中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

电感耦合等离子体串联质谱法分析凹凸棒黏土中的微量元素

李坦平, 李爱阳. 电感耦合等离子体串联质谱法分析凹凸棒黏土中的微量元素[J]. 岩矿测试, 2021, 40(2): 196-205. doi: 10.15898/j.cnki.11-2131/td.202004090043
引用本文: 李坦平, 李爱阳. 电感耦合等离子体串联质谱法分析凹凸棒黏土中的微量元素[J]. 岩矿测试, 2021, 40(2): 196-205. doi: 10.15898/j.cnki.11-2131/td.202004090043
LI Tan-ping, LI Ai-yang. Determination of Trace Elements in Attapulgite Clay by Inductively Coupled Plasma-Tandem Mass Spectrometry[J]. Rock and Mineral Analysis, 2021, 40(2): 196-205. doi: 10.15898/j.cnki.11-2131/td.202004090043
Citation: LI Tan-ping, LI Ai-yang. Determination of Trace Elements in Attapulgite Clay by Inductively Coupled Plasma-Tandem Mass Spectrometry[J]. Rock and Mineral Analysis, 2021, 40(2): 196-205. doi: 10.15898/j.cnki.11-2131/td.202004090043

电感耦合等离子体串联质谱法分析凹凸棒黏土中的微量元素

  • 基金项目:
    国家自然科学基金项目(81603400);湖南省自然科学基金项目(2019JJ60026);湖南省教育厅重点项目(18A428);湖南省应用特色学科材料科学与工程学科资助项目(湘教通[2018]469号);湖南省工程研究中心资助项目(湘发改委高技[2019]853号)
详细信息
    作者简介: 李坦平, 教授, 主要从事固体工业废弃物建材资源化利用研究。E-mail: hwl0466@163.com
  • 中图分类号: O657.63

Determination of Trace Elements in Attapulgite Clay by Inductively Coupled Plasma-Tandem Mass Spectrometry

  • 凹凸棒黏土是具有层链状结构的含水富镁铝硅酸盐矿物,矿床成因不同导致凹凸棒黏土中微量元素的组成存在差异,其中Be、Cr、Ni、As、Cd、Sb、Hg、Pb会对健康和环境产生不利影响,而V、Mn、Co、Cu、Zn、Mo、Sn、Ba作为凹凸棒黏土的重要微量元素影响其性能和应用范围,因此,对凹凸棒黏土中微量元素进行精准分析可为凹凸棒黏土的高效增值深加工提供理论依据。采用电感耦合等离子体质谱法(ICP-MS)测定岩矿中微量元素具有检出限低和灵敏度高的特点,但因存在复杂质谱干扰,即使采用碰撞反应池(CRC)技术也很难完全消除。本文应用电感耦合等离子体串联质谱法(ICP-MS/MS)来消除质谱干扰,建立了准确测定凹凸棒黏土中微量元素Be、V、Cr、Mn、Co、Ni、Cu、Zn、As、Mo、Cd、Sn、Sb、Ba、Hg、Pb含量的分析方法。实验中采用由硝酸、盐酸、氢氟酸组成的混合酸对凹凸棒黏土样品进行微波消解,不仅加快了样品的消解速度,而且保持了消解溶液中分析元素的稳定。针对分析过程中所面临的质谱干扰,在MS/MS模式下,通过向CRC内加入O2和NH3/He为反应气,利用质量转移反应生成相应的氧化物离子和团簇离子消除干扰,选择质量数相近且质谱行为相似的内标元素校正基体效应,稳定了分析信号。应用本方法对国家标准参考物质玄武岩(GBW07105)中16种微量元素进行测定,分析元素的相对误差在-9.60%~8.21%之间,相对标准偏差(RSD)≤6.0%。在选定的分析条件下,各元素的检出限为0.13~51.6ng/L。本方法有效减少了质谱干扰,提高了某些特定同位素在复杂介质中的准确性和灵敏度,适合凹凸棒黏土中16种微量元素的快速测定。

  • 加载中
  • 图 1  不同反应模式下消除质谱干扰的工作原理

    Figure 1. 

