Determination of Gold Mobile Fraction in Deep-penetrating Geochemical Samples by ICP-MS with Pre-extraction
-
摘要: 金的地球化学勘查基于金的准确测定,地球化学样品中金含量通常处于ng/g水平,需先进行分离富集,再采用电感耦合等离子体质谱法(ICP-MS)或石墨炉原子吸收光谱法(GFAAS)进行测定。当前,隐伏矿床勘查是地球化学探测技术的发展前沿,金活动态提取技术是寻找隐伏金矿的有效手段之一。相比于全量分析,金的活动态含量更低,需要解决选择性提取、高效预富集与准确测定等一系列难题。本文采用柠檬酸铵与土壤中黏土矿物及次生矿物作用促使吸附和可交换组分的金进入提取液,以硫脲和硫代硫酸钠络合金使活动态金向提取液中扩散,达到选择性提取的目的,建立了提取液中金的预富集及ICP-MS测定方法。实验确定的分析条件为:采用5g/L柠檬酸铵-2g/L硫脲-5g/L硫代硫酸钠为提取剂,提取时间24h,在酸性硫脲介质下用活性炭富集金,金吸附率可达89.6%~109.2%,灰化解吸温度为650~700℃。本方法检出限为0.05ng/g,相对标准偏差(RSD)为9.4%~10.2%,加标回收率为91.2%~93.4%。与已报道的硫酸铁-硫脲-硫代硫酸钠溶液提取再GFAAS测定的方法相比,本方法具有检出限低、测试线性范围宽、测试速度快的优势;应用于森林覆盖区黑龙江东安金矿区地球化学探测试验,金活动态异常与隐伏金矿位置一致。Abstract:
BACKGROUNDThe geochemical exploration for gold deposits is based on the accurate determination of gold. The content of gold in geochemical samples is usually at the level of ng/g, which needs to be preconcentrated before determination by inductively coupled plasma-mass spectrometry (ICP-MS) or graphite furnace absorption spectroscopy (GFAAS). At present, the exploration of buried deposits is the frontier of geochemical exploration technology and the extraction of gold mobile fraction is one of the most effective approaches to find concealed gold deposits. Compared with whole rock gold analysis, the gold mobile fraction content is much lower, which requires specific leaching, efficient preconcentration and accurate determination. OBJECTIVESTo selectively extract gold mobile fraction and find surface secondary anomaly information for exploring concealed ore bodies. METHODSExperiments were carried out on the extraction agent and determination of gold mobile fraction by ICP-MS. Ammonium citrate was used to promote the disassociation of the adsorption of exchangeable form gold from the surface of clay minerals and secondary minerals in the soil. The complexation of thiourea and sodium thiosulfate was applied to diffuse the extracted gold into the solution to achieve the purpose of selective extraction. The procedure for gold preconcentration from extraction solution and the ICP-MS determination method were established. RESULTSThe experiments determined that the extractant was composed of 5g/L ammonium citrate, 2g/L thiourea, and 5g/L sodium thiosulfate. The extraction time was 24h, and the active carbon was used to preconcentrate gold in the acidic thiourea medium. The gold adsorption rates were 89.6%-109.2%, and the ashing temperature of the concentration materials were 650-700℃. The detection limit of the method was 0.05ng/g, the relative standard deviations (RSDs) ranged from 9.4% to 10.2%, and the recoveries were from 91.2% to 93.4%. CONCLUSIONSCompared with the published method, extraction with ferric sulfate-thiourea-sodium thiosulfate solution and determination by GFAAS, this method has the advantages of low detection limit, wide linear range and fast analysis. This method has been successfully applied in the geochemical exploration of gold deposits in the forest swamp landscape area of Dongan, Heilongjiang Province. Gold anomaly delineated is consistent with the location of the concealed gold deposit. -
