Exposure of Mother and Infants to Polycyclic Aromatic Hydrocarbons during Lactation, Beijing
-
摘要: 多环芳烃(PAHs)是一类普遍存在于水圈、生物圈、岩石圈和大气圈的持久性有机污染物,并在各种环境介质中交换、迁移,从而影响人体健康。以母乳为介质,评价哺乳期女性和婴幼儿PAHs暴露风险具有重要意义。早期研究表明,北京母乳中PAHs浓度在全球范围内处于较高水平。本文项目组在2012-2016年间,连续采集北京地区30位哺乳期女性6个月母乳,并检测其中PAHs浓度,旨在掌握该地区母乳中PAHs残留水平、婴幼儿的暴露量,以及哺乳期母体和婴幼儿暴露风险的变化趋势与特征。通过对30位女性分娩后连续6个月内180个母乳中15种PAHs的监测,采用气相色谱-质谱法(GC-MS)测定其含量,初步研究结果表明:①15种PAHs都有检出,其中检出浓度和检出率高的单体化合物包括菲、芴、苊烯、蒽、苊和荧蒽。母乳样品中Σ15PAHs的浓度均值为348μg/kg脂质,与2005年该地区的报道值相比有下降趋势。②15种PAHs和7种高致癌活性PAHs的苯并[a]芘的等效致癌活性(BaPeq)浓度分别为8.53μg/kg脂质和7.89μg/kg脂质,婴幼儿每日暴露估算值分别为1.51μg/day/kg b.w.和0.19μg/day/kg b.w.,均比2005年有所下降,但高于捷克、美国、土耳其等国家婴幼儿在母乳喂养期的暴露量,低于我国兰州等重工业城市最新暴露量研究结果。③整个哺乳期,母乳中PAHs的总浓度没有明显下降趋势,但冬季可能由于采暖增加了大气中PAHs的排放,使得母乳样品中15种PAHs总浓度明显高于夏季、秋季和春季。SPSS双变量相关分析结果表明,母乳中15种PAHs的总浓度与母体年龄、身体质量指数和母乳脂肪含量不存在相关性。未来工作中需要更加充足的样品分析数据进一步证实以上研究结果。Abstract:
BACKGROUNDPolycyclic aromatic hydrocarbons (PAHs) are classic persistent organic pollutants in the hydrosphere, lithosphere, biosphere and atmosphere, which have a harmful effect on human health by exchanging and migrating among various environmental media. Breast milk is an ideal biometric to monitor the exposure risk of mothers and infants to PAHs. Earlier research indicated that the residue levels of PAHs in breast milk from Beijing were higher in the world. OBJECTIVESTo understand the changes in the residue levels of PAHs in breast milk in the region, the exposure of infants, and the trends and characteristics of the exposure risk of breastfeeding mothers and infants. METHODSFor 30 first-delivery women in Beijing, a breast milk sample per month within 180 days postpartum period was collected. The PAHs and fat content of breast milk were determined by gas chromatography-mass spectrometry (GC-MS) and monitored to study the time tendency of PAHs and estimate the exposure risk of infants to PAHs. RESULTSThe dominant pollutants were acenaphthylene, acenaphthene, fluorene, phenanthrene, anthracene, and fluoranthene. The average concentration of Σ15PAHs in 180 samples was 348μg/kg lipid, which was lower than the value reported in 2005. Compared to the early reported residue level, the BaP-equivalent (BaPeq) concentrations decreased, which were 7.89μg/kg lipid for seven carcinogenic compounds, and 8.53μg/kg lipid for 15 PAHs. For breastfeeding infants in Beijing, the mean acceptable daily intakes (EDIs) of Σ15PAHs and Σ7PAHs through breast milk were 1.51μg/day/kg b.w. and 0.19μg/day/kg b.w., respectively, which was lower than those in 2005. However, it was higher than the exposure of infants in some countries such as Czech, America, Turkey during breastfeeding, and lower than the latest research results of Lanzhou and other heavy industrial cities in China. Throughout the lactation period, the total concentration of PAHs in breast milk did not decrease significantly, but winter heating may increase the emission of PAHs in the atmosphere, making the total concentration of 15 PAHs in breast milk samples significantly higher than that in summer, autumn, and spring. CONCLUSIONSBivariate correlations analytical results show that the concentration of Σ15PAHs is not associated with age, BMI and lipid content. Limited by sample size, those results should be confirmed with perfect experiment design and sufficient samples in future studies. -
表 1 志愿者和母乳采样信息
Table 1. Main information of breast milk in the donors
