转换值的使用对实验结果的影响
Table 2. Effect of conversion values on the analytical results of the method
待测元素 项目 GBW07427 GBW07304a GBW07301 GBW07303 GBW07448 GBW07457 GBW07105 GBW07107 GBW07307a GBW07358 元素含量测定值(μg/g) △lgC 元素含量测定值(μg/g) △lgC 元素含量测定值(μg/g) △lgC 元素含量测定值(μg/g) △lgC 元素含量测定值(μg/g) △lgC 元素含量测定值(μg/g) △lgC 元素含量测定值(μg/g) △lgC 元素含量测定值(μg/g) △lgC 元素含量测定值(μg/g) △lgC 元素含量测定值(μg/g) △lgC Ag 认定值 0.067 - 0.22 - 0.048 - 0.59 - 0.05 - 0.13 - 0.04 - 0.047 - 1.2 - 0.14 - 多线测定 0.072 0.031 0.23 0.011 0.046 -0.019 0.56 -0.022 0.056 0.050 0.12 -0.028 0.046 0.064 0.043 -0.038 1.2 0.003 0.135 -0.014 328.068nm测定值 0.072 0.031 0.23 0.011 0.046 -0.019 0.55 -0.032 0.056 0.050 0.12 -0.028 0.046 0.064 0.043 -0.038 1.3 0.023 0.135 -0.014 338.289nm测定值 0.078 0.065 0.16 -0.148 0.026 -0.260 0.56 -0.022 0.061 0.087 0.11 -0.054 0.044 0.042 0.025 -0.280 1.2 0.003 0.129 -0.037 Snm测定值 认定值 3.3 - 4 - 3.1 - 3.4 - 2.3 - 8.7 - 2 - 2 - 2.5 - 2.5 - 多线测定 3.52 0.028 3.95 -0.005 3.22 0.017 3.47 0.009 2.97 0.111 8.88 0.009 2.53 0.102 2.16 0.033 2.36 -0.025 2.17 -0.061 317.502nm测定值 3.52 0.028 3.95 -0.005 3.22 0.017 3.47 0.009 2.97 0.111 9.24 0.026 2.66 0.124 2.16 0.033 2.36 -0.025 2.17 -0.061 283.999nm测定值 3.74 0.054 2.94 -0.134 3.47 0.049 3.33 -0.009 2.93 0.105 8.88 0.009 2.66 0.124 2.34 0.067 2.18 -0.060 2.17 -0.061 B 认定值 46 - 91 - 4.6 - 33 - 51 - 64 - 3.5 - 154 - 195 - 53 - 多线测定 51.7 0.051 87.1 -0.019 4.49 -0.010 37.0 0.049 48.7 -0.020 68.8 0.032 3.77 0.033 152 -0.006 202 0.016 57.9 0.038 249.773nm测定值 51.7 0.051 77.6 -0.069 4.49 -0.010 37.0 0.049 48.7 -0.020 68.8 0.032 3.77 0.033 137 -0.051 204 0.019 57.9 0.038 249.678nm测定值 52.5 0.057 87.1 -0.019 4.92 0.029 36.3 0.041 48.6 -0.021 81.5 0.105 4.77 0.135 152 -0.006 202 0.016 57.6 0.037 Mo 认定值 0.48 - 1.6 - 0.74 - 92 - 0.61 - 1.18 - 2.6 - 0.35 - 0.82 - 0.94 - 多线测定 0.49 0.011 1.63 0.007 0.67 -0.044 90.6 -0.007 0.63 0.012 1.02 -0.065 2.61 0.001 0.35 0.006 0.76 -0.031 0.91 -0.016 313.2594nm测定值 0.49 0.011 1.63 0.007 0.67 -0.044 79.2 -0.065 0.63 0.012 1.02 -0.065 3.33 0.108 0.35 0.006 0.76 -0.031 0.91 -0.016 317.0347nm测定值 0.45 -0.026 1.03 -0.190 0.63 -0.072 90.6 -0.007 0.55 -0.043 0.87 -0.130 2.61 0.001 0.57 0.213 0.67 -0.088 0.87 -0.033 Pb 认定值 21.6 - 68 - 24 - 40 - 18.7 - 61 - 7.2 - 8.7 - 555 - 210 - 多线测定 21.7 0.002 65.8 -0.014 27.5 0.060 38.7 -0.015 19.4 0.016 50.7 -0.080 7.83 0.036 7.77 -0.049 630 0.055 203 -0.015 283.3069nm测定值 21.7 0.002 58.3 -0.067 27.5 0.060 34.7 -0.061 19.4 0.016 50.1 -0.086 7.83 0.036 7.77 -0.049 474 -0.069 183 -0.060 280.199nm测定值 23.2 0.032 65.8 -0.014 28.0 0.067 38.7 -0.015 20.2 0.034 50.7 -0.080 8.34 0.064 9.99 0.060 630 0.055 203 -0.015 表 3 方法检出限
