中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

单颗粒释光测年技术及其在地质考古中的应用研究进展

谢冰晶. 单颗粒释光测年技术及其在地质考古中的应用研究进展[J]. 岩矿测试, 2020, 39(4): 493-504. doi: 10.15898/j.cnki.11-2131/td.202002030013
引用本文: 谢冰晶. 单颗粒释光测年技术及其在地质考古中的应用研究进展[J]. 岩矿测试, 2020, 39(4): 493-504. doi: 10.15898/j.cnki.11-2131/td.202002030013
Bing-jing XIE. A Review of Single-grain Optically Stimulated Luminescence Technology and Its Application in Geological Archaeology[J]. Rock and Mineral Analysis, 2020, 39(4): 493-504. doi: 10.15898/j.cnki.11-2131/td.202002030013
Citation: Bing-jing XIE. A Review of Single-grain Optically Stimulated Luminescence Technology and Its Application in Geological Archaeology[J]. Rock and Mineral Analysis, 2020, 39(4): 493-504. doi: 10.15898/j.cnki.11-2131/td.202002030013

单颗粒释光测年技术及其在地质考古中的应用研究进展

  • 基金项目:
    中国地质调查局地质调查项目(DD20160055);中央高校基本科研业务费专项资金项目(2652015200)
详细信息
    作者简介: 谢冰晶, 博士, 讲师, 主要从事第四纪地质学、新生代年代学研究工作。E-mail:xiebj@cugb.edu.cn
  • 中图分类号: P597.3

A Review of Single-grain Optically Stimulated Luminescence Technology and Its Application in Geological Archaeology

  • 近年来光释光测年在单颗粒技术上的研究取得了一系列重要进展,极大地提高了测年精度,为地质考古测年提供了更大的空间,研究者们对全球重要考古遗址点进行了详细的单颗粒测年,取得诸多考古新发现。单颗粒释光技术是在光释光单片技术上发展而来,对样品的单个石英或长石颗粒进行独立测试,基于单个颗粒测量结果,结合误差理论、统计学分析和样品地质沉积特征分析获得样品的准确年龄。本文结合大量地质考古样品的单颗粒测年数据,重点阐述了单颗粒释光测年技术的原理、发展历程、实验流程、筛选条件和年龄模型。单颗粒释光技术为地质考古的精确定年提供了可能性,尤其是对由于晒退不充分等原因导致的等效剂量分散的样品,如过度分散值(OD)高达20%甚至超过50%的地质考古样品,提供了新的方法和及时支持。通过开展释光测年信号分析,选择不同的单颗粒样品年龄模型分析,可以得到较为可靠的年龄,为诸多地质考古遗迹建立年代学框架。
  • 加载中
  • 图 1  光释光测年原理(据文献[30]修改)

    Figure 1. 

    图 2  从考古遗址提取的单一石英颗粒De值Radio plot图解

    Figure 2. 

  • [1]

    Daniels F, Boyd C A, Saunders D F.Thermoluminescence as a research tool[J].Science, 1953, 117:343-349. doi: 10.1126/science.117.3040.343

    [2]

    Aitken M J, Tite M S, Reid J.Thermoluminescent dating of ancient ceramics[J].Nature, 1964, 202:1032-1033. https://www.nature.com/articles/2021032b0

    [3]

    Aitken M J, Tite M S, Reid J.Thermoluminescent dating:Progress report[J].Archaeometry, 1963, 6:65-75. doi: 10.1111/j.1475-4754.1963.tb00581.x

    [4]

    Shelkoplyas V N, Morozov G V.Some results of an investi-gation of Quaternary deposits by the thermo-luminescence method[R]//Materials on the Quaternary Period of the Ukraine.Kiev: 7th International Quaternary Association Congress, 1965: 83-90.