    图 2  样品溶液中16种分析元素2h的稳定性情况

    Figure 2. 

    图 3  不同反应气流速下分析元素的加标回收率

    Figure 3. 

    表 1  不同消解酸对分析元素的提取率

    Table 1.  Extraction rate of analytes by different digestion acids

    元素 分析元素的提取率(%) 元素 分析元素的提取率(%)
    硝酸 硝酸-氢氟酸 硝酸-盐酸-氢氟酸 硝酸 硝酸-氢氟酸 硝酸-盐酸-氢氟酸
    Be 55.3 97.2 98.6 As 48.4 101.0 98.1
    V 68.3 101.0 97.5 Mo 73.5 97.4 102.0
    Cr 76.5 96.9 101.0 Cd 81.2 96.6 98.2
    Mn 90.3 101.0 102.0 Sn 89.7 98.1 97.0
    Co 71.8 98.5 99.3 Sb 63.0 102.0 101.0
    Ni 75.8 96.6 101.0 Ba 80.3 97.7 98.3
    Cu 57.6 100.0 102.0 Hg 72.8 83.6 98.0
    Zn 74.0 97.5 98.4 Pb 40.6 103.0 97.5
    下载: 导出CSV

    表 2  在MS/MS模式下分析元素的背景等效浓度

    Table 2.  Background equivalent concentrations (BECs) of analytes in the MS/MS mode

    同位素 主要干扰 O2反应模式 NH3/He反应模式
    产物离子 产率(%) BEC(ng/L) 产物离子 产率(%) BEC(ng/L)
    51V 35Cl16O, 36Ar15N, 36Ar14NH, 37Cl14N 51V16O+ 63.3 3.70 51V+ 53.2 0.34
    52Cr 40Ar12C, 35Cl16OH, 36Ar16O, 38Ar14N 52Cr16O+ 17.5 20.2 52Cr(14NH3)2+ 0.63 19.7
    55Mn 40Ar14NH, 40Ar15N, 36Ar19F, 23Na16O2 55Mn16O+ 16.0 9.15 55Mn(14NH3)+ 0.34 26.4
    59Co 24Mg35Cl, 40Ar19F, 40Ca19F, 40Ar18OH 59Co16O+ 23.0 2.88 59Co(14NH3)2+ 5.02 3.52
    60Ni 23Na36ArH, 23Na37Cl, 44Ca16O, 59CoH 60Ni16O+ 13.0 7.12 60Ni(14NH3)3+ 3.91 3.84
    63Cu 28Si35Cl, 23Na40Ar, 12C16O35Cl 63Cu16O+ 0.85 46.1 63Cu(14NH3)2+ 5.38 40.9
    66Zn 29Si37Cl, 34S16O2, 48Ca18O, 40Ar26Mg 66Zn16O+ 2.68 155 66Zn(14NH3)+ 2.05 82.0
    75As 40Ar35Cl, 36Ar39K, 36Ar38ArH, 59Co16O 75As16O+ 56.7 8.63 75As(14NH3)+ 15.1 41.5
    下载: 导出CSV

    表 3  分析元素的线性范围、检出限与定量限

    Table 3.  Linearity, limits of detection (LODs), and limits of quantification (LOQs) for analytes

    元素 线性范围(μg/L) 相关系数(R) LOD (ng/L) LOQ (ng/L) 元素 线性范围(μg/L) 相关系数(R) LOD (ng/L) LOQ (ng/L)
    Be 0.002~50 0.9999 0.71 2.38 As 0.006~5.0 1.0000 1.90 6.34
    V 0.001~500 1.0000 0.13 0.43 Mo 0.015~50 1.0000 4.22 14.1
    Cr 0.010~500 0.9998 2.86 9.52 Cd 0.003~5.0 0.9998 0.94 3.12
    Mn 0.011~500 1.0000 3.25 10.8 Sn 0.022~50 1.0000 6.75 22.5
    Co 0.001~500 0.9999 0.44 1.46 Sb 0.020~5.0 0.9999 6.10 23.3
    Ni 0.017~500 0.9999 4.95 16.5 Ba 0.017~500 0.9997 5.21 17.4
    Cu 0.022~500 0.9997 6.32 21.1 Hg 0.004~5.0 1.0000 1.33 4.43
    Zn 0.17~500 0.9998 51.6 172 Pb 0.006~50 0.9999 1.84 6.12
    下载: 导出CSV