Table 3. Detection limits of the method
待测元素 分次测定值(μg/g) 标准偏差(μg/g) 检出限(μg/g) Ag 0.017 0.016 0.019 0.02 0.021 0.016 0.003 0.0077 0.021 0.015 0.017 0.021 0.024 0.018 Sn 0.26 0.27 0.15 0.36 0.25 0.29 0.062 0.19 0.19 0.30 0.23 0.33 0.21 0.20 B 1.74 2.2 1.72 2.09 2.19 1.54 0.230 0.68 1.87 2.02 1.68 2.08 2.10 1.68 Mo 0.16 0.16 0.17 0.13 0.13 0.13 0.019 0.058 0.16 0.13 0.14 0.15 0.19 0.14 Pb 1.17 1.48 0.96 1.23 1.37 1.16 0.160 0.49 1.15 1.32 1.17 1.02 0.94 1.29 表 4 方法精密度
Table 4. Precision tests of the method
待测元素 项目 GBW07302 GBW07309 GBW07312 GBW07364 GBW07403 GBW07451 GBW07452 GBW07454 GBW07103 Ag 含量平均值(μg/g) 0.060 0.085 1.10 0.13 0.086 0.069 0.072 0.078 0.035 标准偏差 0.0044 0.0040 0.040 0.0070 0.0046 0.0057 0.0047 0.0046 0.0033 RSD(%) 7.33 4.74 3.69 5.37 5.29 8.32 6.56 5.90 9.39 Sn 含量平均值(μg/g) 29.0 2.43 69.6 1.79 2.61 2.15 3.32 2.91 13.5 标准偏差 2.44 0.19 6.08 0.058 0.21 0.13 0.14 0.17 1.10 RSD(%) 7.76 7.93 8.66 3.23 7.62 6.18 4.10 5.91 8.17 B 含量平均值(μg/g) 10.4 55.3 24.0 37.1 22.1 52.0 76.4 50.9 20.7 标准偏差 0.63 2.52 1.66 2.69 1.57 3.83 4.31 3.58 1.66 RSD(%) 6.43 4.56 6.93 7.25 8.06 7.36 5.64 7.04 8.05 Mo 含量平均值(μg/g) 2.16 0.58 7.68 1.53 0.31 0.57 0.59 0.68 3.67 标准偏差 0.095 0.043 0.37 0.11 0.028 0.044 0.034 0.046 0.25 RSD(%) 4.40 7.41 4.79 7.41 9.17 7.77 5.85 6.82 6.94 Pb 含量平均值(μg/g) 40.6 23.4 295 26.1 27.1 25.6 25.8 22.5 33.1 标准偏差 1.82 1.30 19.68 1.50 1.51 1.13 0.86 0.84 1.68 RSD(%) 4.49 5.54 6.66 5.74 5.59 4.42 3.35 3.74 5.09 表 5 方法准确度
Table 5. Accuracy tests of the method
标准物质编号 项目 Ag Sn B Mo Pb GBW07404 测定值(μg/g) 0.067 4.88 105 2.46 54.4 认定值(μg/g) 0.070 5.70 97.0 2.60 58.5 △logC -0.020 -0.067 0.033 -0.025 -0.032 GBW07405 测定值(μg/g) 3.6 15.5 65.5 4.28 498 认定值(μg/g) 4.4 17.7 53.0 4.60 552 △logC -0.085 -0.056 0.092 -0.032 -0.045 GBW07449 测定值(μg/g) 0.076 1.52 148 3.04 11.5 认定值(μg/g) 0.068 1.80 143 3.20 13.4 △logC 0.047 -0.073 0.015 -0.022 -0.066 GBW07453 测定值(μg/g) 0.090 6.08 81.9 1.12 45.1 认定值(μg/g) 0.092 6.20 83.0 1.10 40.0 △logC -0.008 -0.009 -0.006 0.009 0.052 GBW07457 测定值(μg/g) 0.12 8.63 77.1 1.14 54.0 认定值(μg/g) 0.13 8.70 80.0 1.18 61.0 △logC -0.038 -0.004 -0.016 -0.014 -0.053 GBW07301 测定值(μg/g) 0.046 3.28 4.92 0.68 20.6 认定值(μg/g) 0.048 3.10 4.60 0.74 24.4 △logC -0.023 0.024 0.029 -0.039 -0.073 GBW07303 测定值(μg/g) 0.66 2.93 38.6 95.1 35.7 认定值(μg/g) 0.59 3.40 33.0 92.0 40.0 △logC 0.047 -0.064 0.068 0.015 -0.049 GBW07311 测定值(μg/g) 2.8 343.2 66.5 6.05 644 认定值(μg/g) 3.2 370.0 68.0 5.90 636 △logC -0.051 -0.033 -0.010 0.011 0.006 GBW07302a 测定值(μg/g) 0.041 9.42 7.84 0.97 36.3 认定值(μg/g) 0.040 8.60 9.70 1.10 35.0 △logC 0.015 0.040 -0.092 -0.053 0.016 GBW07307a 测定值(μg/g) 1.2 2.11 176 0.69 511 认定值(μg/g) 1.2 2.50 195 0.82 555 △logC 0.008 -0.073 -0.045 -0.078 -0.036 GBW07103 测定值(μg/g) 0.032 15.3 23.8 3.40 35.1 认定值(μg/g) 0.033 12.5 24.0 3.50 31.0 △logC -0.009 0.087 -0.004 -0.013 0.054 GBW07106 测定值(μg/g) 0.068 1.40 37.4 0.85 10.4 认定值(μg/g) 0.062 1.10 34.0 0.76 7.60 △logC 0.037 0.104 0.042 0.050 0.137 GBW07108 测定值(μg/g) 0.041 1.11 17.9 0.37 18.0 认定值(μg/g) 0.043 0.98 16.0 0.38 18.3 △logC -0.021 0.054 0.050 -0.016 -0.008 GBW07111 测定值(μg/g) 0.054 1.55 3.31 0.60 19.1 认定值(μg/g) 0.066 1.44 3.92 0.47 19.8 △logC -0.086 0.033 -0.073 0.105 -0.015 GBW07122 测定值(μg/g) 0.060 0.88 10.1 0.18 8.82 认定值(μg/g) 0.050 0.80 12.0 0.16 9.00 △logC 0.079 0.042 -0.074 0.060 -0.009 -
[1] 张文华, 王彦东, 吴冬梅, 等.交流电弧直读光谱法快速测定地球化学样品中的银、锡、硼、钼、铅[J].中国无机分析化学, 2013, 3(4):16-19. http://www.cnki.com.cn/Article/CJFDTotal-WJFX201304003.htm
Zhang W H, Wang Y D, Wu D M, et al.Rapid determination of silver, tin, boron, molybdenum and lead in geochemical samples by AC arc direct-reading spectrometry[J].Chinese Journal of Inorganic Analytical Chemistry, 2013, 3(4):16-19. http://www.cnki.com.cn/Article/CJFDTotal-WJFX201304003.htm
[2] 肖细炼, 王亚夫, 陈燕波, 等.交流电弧光电直读发射光谱法测定地球化学样品中银硼锡[J].冶金分析, 2018, 38(7):27-32. http://www.cnki.com.cn/Article/CJFDTotal-YJFX201807004.htm
Xiao X L, Wang Y F, Chen Y B, et al.Determination of silver, boron and tin in geochemical samples by alternating current arc optoelectronic direct reading emission spectrometry[J].Metallurgical Analysis, 2018, 38(7):27-32. http://www.cnki.com.cn/Article/CJFDTotal-YJFX201807004.htm
[3] 聂高升.CCD-Ⅰ型平面光栅电弧直读发射光谱仪测Ag、B、Sn、Pb、Mo[J].四川地质学报, 2018, 38(2):342-344. http://www.cnki.com.cn/Article/CJFDTotal-SCDB201802035.htm
Nie G S.Detection of Ag, B, Sn, Pb and Mo by plane grating arc direct-reading emission spectrometry CCD-Ⅰ[J].Acta Geologica Sichuan, 2018, 38(2):342-344. http://www.cnki.com.cn/Article/CJFDTotal-SCDB201802035.htm