    [5]

    Huntley D J, Godfrey-Smith D I, Thewalt M L W.Optical dating of sediments[J].Nature, 1985, 313:105-107. doi: 10.1038/313105a0

    [6]

    Murray A S, Wintle A G.Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol[J].Radiation Measurements, 2000, 32:57-73. doi: 10.1016/S1350-4487(99)00253-X

    [7]

    王旭龙, 卢演俦, 李晓妮.细颗粒石英光释光测年:简单多片再生法[J].地震地质, 2005, 27(4):615-623. http://d.wanfangdata.com.cn/periodical/dzdz200504010

    Wang X L, Lu Y C, Li X N.Luminescence dating of fine-grained quartz in Chinese loess-Simplified multiple aliquot regenerative-dose (Mar) protocol[J].Seismology and Geology, 2005, 27(4):615-623. http://d.wanfangdata.com.cn/periodical/dzdz200504010

    [8]

    Lamothe M, Balescu S, Auclair M.Natural IRSL intensities and apparent luminescence ages of single feldspar grains extracted from partially bleached sediments[J].Radiation Measurements, 1994, 23:555-562. doi: 10.1016/1350-4487(94)90099-X

    [9]

    Murray A S, Olley J M, Caitcheon G C.Measurement of equivalent doses in quartz from contemporary water-lain sediments using optically stimulated luminescence[J].Quaternary Science Reviews, 1995, 14:365-371. doi: 10.1016/0277-3791(95)00030-5

    [10]

    Murray A S, Roberts R G.Determining the burial time of single grains of quartz using optically stimulated luminescence[J].Earth and Planetary Science Letters, 1997, 152:163-180. doi: 10.1016/S0012-821X(97)00150-7

    [11]

    Roberts R G, Bird M, Olley J M, et al.Optical and radiocarbon dating at Jinmium rock shelter in northern Australia[J].Nature, 1998, 393:358-362. doi: 10.1038/30718

    [12]

    Olley J M, De Deckker P, Roberts R G, et al.Optical dating of deep-sea sediments using single grains of quartz:A comparison with radiocarbon[J].Sedimentary Geology, 2004, 169:175-189. doi: 10.1016/j.sedgeo.2004.05.005

    [13]

    Roberts R G, Galbraith R F, Olley J M, et al.Optical dating of single and multiple grains of quartz from Jinmium rock shelter, northern Australia:Part Ⅱ.Results and implications[J].Archaeometry, 1999, 41:365-395. doi: 10.1111/j.1475-4754.1999.tb00988.x

    [14]

    Singarayer J S, Bailey R M.Further investigations of the quartz optically stimulated luminescence components using linear modulation[J].Radiation Measurements, 2003, 37:451-458. doi: 10.1016/S1350-4487(03)00062-3

    [15]

    Rui X, Li B, Guo Y J, et al.Variability in the thermal stability of OSL signal of single-grain quartz from the Nihewan Basin, North China[J].Quaternary Geochronology, 2019, 49:25-30. doi: 10.1016/j.quageo.2018.04.011

    [16]

    Murray A S, Olley J M.Determining sedimentation rates using luminescence dating[M]//Bruns P, Hass H C.Determination of sediment accumulation rates.Switzerland: GeoResearch Forum, 1999: 121-144.

    [17]

    Olley J M, Pietsch T, Roberts R G.Optical dating of Holocene sediments from a variety of geomorphic setting using single grains of quartz[J].Geomorphology, 2004, 60:337-358. doi: 10.1016/j.geomorph.2003.09.020

    [18]

    Duller G A T.Single-grain optical dating of Quaternary sediments:Why aliquot size matters in luminescence dating[J].Boreas, 2008, 37:589-612. doi: 10.1111/j.1502-3885.2008.00051.x

    [19]

    赵华, 卢演俦, 王成敏, 等.水成沉积物释光测年研究进展与展望[J].核技术, 2011, 34(2):82-86. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjs201102001

    Zhao H, Lu Y C, Wang C M, et al.A review of OSL dating for water-laid deposits:Progress and prospect[J].Nuclear Techniques, 2011, 34(2):82-86. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjs201102001

    [20]

    Jacobs Z, Roberts R G.Advances in optically stimulated luminescence dating of individual grains of quartz from archeological deposits[J].Evolutionary Anthropology, 2007, 16:210-223. doi: 10.1002/evan.20150

    [21]

    Bowler J M, Johnston H, Olley J M, et al.New ages for human occupation and climatic change at Lake Mungo, Australia[J].Nature, 2003, 421:837-840. doi: 10.1038/nature01383