参数 范围 志愿者数量(名) 30 样品量(个) 180 样品采集时间(年) 2012—2016 年龄(岁) 26~36 (30±2.3)a BMI(kg/m2) 22.0~28.5 (26.1±2.9)a 身高(cm) 152~172 (161±4.7)a 春季样品量(3月~5月,个) 44 夏季样品量(6月~8月,个) 36 秋季样品量(9月~10月,个) 35 冬季样品量(11月~次年2月,个) 65 注:a为年龄等的均值,BMI为身体体重指数(体重/身高2, kg/m2)。 表 2 样品中PAHs浓度分析结果
Table 2. Concentrations of target compounds in 180 human breast milk samples
PAHs化合物 均值(μg/kg脂质) 中位值(μg/kg脂质) 最小值(μg/kg脂质) 最大值(μg/kg脂质) 检出率(%) 占比(%) 苊 26.4 18.8 NDa 110 68.9 7.59 苊烯 49.9 47.2 ND 180 77.2 14.3 芴 63.0 62.0 ND 151 96.7 18.1 菲 91.2 90.4 8.66 245 100 26.2 蒽 35.3 26.8 2.15 110 100 10.1 荧蒽 21.3 15.5 ND 90.7 93.9 6.11 芘 16.4 12.3 ND 113 77.2 4.71 苯并[a]蒽 7.56 6.02 ND 50.7 58.3 2.17 䓛 11.7 8.86 ND 64.0 66.7 3.37 苯并[b]荧蒽 9.26 5.17 ND 88.4 60.6 2.66 苯并[k]荧蒽 8.46 3.21 ND 79.8 49.4 2.43 苯并[a]芘 1.98 ND ND 17.7 25.0 0.57 茚苯(1, 2, 3-cd)芘 1.95 ND ND 14.6 30.6 0.56 二苯并[a, h]蒽 2.69 ND ND 13.6 38.9 0.77 苯并[ghi]苝 1.20 ND ND 10.5 23.3 0.34 Σ PAHs 348 296 70.3 745 - - 注:ND表示未检出。 表 3 不同地区母乳样品中15种PAHs和7种PAHs的BaPeq值
Table 3. BaPeq values of 15 PAHs and 7 PAHs in human milk from different areas
采样地区 BaPeq(μg/kg脂质) 7种PAHs的占比(%) 样品量(个) 参考文献 15种PAHs 7种PAHs 北京 8.53 7.89 92.5 180c 本文 北京 9.08a 8.60a 94.6 40 [35] 日本 1.45b 1.44b 99.3 51 [34] 西班牙(初乳) 7.53b 7.07b 93.9 18 [33] 香港 13.6 12.1 89.8 29 [38] 捷克 0.41a 0.38a 92.7 188 [32] 兰州 54.2a 53.7a 99.1 98 [39] 土耳其 0.59 0.54 91.5 47 [10] 意大利 201a, b 187a, b 93.0 30 [31] 美国 0.02 0 0 12 [37] 注:a为根据文献中报道的均值计算所得;b为根据文献中单位体积PAHs浓度,以3.6%的脂肪含量计算;c为本文180个样品的测定均值。 -
[1] Gilio A D, Ventrella G, Giungato P, et al.An intensive monitoring campaign of PAHs for assessing the impact of a steel plant[J].Chemosphere, 2017, 168:171-182. doi: 10.1016/j.chemosphere.2016.10.019
[2] Abdel-Shafy H I, Mansour M S M.A Review on polycyclic aromatic hydrocarbons:Source, environmental impact, effect on human health and remediation[J].Egyptian Journal of Petroleum, 2015, 25:107-123. http://cn.bing.com/academic/profile?id=0e0a26cb6754153c7b24b2cc0b99ecd0&encoded=0&v=paper_preview&mkt=zh-cn
[3] Amodio M, Andriani E, Dambruoso P R, et al.A monitoring strategy to assess the fugitive emission from a steel plant[J].Atmosphere Environment, 2013, 79:455-461. doi: 10.1016/j.atmosenv.2013.07.001
[4] Cakmak S, Hebbern C, Cakmak J D, et al.The influence of polycyclic aromatic hydrocarbons on lung function in a representative sample of the Canadian population[J].Envirnmental Pollution, 2017, 228:1-7. doi: 10.1016/j.envpol.2017.05.013
[5] Yang J, Qadeer A, Liu M, et al.Occurrence, source, and partition of PAHs, PCBs, and OCPs in the multiphase system of an urban lake, Shanghai[J].Applied Geochemistry, 2019, 106:17-25. doi: 10.1016/j.apgeochem.2019.04.023
[6] Qu C S, Li B, Wu H S.Multi-pathway assessment of human health risk posed by polycyclic aromatic hydrocarbons[J].Environmental Geochemistry and Health, 2015, 37:587-601. doi: 10.1007/s10653-014-9675-7
[7] Ruby M V, Lowney Y W, Bunge A L, et al.Oral bioavail-ability, bioaccessibility, and dermal absorption of PAHs from soil-State of the science[J].Environmental Science & Technology, 2016, 50:2151-2164. https://pubs.acs.org/doi/10.1021/acs.est.5b04110
[8] Tang J, An T C, Xiong J K, et al.The evolution of pollution profile and health risk assessment for three groups SVOCs pollutants along with Beijiang River, China[J].Environmental Geochemistry and Health, 2017, 39(6):1487-1499. doi: 10.1007/s10653-017-9936-3
[9] Sun H W, An T C, Li G Y, et al.Distribution, possible sources, and health risk assessment of SVOC pollution in small streams in Pearl River Delta, China[J].Environmental Science and Pollution Research, 2014, 21(17):10083-10095. doi: 10.1007/s11356-014-3031-4