[4] 朱小龙.电感耦合等离子体发射光谱(ICP-OES)法测定钕铁硼磁体中铅含量[J].中国无机分析化学, 2019, 9(2):9-11. http://www.cnki.com.cn/Article/CJFDTotal-WJFX201902003.htm
Zhu X L.Determination of lead in neodymium-iron-boron with ICP-OES[J].Chinese Journal of Inorganic Analytical Chemistry, 2019, 9(2):9-11. http://www.cnki.com.cn/Article/CJFDTotal-WJFX201902003.htm
[5] 肖立青, 谭丽娟, 苏卫汉, 等.电感耦合等离子体发射光谱法测定地质样品中的钨、钼、锡[J].中国无机分析化学, 2013, 3(2):35-38. https://www.ixueshu.com/document/f21b7d05519c59117d4ef17be11df89e318947a18e7f9386.html
Xiao L Q, Tan L J, Su W H, et al.Determination of W, Mo, Sn in geological samples by inductively coupled plasma-atomic emission spectrometry[J].Chinese Journal of Inorganic Analytical Chemistry, 2013, 3(2):35-38. https://www.ixueshu.com/document/f21b7d05519c59117d4ef17be11df89e318947a18e7f9386.html
[6] 杨柳, 高慧莉, 汪寅夫, 等.电感耦合等离子体发射光谱法测高纯银中19种微量元素[J].地质与资源, 2019, 28(1):95-97. http://www.cnki.com.cn/Article/CJFDTotal-GJSD201901016.htm
Yang L, Gao H L, Wang Y F, et al.Determination of nineteen trace elements in high purity silver by ICP-AES[J].Geology and Resources, 2019, 28(1):95-97. http://www.cnki.com.cn/Article/CJFDTotal-GJSD201901016.htm
[7] 惠泊宁, 李维敏, 任洁, 等.电感耦合等离子体原子发射光谱法测定N36锆合金中微量钼和铅[J].分析测试技术与仪器, 2019, 25(1):15-21. http://www.cnki.com.cn/Article/CJFDTotal-FXCQ201901006.htm
Hui B N, Li W M, Ren J, et al.Determination of trace molybdenum and lead in N36 zirconium alloy by inductively coupled plasma optical emission spectrometry[J].Analysis and Testing Technology and Instruments, 2019, 25(1):15-21. http://www.cnki.com.cn/Article/CJFDTotal-FXCQ201901006.htm
[8] 杨新能, 陈德, 李小青.碱熔-电感耦合等离子体原子发射光谱法测定铁矿石中铬铌钼钨锡[J].冶金分析, 2019, 39(12):55-60. http://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201912009.htm
Yang X N, Chen D, Li X Q.Determination of chromium, niobium, molybdenum, tungsten, tininiron ore by inductively coupled plasma atomic emission spectrometry with alkali fusion[J].Metallurgical Analysis, 2019, 39(12):55-60. http://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201912009.htm
[9] 乐淑葵, 段永梅.电感耦合等离子体质谱法(ICP-MS)测定土壤中的重金属元素[J].中国无机分析化学, 2015, 5(3):16-19. http://www.cnki.com.cn/Article/CJFDTotal-WJFX201503005.htm
Yue S K, Duan Y M.Determination of heavy metal elements in soil by ICP-MS[J].Chinese Journal of Inorganic Analytical Chemistry, 2015, 5(3):16-19. http://www.cnki.com.cn/Article/CJFDTotal-WJFX201503005.htm