-
表 1 不同提取剂提取金测定结果的对比
Table 1. Comparison of analytical results of gold by using different leaching methods
活动态提取剂 GBW07806(n=3) GBW07246(n=3) GBW07247(n=3) 金测定平均值
(ng/g)RSD
(%)金测定平均值
(ng/g)RSD
(%)金测定平均值
(ng/g)RSD
(%)提取剂1(5g/L柠檬酸铵) 2.17 21.0 3.36 20.5 2.34 25.9 提取剂2(2g/L硫脲) 1.43 4.3 5.78 14.1 2.40 13.6 提取剂3(5g/L硫代硫酸钠) 0.23 19.0 3.43 18.1 1.96 12.9 提取剂4(2g/L硫脲-5g/L硫代硫酸钠) 1.31 23.3 5.09 13.2 2.64 23.5 提取剂5(5g/L柠檬酸铵-2g/L硫脲-5g/L硫代硫酸钠) 1.70 7.7 7.33 6.8 1.87 9.9 表 2 提取时间变化对金活动态提取量的影响
Table 2. Effect of extraction time on the mobile fraction of gold
提取时间
(h)活动态金提取量(ng/g) GBW07246 GBW07247 GBW07248 0.5 2.26 1.42 8.16 1 3.25 1.87 10.2 3 4.63 1.70 14.2 5 5.42 1.81 15.6 24 7.26 1.77 30.4 36 7.00 1.83 32.0 48 7.12 1.58 37.4 表 3 提取液酸介质及酸度对金回收率的影响
Table 3. Effect of acid medium and acidity of extraction solution on adsorption recovery of gold
提取液介质 金回收率
(%)提取液介质 金回收率
(%)2g/L硫脲 94.2 2g/L硫脲-2%盐酸 92.7 2g/L硫脲-1%硝酸 98.3 2g/L硫脲-5%盐酸 97.9 2g/L硫脲-5%硝酸 100.6 2g/L硫脲-2%王水 87.2 2g/L硫脲-5%王水 88.4 表 4 方法精密度
Table 4. Precision tests of the method
标准物质
编号金全量
认定值
(ng/g)柠檬酸铵-2g/L硫脲-5g/L硫代
硫酸钠提取法(本文方法)硫酸铁-硫脲
-硫代硫酸钠
提取法金活动态含量测定
平均值(ng/g)相对标准偏差
RSD(%)金活动态含量
测定平均值
(ng/g)GBW07246 20.8 7.56 9.4 6.92 GBW07248 100 30.6 10.2 26.5 -
[1] 郭林中, 韦瑞杰, 王海潮, 等.改性活性炭的制备及其对金吸附性能的研究[J].岩矿测试, 2014, 33(4):528-534. http://www.ykcs.ac.cn/article/id/0bed3eab-5b90-4316-8649-0b0c947c3cfc
Guo L Z, Wei R J, Wang H C, et al.Study on preparation and Au(Ⅲ) adsorption ability of nitric acid modified activated carbon[J].Rock and Mineral Analysis, 2014, 33(4):528-534. http://www.ykcs.ac.cn/article/id/0bed3eab-5b90-4316-8649-0b0c947c3cfc
[2] 马怡飞, 汪广恒, 张尼, 等.乙醇介质制备载炭泡塑及其在地质样品金测定中的应用[J].岩矿测试, 2018, 37(5):533-540. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201801150005
Ma Y F, Wang G H, Zhang N, et al.Application of carbon-loaded polyurethane foam produced by ethanol media in determination of gold in geological samples[J].Rock and Mineral Analysis, 2018, 37(5):533-540. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201801150005
[3] 张洁, 阳国运.电感耦合等离子体质谱法测定金矿石中金[J].冶金分析, 2018, 38(11):18-23. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yjfx201811004
Zhang J, Yang G Y.Determination of gold in gold ore by inductively coupled plasma mass spectrometry[J].Metallurgical Analysis, 2018, 38(11):18-23. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yjfx201811004