[10] Çok I, Mazmanci B, Mazmanci M A, et al.Analysis of human milk to assess exposure to PAHs, PCBs and organochlorine pesticides in the vicinity Mediterranean city Mersin, Turkey[J].Environment International, 2012, 40:63-69. doi: 10.1016/j.envint.2011.11.012
[11] Hou J, Yin W J, Li P, et al.Joint effect of polycyclic aromatic hydrocarbons and phthalates exposure on telomere length and lung function[J].Journal of Hazardous Materials, 2020, 386:121663. doi: 10.1016/j.jhazmat.2019.121663
[12] Ye X Q, Pan W Y, Li C M, et al.Exposure to polycyclic aromatic hydrocarbons and risk for premature ovarian failure and reproductive hormones imbalance[J].Journal of Environmental Sciences, 2020, 91:1-9. doi: 10.1016/j.jes.2019.12.015
[13] Wang F D, Zhang H J, Geng N B, et al.A metabolomics strategy to assess the combined toxicity of polycyclic aromatic hydrocarbons (PAHs) and short-chain chlorinated paraffins (SCCPs)[J].Environmental Pollution, 2018, 234:572-580. doi: 10.1016/j.envpol.2017.11.073
[14] Pinto M, Rebola M, Louro H, et al.Chlorinated polycyclic aromatic hydrocarbons associated with drinking water disinfection:Synthesis, formation under aqueous chlorination conditions and genotoxic effects[J].Polycyclic Aromatic Compounds, 2014, 34:356-371. doi: 10.1080/10406638.2014.891143
[15] Farzan S F, Chen Y, Trachtman H, et al.Urinary polycyclic aromatic hydrocarbons and measures of oxidative stress, inflammation and renal function in adolescents:NHANES 2003-2008[J].Environmental Research, 2016, 144:149-157. doi: 10.1016/j.envres.2015.11.012
[16] IARC.Some non-heterocyclic polycyclic aromatic hydrocarbons and some related exposures[R]//IARC monographs on the evaluation of carcinogenic risks to humans.WHO IARC, 2010:92.
[17] Bae S, Pan X C, Kim S Y, et al.Exposures to particulate matter and polycyclic aromatic hydrocarbons and oxidative stress in school children[J].Environmental Health Perspectives, 2010, 118:579-583. doi: 10.1289/ehp.0901077 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2854738/
[18] Ohura T.Environmental behavior, sources, and effects of chlorinated polycyclic aromatic hydrocarbons[J].Scientific World Journal, 2007, 7:372-380. doi: 10.1100/tsw.2007.75
[19] Armstrong B G, Gibbs G.Exposure-response relationship between lung cancer and polycyclic aromatic hydrocarbons (PAHs)[J].Occupational and Environ-mental Medicine, 2009, 66:740-746. doi: 10.1136/oem.2008.043711
[20] Zhou Y, Sun H, Xie J, et al.Urinary polycyclic aromatic hydrocarbon metabolites and altered lung function in Wuhan, China[J].American Journal of Respiratory and Critical Care Medicine, 2016, 193:835-846. doi: 10.1164/rccm.201412-2279OC
[21] Jedrychowski W A, Perera F P, Maugeri U, et al.Long term effects of prenatal and postnatal airborne PAH exposures on ventilatory lung function of non-asthmatic preadolescent children. Prospective birth cohort study in Krakow[J].Science of the Total Environment, 2015, 502:502-509. doi: 10.1016/j.scitotenv.2014.09.051
[22] Padula A M, Balmes J R, Eisen E A, et al.Ambient polycyclic aromatic hydrocarbons and pulmonary function in children[J].Journal of Exposure Science and Environmental Epidemiology, 2015, 25:295-302. doi: 10.1038/jes.2014.42
[23] Barraza-Villarreal A, Escamilla-Nunez M C, Schilmann A, et al.Lung function, airway inflammation, and polycyclic aromatic hydrocarbons exposure in Mexican school children:A pilot study[J].Journal of Occupational and Environmental Medicine, 2014, 56:415-419. doi: 10.1097/JOM.0000000000000111