    [22]

    Morwood M J, Brown P, Jatmiko, et al.Further evidence for small-bodied hominins from the Late Pleistocene of Flores, Indonesia[J].Nature, 2005, 437:1012-1017. doi: 10.1038/nature04022

    [23]

    Marean C W, Bar-Matthews M, Bernatchez J, et al.Early human use of marine resources and pigment in South Africa during the Middle Pleistocene[J].Nature, 2007, 449:905-908. doi: 10.1038/nature06204

    [24]

    Brown K S, Marean C W, Jacobs Z, et al.An early and enduring advanced technology originating 71, 000 years ago in South Africa[J].Nature, 2012, 491:590-593. doi: 10.1038/nature11660

    [25]

    Hu Y, Marwick B, Zhang J F, et al.Late Middle Pleistocene Levallois stone-tool technology in southwest China[J].Nature, 2019, 565:82-85. doi: 10.1038/s41586-018-0710-1

    [26]

    Jacobs Z, Li B, Shunkov M V, et al.Timing of archaic hominin occupation of Denisova Cave in southern Siberia[J].Nature, 2019, 565:594-599. doi: 10.1038/s41586-018-0843-2

    [27]

    Li G Q, Jin M, Chen X M, et al.Environmental changes in the Ulan Buh Desert, southern Inner Mongolia, China since the Middle Pleistocene based on sedimentology, chronology and proxy indexes[J].Quaternary Science Reviews, 2015, 128:69-80. doi: 10.1016/j.quascirev.2015.09.010

    [28]

    Li G Q, Duan Y W, Huang X Z, et al.The luminescence dating chronology of a deep core from Bosten Lake (NW China) in arid Central Asia reveals lake evolution over the last 220ka[J].Boreas, 2017, 464:264-281. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1111/bor.12209

    [29]

    Li G Q, Yang H, Stevens T, et al.Differential ice volume and orbital modulation of Quaternary moisture patterns between Central and East Asia[J].Earth and Planetary Science Letters, 2020, 530, 115901. https://www.sciencedirect.com/science/article/abs/pii/S0012821X1930593X

    [30]

    Aitken M J.Thermoluminescence dating[M].London:Academic Press, 1985.

    [31]

    Prescott J R, Hutton J T.Cosmic ray contributions to dose rates for luminescence and ESR dating:Large depths and long-term time variations[J].Radiation Measurements, 1994, 23:497-500. doi: 10.1016/1350-4487(94)90086-8

    [32]

    Aitken M J.An introduction to optical dating:The dating of quaternary sediments by the use of photon-stimulated luminescence[M].Oxford:Oxford University Press, 1998.

    [33]

    Aitken M J.Science-based dating in archaeology[M].London:Longman, 1990.

    [34]

    Duller G A T.Luminescence dating:Guidelines on using luminescence dating in archaeology[M].Swindon:English Heritage, 2008.

    [35]

    Adamiec G, Aitken M.Dose-rate conversion factors:Update[J].Ancient TL, 1998, 16(2):37-50. https://www.researchgate.net/publication/257948385_Dose_rate_conversion_factors

    [36]

    赖忠平, 欧先交.光释光测年基本流程[J].地理科学进展, 2013, 32(5):683-693. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlkxjz201305001

    Lai Z P, Ou X J.Basic procedures of optically stimulated luminescence (OSL) dating[J].Progress in Geography, 2013, 32(5):683-693. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlkxjz201305001

    [37]

    张克旗, 吴中海, 吕同艳, 等.光释光测年法——综述及进展[J].地质通报, 2015, 34(1):183-203. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201501015

    Zhang K Q, Wu Z H, Lü T Y, et al.Review and progress of OSL dating[J].Geological Bulletin of China, 2015, 34(1):183-203. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201501015

    [38]

    Li S H.Optical dating:Insufficiently bleached sediments[J].Radiation Measurements, 1994, 23:563-567. doi: 10.1016/1350-4487(94)90100-7

    [39]

    Rhodes E J, Pownall L.Zeroing of the OSL signal in quartz from young glaciofluvial sediments[J].Radiation Measurements, 1994, 23:581-585. doi: 10.1016/1350-4487(94)90103-1