[4] 邢夏, 徐进力, 陈海杰, 等.抗坏血酸为基体改进剂石墨炉原子吸收光谱法测定金矿区植物样品中的痕量金[J].岩矿测试, 2015, 34(3):319-324. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2015.03.010
Xing X, Xu J L, Chen H J, et al.Determination of trace gold in plant samples from a gold mining area by graphite furnace atomic absorption spectrometry with ascorbic acid as the matrix modifier[J].Rock and Mineral Analysis, 2015, 34(3):319-324. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2015.03.010
[5] Mann A W.Strong versus weak digestion:Ligand based soil extraction geochemistry[J].Geochemistry:Exploration, Environment, Analysis, 2010, 10(1):17-26. doi: 10.1144/1467-7873/09-216
[6] 孟贵祥, 吕庆田, 严加永, 等."穿透性"探测技术在覆盖区地质矿产调查中的应用研究[J].地球学报, 2019, 40(5):637-650. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxb201905001
Meng G X, Lü Q T, Yan J Y, et al.The research and application of explorational technology of "penetrating" to geology and mineral investigation in overburden area[J].Acta Geoscientica Sinica, 2019, 40(5):637-650. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxb201905001
[7] 鲁美, 叶荣, 张必敏, 等.覆盖区地球化学勘查进展[J].矿床地质, 2019, 38(6):1408-1411. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201906014
Lu M, Ye R, Zhang B M, et al.The development of geochemical exploration in the covered area[J].Mineral Deposits, 2019, 38(6):1408-1411. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201906014
[8] 徐洋.覆盖区隐伏矿地球化学弱信息提取技术研究[D].北京: 中国地质大学(北京), 2015.
Xu Y.The geochemical methods to extract the weak geochemical signals from concealed deposits[D].Beijing: China University of Geosciences (Beijing), 2015.
[9] 徐善法, 刘汉彬, 王玮, 等.深穿透地球化学方法在十红滩砂岩型铀矿中的试验研究[J].物探与化探, 2017, 42(2):189-193. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wtyht201702001
Xu S F, Liu H B, Wang W, et al.An experimental study of deep penetration geochemical technology in the Shihongtan uranium deposit[J].Geophysical and Geochemical Exploration, 2017, 42(2):189-193. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wtyht201702001
[10] Xie X J, Lu Y X, Yao W S, et al.Further study on deep penetrating geochemistry over the spence porphyry copper deposit, Chile[J].Earth Science Frontiers, 2011, 2(3):303-311. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy-e201103003
[11] Wang X Q, Zhang B M, Lin X, et al.Geochemical challenges of diverse regolith-covered terrains for mineral exploration in China[J].Ore Geology Reviews, 2016, 73(3):417-431. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c15dfb3b5879c254055a70c88c2946c3
[12] 姚文生.元素活动态提取剂机理及实验条件研究[D].北京: 中国地质科学院, 2011: 24-36.
Yao W S. Leaching mechanism and conditions of extractants on mobile forms of elements in soils[D].Beijing: Chinese Academy of Geological Sciences, 2011: 24-36.
