Determination of Heavy Metal Elements in Leaching Solution of Electrolytic Manganese Dioxide Waste Residue by Inductively Coupled Plasma-Tandem Mass Spectrometry
-
摘要: 电解二氧化锰废渣中的重金属元素在雨水淋滤下,通过地表径流对下游水生态系统及农业生态系统造成不同程度的环境污染和安全隐患,因此,准确测定电解二氧化锰废渣浸出液中的重金属元素含量具有重要的现实意义。电解二氧化锰废渣浸出液中的重金属元素含量通常很低,采用原子吸收光谱法、电感耦合等离子体发射光谱法测定,检出限通常难以满足测定要求。采用电感耦合等离子体质谱法(ICP-MS)测定,消除复杂质谱干扰面临挑战。本文采用电感耦合等离子体串联质谱(ICP-MS/MS)测定电解二氧化锰废渣浸出液中的重金属元素含量。电解二氧化锰废渣中6种重金属元素Cr、Ni、As、Cd、Hg、Pb经硫酸和硝酸混合酸浸出后直接采用ICP-MS/MS进行测定,利用串联质谱的O2反应模式消除分析过程中Cr、Ni、As、Cd受到的质谱干扰,通过考察不同分析模式下52Cr、60Ni、75As、111Cd的背景等效浓度(BEC),评价质谱干扰对分析结果的影响。结果表明:在MS/MS模式下选择O2为反应气,采用质量转移法和原位质量法可以消除52Cr、60Ni、75As、111Cd的所有质谱干扰。Cr、Ni、As、Cd、Hg、Pb检出限分别为3.06、9.31、3.50、2.72、2.03、1.89ng/L,加标回收率在95.6%~106.2%之间,相对标准偏差(RSD)≤3.9%。所建立的方法已应用于电解二氧化锰废渣浸出液中重金属元素的测定。Abstract:
BACKGROUND The heavy metals in electrolytic manganese dioxide waste residue can cause different degrees of environmental pollution and hidden dangers to downstream aquatic ecosystems and agricultural ecosystems through surface runoff under rainwater leaching. Therefore, it is of great practical significance to determine the content of heavy metal elements in leaching solution of electrolytic manganese dioxide waste residue. Usually, the detection limits of atomic absorption spectrometry and inductively coupled plasma-optical emission spectrometry are insufficient to meet the measurement requirements, since the content of heavy metal elements in the leaching solution of electrolytic manganese dioxide waste residue is typically very low. The challenge is to eliminate complex spectral interference. OBJECTIVES To find an efficient method for the determination of six heavy metal elements in leaching solution of electrolytic manganese dioxide waste residue. METHODS The objective was determined by inductively coupled plasma-tandem mass spectrometry (ICP-MS/MS). The six heavy metal elements Cr, Ni, As, Cd, Hg and Pb in the electrolytic manganese dioxide waste residue were directly measured by ICP-MS/MS after H2SO4-HNO3 mixed acid leaching. The O2 reaction mode was adopted to eliminate the spectral interference of Cr, Ni, As and Cd during analysis. The background equivalent concentrations (BECs) of 52Cr, 60Ni, 75As and 111Cd in the different analytical mode were investigated to evaluate the influence of spectral interference on the analysis results. RESULTS In the MS/MS mode, O2 was selected as the reaction gas, and the spectral interference of 52Cr, 60Ni, 75As and 111Cd was eliminated by using mass shift method and on-mass method. The limits of detection for Cr, Ni, As, Cd, Hg and Pb were 3.06, 9.31, 3.50, 2.72, 2.03, 1.89ng/L, respectively. The spiked recoveries were between 95.6% and 106.2%. The relative standard deviation was no higher than 3.9%. CONCLUSIONS The method has been successfully applied to the determination of heavy metal elements in leaching solution of electrolytic manganese dioxide waste residue. -