    表 4  玄武岩国家标准参考物质(GBW07105)的分析结果(n=6)

    Table 4.  Analysis results of basalt national standard reference material (GBW07105)

    元素 认定值(μg/g) 测定值(μg/g) 相对误差(%) RSD (%) 元素 认定值(μg/g) 测定值(μg/g) 相对误差(%) RSD (%)
    Be 2.50±0.40 2.26±0.10 -9.60 4.42 As 9.10±1.20 8.73±0.49 -4.07 5.61
    V 167±11.0 174±6.44 4.19 3.70 Mo 2.60±0.20 2.53±0.15 -2.69 5.93
    Cr 134±11.0 139±3.78 3.73 2.72 Cd 67.0±16.0* 72.5±3.01* 8.21 4.15
    Mn 1310±61.0 1330±51.0 1.53 3.83 Sn 2.00±0.40 1.97±0.11 -1.50 5.58
    Co 46.5±3.40 47.2±2.30 1.51 4.87 Sb 80.0* 82.3±4.70* 2.88 5.71
    Ni 140±7.00 143±5.92 2.14 3.70 Ba 527±26.0 538±19.6 2.09 3.64
    Cu 49.0±3.00 51.6±2.83 5.31 5.48 Hg 6.00±2.00* 5.51±0.28* -8.17 5.08
    Zn 150±10.0 158±5.07 5.33 3.21 Pb 7.00 7.23±0.34 3.29 4.70
    注:标注“*”的元素含量单位为ng/g。
    下载: 导出CSV

    表 5  凹凸棒黏土样品的分析结果(n=6)

    Table 5.  Analysis results of attapulgite samples (n=6)

    元素 样品1 样品2
    本方法(μg/g) 标准加入法(μg/g) t检验 本方法(μg/g) 标准加入法(μg/g) t检验
    Be 1.85±0.08 1.79±0.10 p=0.14 3.21±0.14 3.15±0.20 p=0.28
    V 13.6±0.57 13.8±0.43 p=0.25 28.2±1.06 29.1±1.11 p=0.09
    Cr 31.9±1.55 32.5±1.26 p=0.24 25.6±0.78 26.2±0.84 p=0.11
    Mn 72.3±2.80 71.1±2.49 p=0.23 5.79±0.21 6.02±0.43 p=0.13
    Co 3.84±0.16 3.90±0.21 p=0.29 2.02±0.11 1.97±0.15 p=0.26
    Ni 28.6±1.14 27.7±1.30 p=0.12 37.0±1.27 35.4±1.39 p=0.03
    Cu 10.5±0.30 10.7± 0.14 p=0.08 9.56±0.39 9.71±0.45 p=0.28
    Zn 34.4±1.25 35.0±1.23 p=0.21 46.3±1.80 44.8±2.03 p=0.10
    As 24.9±1.10* 25.3±1.37* p=0.29 18.3±0.76* 17.6±0.80* p=0.08
    Mo 4.78±0.12 4.85±0.10 p=0.15 2.05±0.09 2.12±0.13 p=0.15
    Cd 18.3±0.66* 18.0±0.72* p=0.23 31.9±1.15* 33.0±1.28* p=0.07
    Sn 2.45±0.13 2.52±0.16 p=0.21 1.74±0.08 1.80±0.09 p=0.13
    Sb 62.1±2.09* 61.0±1.85* p=0.18 91.0±3.32* 93.1±4.05* p=0.17
    Ba 20.8±0.73 21.2±0.53 p=0.15 16.7±0.50 17.2±0.58 p=0.07
    Hg 4.56±0.15* 4.60±0.18* p=0.34 7.88±0.31* 7.64±0.40* p=0.14
    Pb 2.27±0.10 2.33±0.12 p=0.18 3.06±0.12 3.16±0.15 p=0.11
    注:标注“*”的元素含量单位为ng/g。
    下载: 导出CSV
  • [1]