    [40]

    Olley J M, Caitcheon G G, Roberts R G.The origin of dose distributions in fluvial sediments, and the prospect of dating single grains from fluvial deposits using optically stimulated luminescence[J].Radiation Measurements, 1999, 30:207-217. doi: 10.1016/S1350-4487(99)00040-2

    [41]

    Bøtter-Jensen L, Bulur E, Duller G A T, et al.Advances in luminescence instrument systems[J].Radiation Measurements, 2000, 32:523-528. doi: 10.1016/S1350-4487(00)00039-1

    [42]

    Thomsen K J, Bhtter-Jensen L, Murray A S, et al.Retrospective dosimetry using unheated quartz:A feasibility study[J].Radiation Protection Dosimetry, 2002, 101(1-4):345-348. https://www.ncbi.nlm.nih.gov/pubmed/12382764

    [43]

    Jain M, BHtter-Jensen L, Murray A S, et al. Retrospective dosimetry:Dose evaluation using unheated and heated quartz from a radioactive waste storage building[J].Radiation Protection Dosimetry, 2002, 101(1-4):525-530. https://www.researchgate.net/publication/11077705_Retrospective_Dosimetry_Dose_Evaluation_using_Unheated_and_Heated_Quartz_from_a_Radioactive_Waste_Storage_Building

    [44]

    Sohbati R, Murray A, Lindvold L, et al.Optimization of laboratory illumination in optical dating[J].Quaternary Geochronology, 2017, 39:105-111. doi: 10.1016/j.quageo.2017.02.010

    [45]

    Wintle A G.Luminescence dating:Laboratory procedures and protocols[J].Radiation Measurements, 1997, 27:769-817. doi: 10.1016/S1350-4487(97)00220-5

    [46]

    Bøtter-Jensen L, Andersen C E, Duller G A T, et al.Developments in radiation, stimulation and observation facilities in luminescence measurements[J].Radiation Measurements, 2003, 37:535-541. doi: 10.1016/S1350-4487(03)00020-9

    [47]

    Wintle A G, Murray A S.The relationship between quartz thermoluminescence, phototransferred luminescence, and optically stimulated luminescence[J].Radiation Measurements, 1997, 27(4):611-624. doi: 10.1016/S1350-4487(97)00018-8

    [48]

    Murray A S, Roberts R G.Measurement of the equi-valent dose in quartz using a regenerative-dose single-aliquot protocol[J].Radiation Measurements, 1998, 29:503-515. doi: 10.1016/S1350-4487(98)00044-4

    [49]

    Murray A S, Wintle A G.The single aliquot regenerative dose protocol:Potential for improvements in reliability[J].Radiation Measurements, 2003, 37:377-381. doi: 10.1016/S1350-4487(03)00053-2

    [50]

    Wintle A G, Murray A S.A review of quartz optically stimulated luminescence characteristics and their relevance in single-aliquot regeneration dating protocols[J].Radiation Measurements, 2006, 41:369-391. doi: 10.1016/j.radmeas.2005.11.001

    [51]

    Visocekas R.Tunneling radiative recombination in labradorite:Its association with anomalous fading of thermoluminescence[J].Nuclear Tracks and Radiation Measurements, 1985, 10(4-6):521-529. doi: 10.1016/0735-245X(85)90053-5

    [52]

    Visocekas R, Spooner N A, Zink A, et al.Tunnel after glow, fading and infrared-emission in thermo-luminescence of feldspars[J].Radiation Measurements, 1994, 23(2-3):377-385. doi: 10.1016/1350-4487(94)90067-1

    [53]

    李国强, 赵晖, 文星, 等.钾长石矿物在全新世样品光释光测年中的应用与校正问题[J].第四纪研究, 2010, 30(1):54-61. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dsjyj201001005

    Li G Q, Zhao H, Wen X, et al.IRSL dating and correction for Holocene samples with K-feldspar[J].Quaternary Sciences, 2010, 30(1):54-61. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dsjyj201001005

    [54]

    Thomsen K J, Murray A S, Jain M, et al.Laboratory fading rates of various luminescence signals from feldspar-rich sediment extracts[J].Radiation Measurements, 2008, 43(9-10):1474-1486. doi: 10.1016/j.radmeas.2008.06.002