表 1 不同质谱模式下分析元素的背景等效浓度
Table 1. Background equivalent concentrations of analytes in different mass spectrometric mode
同位素 潜在质谱干扰 背景等效浓度(ng/L) SQ(无气体模式) SQ(He碰撞模式) MS/MS(O2反应模式) 52Cr 40Ar12C, 35Cl16O1H, 36Ar16O, 38Ar14N 31600 53.7 23.4 60Ni 59Co1H, 23Na36Ar1H, 23Na37Cl 78.9 40.5 5.28 75As 40Ar35Cl, 59Co16O, 150Nd++, 150Sm++ 1050 22.8 13.0 111Cd 95Mo16O 216 84.6 19.2 202Hg 186W16O 10.3 17.1 16.6 208Pb 192Os16O 11.2 15.8 20.5 表 2 校准数据与检出限
(n=11) Table 2. Calibration data and detection limits
(n=11) 待测
元素监测离子 内标分配 线性范围
(μg/L)线性相
关系数检出限
(ng/L)Cr 52Cr16O+ 45Sc16O+ 10.2~500 1.0000 3.06 Ni 60Ni16O+ 45Sc16O+ 31.3~500 0.9999 9.31 As 75As16O+ 89Y16O+ 11.7~500 0.9998 3.50 Cd 111Cd+ 103Rh+ 9.07~50 1.0000 2.72 Hg 202Hg+ 209Bi+ 6.77~50 0.9999 2.03 Pb 208Pb+ 209Bi+ 6.30~500 1.0000 1.89 表 3 分析方法的准确度和精密度
(n=6) Table 3. Accuracy and precision of analytical method
(n=6) 待测元素 加标值
(μg/L)测定值
(μg/L)加标回收率
(%)RSD
(%)2.00 1.88 94.0 2.8 Cr 10.0 10.3 103.0 2.2 50.0 51.6 103.2 1.9 2.00 2.05 102.5 2.6 Ni 10.0 9.87 98.7 3.0 50.0 51.8 103.6 2.5 2.00 1.95 97.5 1.7 As 10.0 10.4 104.0 3.1 50.0 52.3 104.6 2.0 2.00 1.92 96.0 2.3 Cd 10.0 9.37 93.7 3.9 50.0 53.6 107.2 3.2 2.00 1.90 95.0 2.7 Hg 10.0 9.62 96.2 3.4 50.0 47.3 94.6 2.5 2.00 2.07 103.5 1.8 Pb 10.0 10.1 101.0 2.1 50.0 48.4 96.8 2.9 表 4 电解二氧化锰废渣浸出液的分析结果
(n=6) Table 4. Analytical results of leaching solution of electrolytic manganese dioxide waste residue
(n=6) 待测
元素元素测定值(μg/L) 样品A 样品B 样品C 样品D Cr 46.2±1.70 32.8±1.26 61.3±2.19 13.4±0.51 Ni 0.71±0.028 0.92±0.037 0.38±0.014 0.25±0.010 As 3.06±0.12 1.37±0.048 0.88±0.035 5.41±0.16 Cd 0.072±0.005 0.040±0.003 0.052±0.003 0.087±0.005 Hg 0.053±0.004 0.031±0.002 0.016±0.001 0.023±0.002 Pb 0.38±0.011 0.69±0.025 0.45±0.018 0.82±0.034 -
[1] Sarkar D, Khan G G, Singh A K, et al.High-performance pseudocapacitor electrodes based on α-Fe2O3/MnO2 core-shell nanowire heterostructure arrays[J].Journal of Physical Chemistry C, 2013, 117(30):15523-15531. doi: 10.1021/jp4039573
[2] Yun Y S, Kim J M, Park H H, et al.Free-standing heterogeneous hybrid papers based on mesoporous γ-MnO2 particles and carbon nanotubes for lithium-ion battery anodes[J].Journal of Power Sources, 2013, 244:747-751. doi: 10.1016/j.jpowsour.2012.11.056
[3] Biswal A, Tripathy B C, Sanjay K, et al.Electrolytic manganese dioxide (EMD):A perspective on worldwide production, reserves and its role in electrochemistry[J].RSC Advances, 2015, 5(72):58255-58283. doi: 10.1039/C5RA05892A
[4] 牛莎莎.从锰阳极渣制备微粒电解二氧化锰及锰酸锂的研究[D].长沙: 中南大学, 2012.