[10] 于亚辉, 闫红岭, 陈浩风, 等.电感耦合等离子体质谱法测定地球化学样品中的银[J].理化检验(化学分册), 2016, 52(7):834-836. http://www.cnki.com.cn/Article/CJFDTotal-LHJH201607025.htm
Yu Y H, Yan H L, Chen H F, et al.Determination of silver in geological sample by inductively coupled plasma mass spectrometry[J].Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2016, 52(7):834-836. http://www.cnki.com.cn/Article/CJFDTotal-LHJH201607025.htm
[11] 凤海元, 马海萍.溶样方法对电感耦合等离子体质谱法测定区域地球化学调查样品中6种元素的影响[J].冶金分析, 2016, 36(8):18-24. http://www.cnki.com.cn/Article/CJFDTotal-YJFX201608005.htm
Feng H Y, Ma H P.Influence of sample dissolution method on the determination of six elements in regional geochemical survey sample by inductively coupled plasma mass spectrometry[J].Metallurgical Analysis, 2016, 36(8):18-24. http://www.cnki.com.cn/Article/CJFDTotal-YJFX201608005.htm
[12] 杭乐, 徐周毅, 杭纬, 等.中国原子光谱技术及应用发展近况[J].光谱学与光谱分析, 2019, 39(5):1329-1339. http://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201905001.htm
Hang L, Xu Z Y, Hang W, et al.Recent technical and application development of atomic spectrometry in China[J].Spectroscopy and Spectral Analysis, 2019, 39(5):1329-1339. http://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201905001.htm
[13] 阳国运, 唐裴颖, 张洁, 等.电感耦合等离子体质谱法测定地球化学样品中的硼碘锡锗[J].岩矿测试, 2019, 38(2):154-159. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201805070055
Yang G Y, Tang P Y, Zhang J, et al.Determination of boron, iodine, tin and germanium in geochemical samples by inductively coupled plasma mass spectrometry[J].Rock and Mineral Analysis, 2019, 38(2):154-159. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201805070055
[14] 杨贤, 张洁, 蔡金芳, 等.电感耦合等离子体质谱法测定地质样品中硼[J].冶金分析, 2014, 34(6):7-10. http://www.cnki.com.cn/Article/CJFDTotal-YJFX201406002.htm
Yang X, Zhang J, Cai J F, et al.Determination of boron in geological samples by inductively coupled plasma-mass spectrometry[J].Metallurgical Analysis, 2014, 34(6):7-10. http://www.cnki.com.cn/Article/CJFDTotal-YJFX201406002.htm
[15] Satyanarayanan M, Balaram V, Sawant S S, et al.Rapid determination of REEs, PGEs, and other trace elements in geological and environmental materials by high resolution inductively coupled plasma mass spectrometry[J].Atomic Spectroscopy, 2018, 39(1):1-15.