    周苏闽, 冯良东, 王莉. 化学沉积法制备凹凸棒土/银核壳结构棒状银粉[J]. 非金属矿, 2011, 34(4): 15-18. doi: 10.3969/j.issn.1000-8098.2011.04.005

    Zhou S M, Feng L D, Wang L. Preparation of attapulgite/Ag core-shell structure rod-like silver powder by electroless deposition[J]. Non-Metallic Mines, 2011, 34(4): 15-18. doi: 10.3969/j.issn.1000-8098.2011.04.005

    [2]

    杨敏, 王丽娟, 宋岩. 凹凸棒石吸附重金属的研究进展[J]. 硅酸盐通报, 2019, 38(11): 3445-3464. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201911011.htm

    Yang M, Wang L J, Song Y. Research progress on heavy metals adsorption by attapulgite[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(11): 3445-3464. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201911011.htm

    [3]

    周灵群. 凹凸棒石油脂脱色行为及其机理[J]. 食品科学, 2019, 40(3): 89-93. https://www.cnki.com.cn/Article/CJFDTOTAL-SPKX201903014.htm

    Zhou L Q. Adsorption behavior and mechanism of attapulgite when used in oil bleaching[J]. Food Science, 2019, 40(3): 89-93. https://www.cnki.com.cn/Article/CJFDTOTAL-SPKX201903014.htm

    [4]

    Junior E D, de Almeida J M F, do Nascimento Silva I, et al. pH-responsive release system of isoniazid using palygorskite as a nanocarrier[J]. Journal Drug Delivery Science and Technology, 2020, 55: 101399. doi: 10.1016/j.jddst.2019.101399

    [5]

    白国梁, 陶海兵, 蔡思敏, 等. 凹凸棒石(PG)负载V2O5催化剂脱除气态Hg0的研究[J]. 环境科学学报, 2019, 39(7): 2369-2376. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201907032.htm

    Bai G L, Tao H B, Cai S M, et al. Removal of vapor-phase Hg0 over a V2O5/PG catalyst[J]. Acta Scientiae Circumstantiae, 2019, 39(7): 2369-2376. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201907032.htm

    [6]

    Aguzzi C, Cerezo P, Viseras C, et al.Use of clays as drug delivery systems: Possibilities and limitations[J].2007, 36: 22-36.

    [7]

    Ding C, Xiao S, Lin Y, et al. Attapulgite-supported nano-Fe0/peroxymonsulfate for quinclorac removal: Performance, mechanism and degradation pathway[J]. Chemical Engineering Journal, 2019, 360: 104-114. doi: 10.1016/j.cej.2018.11.189

    [8]

    Haden W L. Attapulgite: properties and uses[J]. Clays and Clay Minerals, 1961, 10: 284-290. doi: 10.1346/CCMN.1961.0100123

    [9]

    陈明岩, 程大明, 李玲, 等. 食品添加剂凹凸棒黏土的测定与表征[J]. 化学试剂, 2011, 33(3): 236-238. doi: 10.3969/j.issn.0258-3283.2011.03.012

    Chen M Y, Cheng D M, Li L, et al. Determination and characterization of food additive attapulgite clay[J]. Chemical Reagents, 2011, 33(3): 236-238. doi: 10.3969/j.issn.0258-3283.2011.03.012

    [10]

    Yang H, Tang A, Ouyang J, et al. From natural atta-pulgite to mesoporous materials: Methodology, characterization and structural evolution[J]. Journal of Physics Chemistry B, 2010, 114(7): 2390-2398. doi: 10.1021/jp911516b