[24] Mu G, Fan L Y, Zhou Y, et al.Personal exposure to PM2.5-bound polycyclic aromatic hydrocarbons and lung function alteration:Results of a panel study in China[J].Science of the Total Environment, 2019, 684:458-465. doi: 10.1016/j.scitotenv.2019.05.328
[25] Wang L, Li C M, Jiao B N, et al.Halogenated and parent polycyclic aromatic hydrocarbons in vegetables:Levels, dietary intakes, and health risk assessments[J].Science of the Total Environment, 2018, 616-617:288-295. doi: 10.1016/j.scitotenv.2017.10.336
[26] Sun J L, Zeng H, Ni H G.Halogenated polycyclic aromatic hydrocarbons in the environment[J].Chemosphere, 2013, 90:1751-1759. doi: 10.1016/j.chemosphere.2012.10.094
[27] Sun J L, Ni H G, Zeng H.Occurrence of chlorinated and brominated polycyclic aromatic hydrocarbons in surface sediments in Shenzhen, South China and its relationship to urbanization[J].Journal of Environmental Monitoring, 2011, 13:2775-2781. doi: 10.1039/c1em10465a
[28] Hong Q, Li W L, Zhu N Z, et al.Concentrations and sources of polycyclic aromatic hydrocarbons in indoor dust in China[J].Science of the Total Environment, 2014, 491-492:100-107. doi: 10.1016/j.scitotenv.2014.01.119
[29] Sun J L, Jing X, Chang W J, et al.Cumulative health risk assessment of halogenated and parent poly-cyclic aromatic hydrocarbons associated with particulate matters in urban air[J].Ecotoxicology and Environmental Safety, 2015, 113:31-37. doi: 10.1016/j.ecoenv.2014.11.024
[30] Ding C, Ni H G, Zeng H.Parent and halogenated polycyclic aromatic hydrocarbons in rice and implications for human health in China[J].Environmental Pollution, 2012, 168:80-86. doi: 10.1016/j.envpol.2012.04.025
[31] Santonicola S, Felice A D, Cobellis L, et al.Comparative study on the occurrence of polycyclic aromatic hydrocarbons in breast milk and infant formula and risk assessment[J].Chemosphere, 2017, 175:383-390. doi: 10.1016/j.chemosphere.2017.02.084
[32] Pulkrabova J, Stupak M, Svarcova A, et al.Relationship between atmospheric pollution in the residential area and concentrations of polycyclic aromatic hydrocarbons (PAHs) in human breast milk[J].Science of the Total Environment, 2016, 562:640-647. doi: 10.1016/j.scitotenv.2016.04.013
[33] Luzardo P O, Ruiz-Suárez N, Almeida-González M, et al.Multi-residue method for the determination of 57 persistent organic pollutants in human milk and colostrum using a QuEChERS-based extraction procedure[J].Analytical and Bioanalytical Chemistry, 2013, 405:9523-9536. doi: 10.1007/s00216-013-7377-0
[34] Kishikawa N, Wada M, Kuroda N, et al.Determination of polycyclic aromatic hydrocarbons in milk samples by high-performance liquid chromatography with fluore-scence detection[J].Journal of Chromatography B, 2003, 789:257-264. doi: 10.1016/S1570-0232(03)00066-7
[35] Yu Y X, Wang X L, Wang B, et al.Polycyclic aromatic hydrocarbon residues in human milk, placenta, and umbilical cord blood in Beijing, China[J].Environmental Science & Technology, 2011, 45:10235-10242. http://cn.bing.com/academic/profile?id=07d3d63d9a4e3540ccac27f5ba7cf378&encoded=0&v=paper_preview&mkt=zh-cn
[36] Song S L, Ma X D, Pan M, et al.Excretion kinetics of three dominant organochlorine compounds in human milk within the first 6 months postpartum[J].Environmental Monitoring and Assessment, 2018, 190:457. doi: 10.1007/s10661-018-6850-9