    [55]

    Buylaert J P, Murray A S, Thomsen K J, et al.Testing the potential of an elevated temperature IRSL signal from K-feldspar[J].Radiation Measurements, 2009, 44(5-6):560-565. doi: 10.1016/j.radmeas.2009.02.007

    [56]

    Thiel C, Buylaert J P, Murray A, et al.Luminescence dating of the stratzing loess profile (Austria)-Testing the potential of an elevated temperature post-IR IRSL protocol[J].Quaternary International, 2011, 234(1-2):23-31. doi: 10.1016/j.quaint.2010.05.018

    [57]

    Li B, Jacobs Z, Roberts R G, et al.Review and assess-ment of the potential of post-IR IRSL dating methods to circumvent the problem of anomalous fading in feldspar luminescence[J].Geochronometria, 2014, 41(3):178-201. doi: 10.2478/s13386-013-0160-3

    [58]

    Duller G A T.Distinguishing quartz and feldspar in single grain luminescence measurements[J].Radiation Measurements, 2003, 37:161-165. doi: 10.1016/S1350-4487(02)00170-1

    [59]

    Jacobs Z, Duller G A T, Wintle A G.Optical dating of dune sand from Blombos Cave, South Africa:Ⅱ-Single grain data[J].Journal of Human Evolution, 2003, 44:613-625. doi: 10.1016/S0047-2484(03)00049-6

    [60]

    Jacobs Z, Duller G A T, Wintle A G.Interpretation of single grain De distributions and calculation of De[J].Radiation Measurements, 2006, 41:264-277. doi: 10.1016/j.radmeas.2005.07.027

    [61]

    Durcan J A, Duller G A T.The fast ratio:A rapid measure for testing the dominance of the fast component in the initial OSL signal from quartz[J].Radiation Measurements, 2011, 46:1065-1072. doi: 10.1016/j.radmeas.2011.07.016

    [62]

    Li B, Li S H.Comparison of De estimates using the fast component and the medium component of quartz OSL[J].Radiation Measurements, 2006, 41:125-136. doi: 10.1016/j.radmeas.2005.06.037

    [63]

    Ballarini M, Wallinga J, Wintle A G, et al.A modified SAR protocol for optical dating of individual grains from young quartz samples[J].Radiation Measurements, 2007, 42:360-369. doi: 10.1016/j.radmeas.2006.12.016

    [64]

    Cunningham A C, Wallinga J.Selection of integration time-intervals for quartz OSL decay curves[J].Quaternary Geochronology, 2010, 5:657-666. doi: 10.1016/j.quageo.2010.08.004

    [65]

    Madsen A T, Duller G A T, Donnelly J P, et al.A chronology of hurricane landfalls at Little Sippewissett Marsh, Massachusetts, USA, using optical dating[J].Geomorphology, 2009, 109:36-45. doi: 10.1016/j.geomorph.2008.08.023

    [66]

    Truscott A J, Duller G A T, Bøtter-Jensen L, et al.Reproducibility of optically stimulated luminescence measurements from single grains of Al2O3:C and annealed quartz[J].Radiation Measurements, 2000, 32:447-451. doi: 10.1016/S1350-4487(00)00080-9

    [67]

    Li B.A note on estimating the error when subtracting background counts from weak OSL signals[J].Ancient TL, 2007, 25(1):9-14. https://www.aber.ac.uk/en/media/departmental/dges/ancienttl/pdf/vol25no1/li_atl25(1)_9-14.pdf

    [68]

    Duller G A T.Assessing the error on equivalent dose estimates derived from single aliquot regenerative dose measurements[J].Ancient TL, 2007, 25(1):15-24. https://www.aber.ac.uk/en/media/departmental/dges/ancienttl/pdf/vol25no1/duller_atl25(1)_15-24.pdf

    [69]

    Adamiec G, Heer A J, Bluszcz A.Statistics of count numbers from a photomultiplier tube and its implications for error estimation[J].Radiation Measurements, 2012, 47:746-751. doi: 10.1016/j.radmeas.2011.12.009

    [70]

    Galbraith R F.A further note on the variance of a background-corrected OSL count[J].Ancient TL, 2014, 32(1):1-4.