[13] Williams T M, Gunn A G.Application of enzyme leach soil analysis for epithermal gold exploration in the Andes of Ecuador[J].Applied Geochemistry, 2002, 17(4):367-385. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5cfe65e3f53fbe2db0a537eeb2b23c17
[14] 叶信栋, 孙彬彬, 周国华.河北蔡家营铅锌多金属矿地电化学提取有效性及提取条件试验[J].地质与勘探, 2018, 54(5):979-987. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzykt201805009
Ye X D, Sun B B, Zhou G H. Effectiveness and conditions tests of geo-electrochemical extraction in the Caijiaying Pb-Zn polymetallic mining area[J].Geology and Exploration, 2018, 54(5):979-987. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzykt201805009
[15] Lu M, Ye R, Wang Z K, et al.Geogas prospecting for buried deposits under loess overburden:Taking Shenjiayao gold deposit as an example[J].Journal of Geochemical Exploration, 2019, 197:122-129. doi: 10.1016/j.gexplo.2018.11.015
[16] Sadeghi M, Albanese S, Morris G, et al.REE concen-trations in agricultural soil in Sweden and Italy:Comparison of weak MMI® extraction with near total extraction data[J].Applied Geochemistry, 2015, 63:22-36. doi: 10.1016/j.apgeochem.2015.07.004
[17] Birrell R D, Fedikow M A, Mann A W, et al.Vertical ionic migration:Mechanisms, soil anomalies, and sampling depth for mineral exploration[J].Geochemistry:Exploration, Environment, Analysis, 2005, 5(3):201-210. doi: 10.1144/1467-7873/03-045
[18] 王学求, 张必敏, 叶荣.纳米地球化学与覆盖区矿产勘查[J].矿物岩石地球化学通报, 2016, 35(1):43-51. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwysdqhxtb201601005
Wang X Q, Zhang B M, Ye R.Nanogeochemistry for mineral exploration through covers[J].Bulletin of Mineralogy, Petrology and Geochemistry, 2016, 35(1):43-51. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwysdqhxtb201601005
[19] 毛永新.黑龙江金厂金矿Ⅻ号矿体金活动态地球化学测量应用研究[D].长春: 吉林大学, 2014.
Mao Y X.Study on the application of MOMEO geochemical survey in Ⅻ ore body of Jinchang gold deposit, Heilongjiang Province[D].Changchun: Jilin University, 2014.
[20] 白金峰, 卢荫庥, 文雪琴.金的活动态分析方法及其应用[J].物探与化探, 2006, 30(5):410-413. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wtyht200605008
Bai J F, Lu Y X, Wen X Q.The analytical method for mobile forms of gold and its application[J].Geophysical and Geochemical Exploration, 2006, 30(5):410-413. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wtyht200605008
[21] 赵伟, 王玉林, 钟莅湘, 等.土壤样品中贵金属活动态提取技术[J].岩矿测试, 2010, 29(3):212-216. http://www.ykcs.ac.cn/article/id/ykcs_20100303
Zhao W, Wang Y L, Zhong L X, et al.Exreaction and determination method for mobile forms of precious metals in soil samples[J].Rock and Mineral Analysis, 2010, 29(3):212-216. http://www.ykcs.ac.cn/article/id/ykcs_20100303
[22] 徐进力, 邢夏, 张鹏鹏, 等.元素活动态提取条件和分析方法的应用研究[J].地质学报, 2020, 94(3):982-990. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb202003022
Xu J L, Xing X, Zhang P P, et al.Application research on extraction conditions and analysis methods of active state elements[J].Acta Geologica Sinica, 2020, 94(3):982-990. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb202003022
[23] 曹立峰, 王敏捷, 申硕果, 等.活动态提取-电感耦合等离子体质谱法测定栾川矿集区深穿透地球化学样品中铜铅锌钨钼[J].岩矿测试, 2015, 34(4):424-429. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2015.04.008
Cao L F, Wang M J, Shen S G, et al.Determination of Cu, Pb, Zn, W and Mo in deep-penetrating geochemical samples of the Lunchan ore concentrated district by ICP-MS with extraction elements of mobile forms[J].Rock and Mineral Analysis, 2015, 34(4):424-429. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2015.04.008
[24] 唐志中, 陈静, 孙自军, 等.深穿透地球化学样品中金活动态提取条件研究[J].黄金, 2013, 34(6):71-74. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=huangj201306024
Tang Z Z, Chen J, Sun Z J, et al.Leaching conditions for determination of mobile forms gold in deep-penetrating geochemical samples[J].Gold, 2013, 34(6):71-74. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=huangj201306024