[16] 杨凤云, 高会艳, 徐霞, 等.火焰原子吸收分光光度法测定铅精矿中高含量银[J].化学分析计量, 2019, 28(6):85-88. http://www.cnki.com.cn/Article/CJFDTotal-HXFJ201906025.htm
Yang F Y, Gao H Y, Xu X, et al.Determination of high silver content in lead concentrate by flame atomic absorption spectrophotometry[J].Chemical Analysis and Meterage, 2019, 28(6):85-88. http://www.cnki.com.cn/Article/CJFDTotal-HXFJ201906025.htm
[17] 任俊涛, 班俊生.容量瓶消解称量-火焰原子吸收分光光度法测定地质样品中的银[J].黄金, 2018, 39(5):78-80. http://www.cnki.com.cn/Article/CJFDTotal-HJZZ201805019.htm
Ren J T, Ban J S.Determination of silver in geological samples by FAAS with volumetric flask digestion and solution weighting method[J].Gold, 2018, 39(5):78-80. http://www.cnki.com.cn/Article/CJFDTotal-HJZZ201805019.htm
[18] 牛明, 裴彦.浅析分光光度法测定地质样品中微量锡[J].世界有色金属, 2017(5):240-241. http://www.cnki.com.cn/Article/CJFDTOTAL-COLO201709144.htm
Niu M, Pei Y.Spectrophotometric determination of trace tin in geological samples[J].World Nonferrous Metals, 2017(5):240-241. http://www.cnki.com.cn/Article/CJFDTOTAL-COLO201709144.htm
[19] Rahman M U, Kazi T G, Shaikh H, et al.Fractionation of manganese in soil samples collected from the Lakhra coal field in Pakistan using two modes of atomic absorption spectrometry[J].Atomic Spectroscopy, 2018, 39(6):258-263. doi: 10.46770/AS.2018.06.006
[20] 王娜, 徐铁民, 魏双, 等.微波消解-电感耦合等离子体质谱法测定超细粒度岩石和土壤样品中的稀土元素[J].岩矿测试, 2020, 39(1):68-76. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201904010043
Wang N, Xu T M, Wei S, et al.Determination of rare earth elements in ultra-fine rock and soil samples by ICP-MS using microwave digestion[J].Rock and Mineral Analysis, 2020, 39(1):68-76. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201904010043
[21] 雷占昌, 韩斯琴图, 蒋常菊, 等.过氧化钠碱熔-电感耦合等离子体质谱法测定原生矿石中的锡[J].岩矿测试, 2019, 38(3):326-332. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201812030127
Lei Z C, Han S Q T, Jiang C J, et al.Determination of tin in primary ores by inductively coupled plasma mass spectrometry with sodium peroxide alkali fusion[J].Rock and Mineral Analysis, 2019, 38(3):326-332. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201812030127
[22] 陈伟锐, 董薇.电弧原子发射光谱法测定地球化学勘查样品中镍元素[J].广东化工, 2013, 40(18):125-126. http://www.cnki.com.cn/Article/CJFDTotal-GDHG201318070.htm
Chen W R, Dong W.Determination of Ni in geochemical exploration samples by emission spectrometry[J].Guangdong Chemical Industry, 2013, 40(18):125-126. http://www.cnki.com.cn/Article/CJFDTotal-GDHG201318070.htm
[23] 张文华, 王彦东, 吴冬梅, 等.交、直流电弧直读光谱仪的研制及其应用[J].光谱仪器与分析, 2011(增刊1):96-104. http://www.cnki.com.cn/Article/CJFDTotal-GQFX2011Z1017.htm
Zhang W H, Wang Y D, Wu D M, et al.Development and application of DC and AC direct reading arc emission spectrometer[J].Spectral Instruments and Analysis, 2011(Supplement 1):96-104. http://www.cnki.com.cn/Article/CJFDTotal-GQFX2011Z1017.htm
[24] 俞晓峰, 李锐, 寿淼钧, 等.E5000型全谱直读型电弧发射光谱仪研制及其在地球化学样品分析中应用[J].岩矿测试, 2015, 34(1):40-47. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2015.01.005
Yu X F, Li R, Shou M J, et al.Development and application of full spectrum direct reading arc emission spectrometer E5000 and its application in geochemical sample analysis[J].Rock and Mineral Analysis, 2015, 34(1):40-47. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2015.01.005