    [71]

    Li B, Jacobs Z, Roberts R G, et al.Variability in quartz OSL signals caused by measurement uncertainties:Problems and solutions[J].Quaternary Geochronology, 2017, 41:11-25. doi: 10.1016/j.quageo.2017.05.006

    [72]

    Galbraith R F, Roberts R G, Yoshida H.Error variation in OSL palaeodose estimates from single aliquots of quartz:A factorial experiment[J].Radiation Measurements, 2005, 39:289-307. doi: 10.1016/j.radmeas.2004.03.023

    [73]

    Lian O B, Roberts R G.Dating the Quaternary:Progress in luminescence dating of sediments[J].Quaternary Science Reviews, 2006, 25:2449-2468. doi: 10.1016/j.quascirev.2005.11.013

    [74]

    Galbraith R F.Graphical display of estimates having differing standard errors[J].Technometrics, 1988, 30:271-281. doi: 10.1080/00401706.1988.10488400

    [75]

    Galbraith R F.The radial plot:Graphical assessment of spread in ages[J].Nuclear Tracks and Radiation Measurements, 1990, 17:207-214. doi: 10.1016/1359-0189(90)90036-W

    [76]

    Galbraith R F, Roberts R G, Laslett G M, et al.Optical dating of single and multiple grains of quartz from Jinmium rock shelter, northern Australia:Part Ⅰ, experimental design and statistical models[J].Archaeometry, 1999, 41:339-364. doi: 10.1111/j.1475-4754.1999.tb00987.x

    [77]

    Jacobs Z, Duller G A T, Wintle A G, et al.Extending the chronology of deposits at Blombos Cave, South Africa, back to 140ka using optical dating of single and multiple grains of quartz[J].Journal of Human Evolution, 2006, 51:255-273. doi: 10.1016/j.jhevol.2006.03.007

    [78]

    Olley J M, Roberts R G, Yoshida H, et al.Single-grain optical dating of grave-infill associated with human burials at Lake Mungo, Australia[J].Quaternary Science Reviews, 2006, 25:2469-2474. doi: 10.1016/j.quascirev.2005.07.022

    [79]

    Galbraith R F.The trouble with "probability density" plots of fission track ages[J].Radiation Measurements, 1998, 29:125-131. doi: 10.1016/S1350-4487(97)00247-3

    [80]

    Galbraith R F, Roberts R G.Statistical aspects of equivalent dose and error calculation and display in OSL dating:An overview and some recommendations[J].Quaternary Geochronology, 2012, 11:1-27. doi: 10.1016/j.quageo.2012.04.020

    [81]

    Roberts R G, Walsh G, Murray A S, et al.Luminescence dating of rock art and past environments using mud-wasp nests in northern Australia[J].Nature, 1997, 387:696-699. doi: 10.1038/42690

    [82]

    Yoshida H, Roberts R G, Olley J M.Progress towards single-grain optical dating of fossil mud-wasp nests and associated rock art in northern Australia[J].Quaternary Science Reviews, 2003, 22:1273-1278. doi: 10.1016/S0277-3791(03)00076-3

    [83]

    Feathers J K, Holliday V T, Meltzer D J.Optically stimulated luminescence dating of southern high plains archaeological sites[J].Journal of Archaeological Science, 2006, 33:1651-1665. doi: 10.1016/j.jas.2006.02.013

    [84]

    Bateman M D, Boulter C H, Carr A S, et al.Detecting post-depositional sediment disturbance in sandy deposits using optical luminescence[J].Quaternary Geochronology, 2007, 2:57-64. doi: 10.1016/j.quageo.2006.05.004

    [85]

    Rittenour T M.Luminescence dating of fluvial deposits:Applications to geomorphic, palaeoseismic and archaeological research[J].Boreas, 2008, 37:613-635. doi: 10.1111/j.1502-3885.2008.00056.x

    [86]

    Jacobs Z, Roberts R G, Galbraith R F, et al.Ages for the Middle Stone Age of southern Africa:Implications for human behavior and dispersal[J].Science, 2008, 322:733-735. doi: 10.1126/science.1162219