Niu S S.The study on preparing particle manganese dioxide and LiMn2O4 from manganese anode slag[D].Changsha: Central South University, 2012.
[5] 杨爱江, 吴维, 袁旭, 等.电解锰废渣重金属对周边农田土壤的污染及模拟酸雨作用下的溶出特性[J].贵州农业科学, 2012, 40(3):190-193. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gznykx201203056
Yang A J, Wu W, Yuan X, et al.Pollution of metals in the soils around electrolytic manganese residue and dissolving-out characteristics of heavy metals in waste residues in simulated acid rain[J].Guizhou Agricultural Sciences, 2012, 40(3):190-193. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gznykx201203056
[6] 蔡敬怡, 谭科艳, 路国慧, 等.贵州万山废弃矿区小流域系统沉积物及悬浮物重金属的空间分布特征[J].岩矿测试, 2019, 38(3):305-315. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201811150123
Cai J Y, Tan K Y, Lu G H, et al.The spatial distribution characteristics of heavy metals in river sediments and suspended matter in small tributaries of the abandoned Wanshan mercury mines, Guizhou Province[J].Rock and Mineral Analysis, 2019, 38(3):305-315. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201811150123
[7] Li X, Zhong H, Wang S, et al.Leaching behavior and risk assessment of heavy metals in a landfill of electrolytic manganese residue in western Hunan, China[J].Human and Ecological Risk Assessment, 2014, 20(5):1249-1263. doi: 10.1080/10807039.2013.849482
[8] 陈海棠, 周丹丹, 薛南冬, 等.电子固体废弃物拆解作坊附近土壤重金属污染特征及风险[J].环境化学, 2015, 34(5):956-964. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjhx201505019
Chen H T, Zhou D D, Xue N D, et al.Contamination and health risk of heavy metals in soils near e-waste recycling workshops[J].Environmental Chemistry, 2015, 34(5):956-964. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjhx201505019
[9] Li Z, Ma Z, van der Kuijp T J, et al.A review of soil heavy metal pollution from mines in China:Pollution and health risk assessment[J].Science of the Total Environment, 2014, 468-469:843-853. doi: 10.1016/j.scitotenv.2013.08.090
[10] Wang L, Wang Y, Zhang W, et al.Multivariate statistical techniques for evaluating and identifying the environmental significance of heavy metal contamination in sediments of the Yangtze River, China[J].Environmental Earth Sciences, 2014, 71:1183-1193. doi: 10.1007/s12665-013-2522-9
[11] Huang Z, Pan X D, Wu P G, et al.Heavy metals in vegetables and the health risk to population in Zhejiang, China[J].Food Control, 2014, 36:248-252. doi: 10.1016/j.foodcont.2013.08.036
[12] Ernst E.Risks of herbal medicinal products[J]. Pharmacoepidemiology and Drug Safety, 2004, 13:767-771. doi: 10.1002/pds.1014
[13] Khan S, Soylak M, Alosmanov R M, et al.Development of phosphate-containing polymer-based solid phase extraction procedure for the separation, enrichment, and determination of cadmium in water and food samples by FAAS[J].Atomic Spectroscopy, 2018, 39(4):158-163. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bc3df5a12117279451f3907262a1f848
[14] 王增焕, 王许诺, 谷阳光, 等.疏水性螯合物固相萃取-原子吸收光谱法测定海水中5种重金属[J].岩矿测试, 2017, 36(4):360-366. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201701200011
Wang Z H, Wang X N, Gu Y G, et al.Determination of 5 heavy metals in seawater by atomic absorption spectrometry with solid-phase extraction of hydrophobic chelate[J].Rock and Mineral Analysis, 2017, 36(4):360-366. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201701200011
[15] Chen S, Zhu S, Lu D.Dispersive micro-solid phase extraction coupled with dispersive liquid-liquid microextraction for speciation of antimony in environmental water samples by electrothermal vaporization ICP-MS[J].Atomic Spectroscopy, 2018, 39(2):55-61. doi: 10.46770/AS.2018.02.001