[25] 李小辉, 孙慧莹, 于亚辉等.交流电弧发射光谱法测定地球化学样品中银锡硼[J].冶金分析, 2017, 37(4):16-21. http://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201704003.htm
Li X H, Sun H Y, Yu Y H.Determination of sliver, tin and boron in geochemical sample by alternating current (AC) arc emission spectrometry[J].Metallurgical Analysis, 2017, 37(4):16-21. http://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201704003.htm
[26] 马彤宇.CCD-Ⅰ型平面光栅电弧直读发射光谱仪测定地球化学样品中银锡硼[J].资源信息与工程, 2017, 32(4):99-102. http://www.cnki.com.cn/Article/CJFDTOTAL-YSJW201704045.htm
Ma T Y.Determination of Ag, Sn and B in geochemical samples by CCD-Ⅰplane grating electric arc direct reading emission spectrometer[J].Resource Information and Engineering, 2017, 32(4):99-102. http://www.cnki.com.cn/Article/CJFDTOTAL-YSJW201704045.htm
[27] 胡跃波, 石亚萍, 李蓓, 等.交流电弧原子发射光谱法测定地质样品中的微量银[J].理化检验(化学分册), 2015, 51(10):1414-1417. http://qikan.cqvip.com/Qikan/Article/Detail?id=76727472504849534948484956
Hu Y B, Shi Y P, Li B, et al.Determination of trace silver in geological samples by AC-AES[J].Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2015, 51(10):1414-1417. http://qikan.cqvip.com/Qikan/Article/Detail?id=76727472504849534948484956
[28] 高晶.发射光谱法测定铅锡银[J].西部探矿工程, 2013(1):115-117. http://www.cnki.com.cn/Article/CJFDTotal-XBTK201301040.htm
Gao J.Determination of lead tin and silver by atomic emission spectroscopy[J].West-China Exploration Engineering, 2013(1):115-117. http://www.cnki.com.cn/Article/CJFDTotal-XBTK201301040.htm
[29] 郭颖超, 张晓敏, 姚福存, 等.CCD-Ⅰ型平面光栅电弧直读发射光谱仪测定地球化学样品中银锡硼[J].黄金, 2016, 37(10):85-88. http://www.cnki.com.cn/Article/CJFDTotal-HJZZ201610019.htm
Guo Y C, Zhang X M, Yao F C, et al.Determination of Ag, B and Sn in geochemical samples by CCD-Ⅰ plane grating electric arc direct reading emission spectrometer[J].Gold, 2016, 37(10):85-88. http://www.cnki.com.cn/Article/CJFDTotal-HJZZ201610019.htm
[30] 王承娟, 乐兵.直流电弧原子发射光谱法测定地球化学样品中银、硼、锡和钼[J].理化检验(化学分册), 2017, 53(11):1470-1473.
Wang C J, Yue B.Determination of Ag, B, Sn and Mo in geochemical samples by DC arc direct reading emission spectrometer[J].Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2017, 53(11):1470-1473.
[31] 郝志红, 姚建贞, 唐瑞玲, 等.交流电弧直读原子发射光谱法测定地球化学样品中银、硼、锡、钼、铅的方法研究[J].地质学报, 2016, 90(8):2070-2082. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201608033.htm
Hao Z H, Yao J Z, Tang R L, et al.Study on the method for the determination of silver, boron, tin, molybdenum, lead in geochemical samples by AC-arc direct reading atomic emission spectroscopy[J].Acta Geologica Sinica, 2016, 90(8):2070-2082. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201608033.htm
[32] 吴建华.应用熔融技术电弧发射光谱法测定区域化探样品中20多个元素[J].甘肃科技, 2010, 26(1):61-63. http://www.cnki.com.cn/Article/CJFDTotal-GSKJ201001023.htm
Wu J H.Determination of more than 20 elements in regional geochemical samples by arc emission spectrometry[J].Gansu Science and Technology, 2010, 26(1):61-63. http://www.cnki.com.cn/Article/CJFDTotal-GSKJ201001023.htm
[33] 贡勇喜.发射光谱法测定化探样品中银钨等19个微量元素[J].江西建材, 2016(16):229-232. http://www.cnki.com.cn/Article/CJFDTotal-JXJC201616195.htm
Gong Y X.Determination of more than 19 trace elements in geochemical samples by emission spectrometry[J].Jiangxi Building Materials, 2016(16):229-232. http://www.cnki.com.cn/Article/CJFDTotal-JXJC201616195.htm