[25] 连文莉, 来新泽, 刘军, 等.黑色岩型铂族矿物中铂钯金相态ICP-MS分析方法研究[J].岩矿测试, 2017, 36(2):120-129. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2017.02.003
Lian W L, Lai X Z, Liu J, et al.Phase analysis method of Pt, Pd and Au in black rock-type platinum group element minerals by ICP-MS[J].Rock and Mineral Analysis, 2017, 36(2):120-129. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2017.02.003
[26] 刘军, 闫红岭, 连文莉, 等.封闭溶矿-电感耦合等离子体质谱法测定地质样品中金银铂钯[J].冶金分析, 2016, 36(7):25-33. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yjfx201607004
Liu J, Yan H L, Lian W L, et al.Determination of gold, silver, platimun and palladium in geological samples by inductively coupled plasma mass spectrometry with sealed dissolution[J].Metallurgical Analysis, 2016, 36(7):25-33. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yjfx201607004
[27] Chen S Z, Yan J T, Wang C L, et al.Preconcentration and determination of Au(Ⅲ), Pd(Ⅱ), and Pt(Ⅳ) using dispersive micro-solid phase extraction with multi-porous ZnFe2O4 nanotubes and ICP-MS[J].Atomic Spectroscopy, 2019, 40(6):199-205. doi: 10.46770/AS.2019.06.001
[28] Guo W, Xie W K, Jin L L, et al.Determination of sub-ng·g-1 Au in geological samples by ion molecule reaction ICP-MS and CH4 plasma modifier[J].RSC Advances, 2015, 5:103189-103194. doi: 10.1039/C5RA19692B
[29] 何桂春, 吴艺鹏, 冯金妮.含金硫精矿焙烧除砷选铁-硫脲法提金试验研究[J].矿冶工程, 2012, 32(5):62-66. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kygc201205018
He G C, Wu Y P, Feng J N.Experimental study on gold extraction from gold-bearing pyrite concentrate by roasting for arsenic removal and thiourea leaching of gold[J].Mining and Metallurgical Engineering, 2012, 32(5):62-66. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kygc201205018
[30] 王学求, 叶荣.纳米金属微粒发现——深穿透地球化学的微观证据[J].地球学报, 2011, 32(1):7-12. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxb201101002
Wang X Q, Ye R.Findings of nanoscale metal particles:Evidence for deep-penetrating geochemsitry[J].Acta Geoscientica Sinica, 2011, 32(1):7-12. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxb201101002
[31] 张必敏, 王学求, 叶荣, 等.土壤微细粒分离测量技术在黄土覆盖区隐伏金矿勘查中的应用及异常成因探讨[J].桂林理工大学学报, 2019, 39(2):301-310. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=glgxy201902006
Zhang B M, Wang X Q, Ye R, et al.Fine-grained soil prospecting method for mineral exploration in loess covered areas and discussion on the origin of geochemical anomalies[J].Journal of Guilin University of Technology, 2019, 39(2):301-310. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=glgxy201902006
[32] 耿艳, 梁斌, 徐志强, 等.中性盐溶液提取土壤中金属活动态及其对隐伏矿的指示:以甲基卡稀有金属矿区为例[J].高校地质学报, 2019, 25(1):51-57. http://www.cqvip.com/QK/90539X/201901/7001371678.html
Geng Y, Liang B, Xu Z Q, et al.Neutral salt solution extraction of mobile forms of metals in soils and its indication of concealed orebody:A case study of the Jiajika rare metal deposits[J].Geological Journal of China Universities, 2019, 25(1):51-57. http://www.cqvip.com/QK/90539X/201901/7001371678.html
[33] 许世伟, 王建英, 郑升, 等.用硫脲从低品位尾矿中提取金的试验研究[J].湿法冶金, 2013, 32(2):79-81. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sfyj201302003
Xu S W, Wang J Y, Zheng S, et al.Extraction of gold from low grade tailings using thiourea[J].Hydrometallurgy of China, 2013, 32(2):79-81. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sfyj201302003
[34] 韩彬, 童雄, 谢贤, 等.硫代硫酸盐浸金体系研究进展[J].矿产综合利用, 2015(3):11-16. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kczhly201503003
Han B, Tong X, Xie X, et al.Progress of thosulfate system in gold leaching[J].Multipurpose Utilization of Mineral Resources, 2015(3):11-16. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kczhly201503003
-