[16] 田志仁, 封雪, 姜晓旭, 等.生态环境监测工作中应用AAS/AFS和XRF法测定土壤重金属数据质量评价[J].岩矿测试, 2019, 38(5):479-488. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201811080119
Tian Z R, Feng X, Jiang X X, et al.Evaluation of data quality on the detection of heavy metals in soils by atomic absorption spectrometry or atomic fluorescence spectrometry and X-ray fluorescence spectrometry in ecological environment monitoring[J].Rock and Mineral Analysis, 2019, 38(5):479-488. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201811080119
[17] 胡南, 周军媚, 刘运莲, 等.硫酸锰废渣的浸出毒性及无害化处理的研究[J].中国环境监测, 2007, 23(2):49-52. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zghjjc200702013
Hu N, Zhou J M, Liu Y L, et al.A study of the extraction procedure toxicity and harmless disposal of manganese sulphate waste residue[J].Environmental Monitoring in China, 2007, 23(2):49-52. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zghjjc200702013
[18] 周亚武, 陆谢娟, 高明刚, 等.电解锰渣固结体中重金属浸出毒性及其在模拟酸雨下的淋溶特性分析[J].武汉科技大学学报(自然科学版), 2018, 41(2):127-132. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=whkjdxxb201802009
Zhou Y W, Lu X J, Gao M G, et al.Leaching toxicity and leaching properties in simulated acid rain of heavy metals in solidified electrolytic manganese residue[J].Journal of Wuhan University of Science and Technology (Natural Science Edition), 2018, 41(2):127-132. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=whkjdxxb201802009
[19] 罗乐, 王金霞, 周皓.锰渣中重金属在模拟酸雨环境下的浸出规律[J].湿法冶金, 2019, 38(5):352-357. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sfyj201905003
Luo L, Wang J X, Zhou H.Leaching regularities of heavy metals in electrolytic manganese residue using simulation acid rain[J].Hydrometallurgy of China, 2019, 38(5):352-357. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sfyj201905003
[20] Zack T, Hogmalm K J.Laser ablation Rb/Sr dating by online chemical separation of Rb and Sr in an oxygen-filled reaction cell[J].Chemistry Geology, 2016, 437:120-133. doi: 10.1016/j.chemgeo.2016.05.027
[21] Muramatsu Y, Matsuzaki H, Toyama C, et al.Analysis of 129I in the soils of Fukushima Prefecture:Preliminary reconstruction of 131I deposition related to the accident at Fukushima Daiichi Nuclear Power Plant (FDNPP)[J].Journal of Environmental Radioactivity, 2015, 139:344-350. doi: 10.1016/j.jenvrad.2014.05.007
[22] Vetere A, Prcfrock D, Schrader W, et al.Quantitative and qualitative analysis of three classes of sulfur compounds in crude oil[J].Angewandte Chemie International Edition, 2017, 56(36):10933-10937. doi: 10.1002/anie.201703205
[23] Balcaen L, Bolea-Fernandez E, Resano M, et al.Inductively coupled plasma-tandem mass spectrometry (ICP-MS/MS):A powerful and universal tool for the interference-free determination of (ultra)trace elements-A tutorial review[J].Analytica Chimica Acta, 2015, 894:7-19. doi: 10.1016/j.aca.2015.08.053
[24] Virgilio A, Amais R S, Amaral C D B, et al.Reactivity and analytical performance of oxygen as cell gas in inductively coupled plasma tandem mass spectrometry[J].Spectrochimica Acta Part B, 2016, 126:31-36. doi: 10.1016/j.sab.2016.10.013
[25] Fu L, Xie H, Shi S.Multielement analysis of Zanthoxylum bungeanum Maxim. essential oil using ICP-MS/MS[J].Analytical and Bioanalytical Chemistry, 2018, 410(16):3769-3778. doi: 10.1007/s00216-018-1040-8