    [87]

    Arnold L J, Roberts R G, Galbraith R F, et al.A revised burial dose estimation procedure for optical dating of young and modern-age sediments[J].Quaternary Geochronology, 2009, 4:306-325. doi: 10.1016/j.quageo.2009.02.017

    [88]

    Lombard M, Wadley L, Jacobs Z, et al.Still bay and serrated points from Umhlatuzana rock shelter, Kwazulu-Natal, South Africa[J].Journal of Archaeological Science, 2010, 37:1773-1784. doi: 10.1016/j.jas.2010.02.015

    [89]

    Anderson A, Roberts R, Dickinson W, et al.Times of sand:Sedimentary history and archaeology at the Sigatoka Dunes, Fiji[J].Geoarchaeology, 2006, 21:131-154. doi: 10.1002/gea.20094

    [90]

    Arnold L J, Roberts R G.Stochastic modelling of multi-grain equivalent dose (De) distributions:Implications for OSL dating of sediment mixtures[J].Quaternary Geochronology, 2009, 4:204-230. doi: 10.1016/j.quageo.2008.12.001

    [91]

    David B, Roberts R G, Magee J, et al.Sediment mixing at Nonda rock:Investigations of stratigraphic integrity at an early archaeological site in northern Australia, and implications for the human colonisation of the continent[J].Journal of Quaternary Science, 2007, 22:449-479. doi: 10.1002/jqs.1136

    [92]

    Jacobs Z, Wintle A G, Duller G A T, et al.New ages for the Post-Howiesons Poort, late and final Middle Stone Age at Sibudu, South Africa[J].Journal of Archaeological Science, 2008, 35:1790-1807. doi: 10.1016/j.jas.2007.11.028

    [93]

    Feathers J, Kipnis R, Piló L, et al.How old is Luzia? Luminescence dating and stratigraphic integrity at Lapa Vermelha, Lagoa Santa, Brazil[J].Geoarchaeology, 2010, 25:395-436. https://www.researchgate.net/publication/230231210_How_Old_Is_Luzia_Luminescence_Dating_and_Stratigraphic_Integrity_at_Lapa_Vermelha_Lagoa_Santa_Brazil

    [94]

    Armitage S J, Jasim S A, Marks A E, et al.The southern route "out of Africa":Evidence for an early expansion of modern humans into Arabia[J].Science, 2011, 331:453-456. doi: 10.1126/science.1199113

    [95]

    Roberts R G, Galbraith R F, Yoshida H, et al.Distinguishing dose populations in sediment mixtures:A test of single-grain optical dating procedures using mixtures of laboratory-dosed quartz[J].Radiation Measurements, 2000, 32:459-465. doi: 10.1016/S1350-4487(00)00104-9

    [96]

    Galbraith R F.Statistics for fission track analysis[M].Boca Raton:Chapman & Hall/CRC Press, 2005.

    [97]

    Roberts R G, Yoshida H, Galbraith R, et al.Single-aliquot and single-grain optical dating confirm thermoluminescence age estimates at Malakunanja Ⅱ rock shelter in northern Australia[J].Ancient TL, 1998, 16:19-24. https://www.researchgate.net/publication/260002910_Single-aliquot_and_single-grain_optical_dating_confirm_thermoluminescence_age_estimates_at_Malakunanja_II_rock_shelter_in_northern_Australia

    [98]

    Jacobs Z.Testing and demonstrating the stratigraphic integrity of artefacts from MSA deposits at Blombos Cave, South Africa[M]//d'Errico F, Backwell L.From tools to symbols.From early hominids to modern humans[M].Johannesburg: Wits University Press, 2005: 459-474.

    [99]

    Rodnight H.How many equivalent dose values are needed to obtain a reproducible distribution?[J].Ancient TL, 2008, 26:3-9. https://www.ecu.edu/cs-cas/physics/ancient-timeline/upload/ATL26-1_Rodnight.pdf

  • 加载中

(2)

计量
  • 文章访问数:  2321
  • PDF下载数:  63
  • 施引文献:  0
出版历程
收稿日期:  2020-02-03
修回日期:  2020-03-08
录用日期:  2020-04-16

目录