[37] Kim S, Halden R, Buckley T J.Polycyclic aromatic hydrocarbons in human milk of nonsmoking U.S.women[J].Environmental Science & Technology, 2008, 42:2663-2667. http://cn.bing.com/academic/profile?id=09787672ec142bf97eff606204a62cf4&encoded=0&v=paper_preview&mkt=zh-cn
[38] Tsang H L, Wu S C, Leung C K M, et al.Body burden of POPs of Hong Kong residents, based on human milk, maternal and cord serum[J].Environment International, 2011, 37:142-151. doi: 10.1016/j.envint.2010.08.010
[39] Wang L, Liu A P, Zhao Y, et al.The levels of polycyclic aromatic hydrocarbons (PAHs) in human milk and exposure risk to breastfed infants in petrochemical industrialized Lanzhou Valley, northwest China[J].Environmental Science and Pollution Research, 2018, 25(9):1-13. http://cn.bing.com/academic/profile?id=45e9082850e046c8f00946dcc24dede4&encoded=0&v=paper_preview&mkt=zh-cn
[40] Xu S, Liu W, Tao S.Emission of polycyclic aromatic hydrocarbons in China[J].Environmental Science & Technology, 2006, 40:702-708. http://cn.bing.com/academic/profile?id=5eb2f34aa43ee1edd015c800ca3a2adb&encoded=0&v=paper_preview&mkt=zh-cn
[41] Yu Y X, Li Q, Wang H, et al.Risk of human exposure to polycyclic aromatic hydrocarbons:A case study in Beijing, China[J].Environmental Pollution, 2015, 205:70-77. doi: 10.1016/j.envpol.2015.05.022
[42] Zhang Y J, Lin Y, Cai J, et al.Atmospheric PAHs in North China:Spatial distribution and sources[J].Science of the Total Environment, 2016, 565:994-1000. doi: 10.1016/j.scitotenv.2016.05.104
[43] 王英锋, 张姗姗, 李杏茹, 等.北京大气颗粒物中多环芳烃浓度季节变化及来源分析[J].环境化学, 2010, 29(3):369-375. http://www.cnki.com.cn/Article/CJFDTOTAL-HJHX201003006.htm
Wang Y F, Zhang S S, Li X R, et al.Seasonnal variation and source identification of polycyclic aromatic hydrocarbons (PAHs) in airborne particulates of Beijing[J].Environmental Chemistry, 2010, 29(3):369-375. http://www.cnki.com.cn/Article/CJFDTOTAL-HJHX201003006.htm
[44] 董雪玲, 刘大锰, 袁杨鬙, 等.北京市大气PM10和PM2.5中有机物的时空变化[J].环境科学, 2009, 30(2):328-332. http://www.cnki.com.cn/Article/CJFDTotal-HJKZ200902004.htm
Dong X L, Liu D M, Yuan Y S, et al.Spatial-temporal variations of extractable organic matters in atmospheric PM10 and PM2.5 in Beijing[J].Environmental Science, 2009, 30(2):328-332. http://www.cnki.com.cn/Article/CJFDTotal-HJKZ200902004.htm
[45] 张秀川, 赵健, 王婷, 等.2014年北京市某区不同空气质量下大气颗粒物中多环芳烃的特征与来源分析[J].环境卫生学杂志, 2019, 9(2):97-102. http://www.cnki.com.cn/Article/CJFDTotal-GWYX201902023.htm
Zhang X C, Zhao J, Wang T, et al.Characteristics and sources analysis of polycyclic aromatic hydrocarbons in atmosphere particulate matters under different air quality in a district of Beijing in 2014[J].Journal of Environmental Hygiene, 2019, 9(2):97-102. http://www.cnki.com.cn/Article/CJFDTotal-GWYX201902023.htm
[46] Achary N, Gautam B, Subbiah S, et al.Polycyclic aromatic hydrocarbons in breast milk of obese vs normal women:Infant exposure and risk assessment[J].Science of the Total Environment, 2019, 668:658-667. doi: 10.1016/j.scitotenv.2019.02.381
[47] US EPA.Polycyclic organic matter.http://www.epa.gov/ttnatw01/hlthef/polycycl.html[EB/OL]. Washington D.C.: Environmental Protection Agency, 2002.
[48] Tue N M, Sudaryanto A, Minh T B, et al.Kinetic differences of legacy organochlorine pesticides and polychlorinated biphenyls in Vietnamese human breast milk[J].Chemosphere, 2010, 81(8):1006-1011. doi: 10.1016/j.chemosphere.2010.09.013
[49] van Oostdam J, Gilman A, Dewailly E, et al.Human health implications of environmental contaminants in Arctic Canada:A review[J].Science of the Total Environment, 1999, 230:1-82. doi: 10.1016/S0048-9697(99)00036-4