[26] Boting K, Treu S, Leonhard P, et al.First experimental proof of asymmetric charge transfer in ICP-MS/MS (ICP-QQQ-MS) through isotopically enriched oxygen as cell gas[J].Journal of Analytical Atomic Spectrometry, 2014, 29(3):578-582. doi: 10.1039/c3ja50234a
[27] Walkner C, Gratzer R, Meisel T, et al.Multi-element analysis of crude oils using ICP-QQQ-MS[J].Organic Geochemistry, 2017, 103:22-30. doi: 10.1016/j.orggeochem.2016.10.009
[28] Galusha A L, Haig A C, Bloom M S, et al.Ultra-trace element analysis of human follicular fluid by ICP-MS/MS:Pre-analytical challenges, contamination control, and matrix effects[J].Journal of Analytical Atomic Spectrometry, 2019, 34(4):741-752. doi: 10.1039/C8JA00423D
[29] Fu L, Xie H, Huang J, et al.Rapid determination of trace elements in serum of hepatocellular carcinoma patients by inductively coupled plasma tandem mass spectrometry[J].Analytica Chimica Acta, 2020, 1112:1-7. doi: 10.1016/j.aca.2020.03.054
[30] Zhang Y, Pan Z, Jiao P, et al.Solvent extraction ICP-MS/MS method for the determination of REE impurities in ultra-high purity Ce chelates[J].Atomic Spectroscopy, 2019, 40(5):167-172. doi: 10.46770/AS.2019.05.003
[31] Amaral C D B, Amais R S, Fialho L L, et al.A novel strategy to determine As, Cr, Hg and V in drinking water by ICP-MS/MS[J].Analytical Methods, 2015, 7(3):1215-1220. doi: 10.1039/C4AY02811B
[32] Witt B, Bornhorst J, Mitze H, et al.Arsenolipids exert less toxicity in a human neuron astrocyte co-culture as compared to the respective monocultures[J].Metallomics, 2017, 9(5):442-446. doi: 10.1039/C7MT00036G
[33] Jackson B P.Fast ion chromatography-ICP-QQQ for arsenic speciation[J].Journal of Analytical Atomic Spectrometry, 2015, 30(6):1405-1407. doi: 10.1039/C5JA00049A
[34] Meyer S, Raber G, Ebert F, et al.In vitro toxicological characterisation of arsenic-containing fatty acids and three of their metabolites[J].Toxicology Research, 2015, 4(5):1289-1296. doi: 10.1039/C5TX00122F
[35] Barros J A V A, Virgilio A, Schiavo D, et al.Determination of ultra-trace levels of Mo in plants by inductively coupled plasma tandem mass spectrometry (ICP-MS/MS)[J].Microchemical Journal, 2017, 133:567-571. doi: 10.1016/j.microc.2017.04.037
[36] Amais R S, Virgilio A, Schiavo D, et al.Tandem mass spectrometry (ICP-MS/MS) for overcoming moly-bdenum oxide interferences on Cd determination in milk[J].Microchemical Journal, 2015, 120:64-68. doi: 10.1016/j.microc.2015.01.008
[37] 张洁, 阳国运.树脂交换分离-电感耦合等离子体质谱法测定铅锌矿中钨钼锡锗硒碲[J].岩矿测试, 2018, 37(6):657-663. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201803250028
Zhang J, Yang G Y.Determination of tungsten, molybdenum, tin, germanium, selenium and tellurium in lead-zinc ore by inductively coupled plasma-mass spectrometry with resin exchange separation[J].Rock and Mineral Analysis, 2018, 37(6):657-663. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201803250028
[38] 刘宏伟, 谢华林, 聂西度.松香中杂质元素的质谱分析[J].光谱学与光谱分析, 2017, 37(2):603-606. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gpxygpfx201702052
Liu H W, Xie H L, Nie X D.Determination of impurity elements in rosin with inductively coupled plasma mass spectrometry[J].Spectroscopy and Spectral Analysis, 2017, 37(2):603-606. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gpxygpfx201702052
[39] Moraleja I, Esteban-Fernandez D, Lazaro A, et al. Printing metal-spiked inks for LA-ICP-MS bioimaging internal standardization:Comparison of the different nephrotoxic behavior of cisplatin, carboplatin, and oxaliplatin[J].Analytical and Bioanalytical Chemistry, 2016, 408(9):2309-2318. doi: 10.1007/s00216-016-9327-0