[34] 吴冬梅, 赵燕秋, 付国余.全谱电弧发射光谱法测定五氧化二铌中18种杂质元素[J].冶金分析, 2020, 40(1):40-45. http://d.wanfangdata.com.cn/periodical/yjfx202001007
Wu D M, Zhao Y Q, Fu G Y.Determination of eighteen impurity elements in niobium pentoxide by full spectrum arc emission spectrometry[J]. Metallurgical Analysis, 2020, 40(1):40-45. http://d.wanfangdata.com.cn/periodical/yjfx202001007
[35] 杨俊, 代阿芳, 林庆文, 等.直读发射光谱仪测定地质样品中银、硼和锡的含量[J].理化检验(化学分册), 2017, 50(11):1296-1299. http://www.cnki.com.cn/Article/CJFDTotal-LHJH201711011.htm
Yang J, Dai A F, Lin Q W, et al.Determination of Ag, B and Sn in geochemical samples with direct reading atomic emission spectrometer[J].Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2017, 50(11):1296-1299. http://www.cnki.com.cn/Article/CJFDTotal-LHJH201711011.htm
[36] 赵丽.粉末固体进样-电弧直读发射光谱法测试地球化学样品多元素方法研究[J].化学工程与装备, 2017(6):240-242. http://www.cnki.com.cn/Article/CJFDTOTAL-FJHG201706085.htm
Zhao L.Determination of elements in geochemical samples for powder solid sampling by arc direct reading emission spectrometry[J].Chemical Engineering and Equipment, 2017(6):240-242. http://www.cnki.com.cn/Article/CJFDTOTAL-FJHG201706085.htm
[37] 龙志武, 李志雄, 赵刚, 等.直读发射光谱法测定银硼钼锡铅的载体缓冲剂研究[J].黄金, 2017, 38(1):76-79. http://www.cnki.com.cn/Article/CJFDTOTAL-HJZZ201701018.htm
Long Z W, Li Z X, Zhao G, et al.Study on carrier buffer in the determination of Ag, B, Mo, Sn and Pb by direct reading emission spectrometry[J].Gold, 2017, 38(1):76-79. http://www.cnki.com.cn/Article/CJFDTOTAL-HJZZ201701018.htm
[38] 余宇, 和振云, 毛振才, 等.交流电弧发射光谱的不同灵敏度谱线测定锡[J].岩矿测试, 2013, 32(1):44-47. http://www.ykcs.ac.cn/article/id/aa84a070-7c10-44c2-b153-53d8b35c453a
Yu Y, He Z Y, Mao Z C, et al.Determination of tin by spectral lines with different sensitivity of alternating current arc emission spectroscopy[J].Rock and Mineral Analysis, 2013, 32(1):44-47. http://www.ykcs.ac.cn/article/id/aa84a070-7c10-44c2-b153-53d8b35c453a
[39] 吴冬梅, 赵燕秋, 付国余, 等.多工作曲线-全谱交直流电弧发射光谱法测定地质样品中的铅含量[J].中国无机分析化学, 2018, 8(3):16-18. http://www.cnki.com.cn/Article/CJFDTotal-WJFX201803005.htm
Wu D M, Zhao Y Q, Fu G Y, et al.Determination of lead in geological samples by full spectrum AC/DC arc emission spectrometry with a multi-calibration curve[J].Chinese Journal of Inorganic Analytical Chemistry, 2018, 8(3):16-18. http://www.cnki.com.cn/Article/CJFDTotal-WJFX201803005.htm
[40] 李亚静, 李士杰, 唐秀婷, 等.CCD-Ⅰ型平面光栅电弧直读发射光谱法测定化探样品中铅、锡、钼、铜、银、锌[J].中国无机分析化学, 2018, 8(6):29-35. https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=WJFX201806008
Li Y J, Li S J, Tang X T, et al.Determination of Pb, Sn, Mo, Cu, Ag and Zn in geochemical exploration samples by CCD-Ⅰ plane grating electric arc direct reading emission spectrometer[J].Chinese Journal of Inorganic Analytical Chemistry, 2018, 8(6):29-35. https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=WJFX201806008
[41] 王彩玉, 刘玖芬, 李君强, 等.AES-7200型专用发射光谱仪在地质样品分析中的应用[J].黄金, 2016, 37(4):77-80. http://www.cnki.com.cn/Article/CJFDTotal-HJZZ201604025.htm
Wang C Y, Liu J F, Li J Q, et al.Application of AES-7200 emission spectrometer in geologic samples analysis[J].Gold, 2016, 37(4):77-80. http://www.cnki.com.cn/Article/CJFDTotal-HJZZ201604025.htm
-