    [11]

    凌霞, 吴洁, 孟元华. 电感耦合等离子体发射光谱法测定凹凸棒黏土中的多种金属元素[J]. 化学试剂, 2012, 34(6): 529-531. doi: 10.3969/j.issn.0258-3283.2012.06.013

    Lin X, Wu J, Meng Y H. Determination of multi-metal in attapulgite by ICP-AES[J]. Chemical Reagents, 2012, 34(6): 529-531. doi: 10.3969/j.issn.0258-3283.2012.06.013

    [12]

    董学林, 何海洋, 储溱, 等. 碱熔沉淀分离-电感耦合等离子体质谱法测定伴生重晶石稀土矿中的稀土元素[J]. 岩矿测试, 2019, 38(6): 620-630. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201901090004

    Dong X L, He H Y, Chu Q, et al. Determination of rare earth elements in barite-associated rare earth ores by alkaline precipitation separation-inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2019, 38(6): 620-630. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201901090004

    [13]

    Liu T, He T, Shi Q, et al. Rapid Determination of boron in 61 soil, sediment, and rock reference materials by ICP-MS[J]. Atomic Spectroscopy, 2019, 40(2): 55-62. doi: 10.46770/AS.2019.02.004

    [14]

    阳国运, 唐裴颖, 张洁, 等. 电感耦合等离子体质谱法测定地球化学样品中的硼碘锡锗[J]. 岩矿测试, 2019, 38(2): 154-159. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201805070055

    Yang G Y, Tang P Y, Zhang J, et al. Determination of boron, iodine, tin and germanium in geochemical samples by inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2019, 38(2): 154-159. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201805070055

    [15]

    Zhang L Y, Fang M, Sun H L, et al. Analysis of iodine isotopes in travertine from baishuitai, Yunnan Province, China[J]. Atomic Spectroscopy, 2020, 41(5): 181-187. http://www.researchgate.net/publication/344453804_Analysis_of_Iodine_Isotopes_in_Travertine_from_Baishuitai_Yunnan_Province_China/download

    [16]

    徐进力, 邢夏, 唐瑞玲, 等. 动能歧视模式ICP-MS测定地球化学样品中14种痕量元素[J]. 岩矿测试, 2019, 38(4): 394-402. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201812070131

    Xu J L, Xing X, Tang R L, et al. Determination of 14 trace elements in geochemical samples by ICP-MS using kinetic energy discrimination mode[J]. Rock and Mineral Analysis, 2019, 38(4): 394-402. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201812070131

    [17]

    Doker S. Exploiting aerosol dilution for the determination of ultra-trace elements in honey by collision/reaction cell inductively coupled plasma mass spectrometry (CRC-ICP-MS) without thermal digestion[J]. Analytical Methods, 2017, 9: 1710-1717. doi: 10.1039/C6AY03140D

    [18]

    Fernandez S D, Encinar J R, Sanz-Medel A, et al. Determination of low B/Ca ratios in carbonates using ICP-QQQ[J]. Geochemistry, Geophysics, Geosystems, 2015, 16(6): 2005-2014. doi: 10.1002/2015GC005817

    [19]

    Machado R C, Amaral C D B, Schiavo D, et al. Complex samples and spectral interferences in ICP-MS: Evaluation of tandem mass spectrometry for interference-free determination of cadmium, tin and platinum group elements[J]. Microchemical Journal, 2017, 130: 271-275. doi: 10.1016/j.microc.2016.09.011

    [20]

    陈文, 樊小伟, 郭才女, 等. 电感耦合等离子体串联质谱法测定高纯稀土中铁的含量[J]. 分析化学, 2019, 47(3): 403-409. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201903011.htm

    Chen W, Fan X W, Guo C N, et al. Determination of iron content in high purity rare earth by inductively coupled plasma-tandem mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2019, 47(3): 403-409. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201903011.htm

    [21]

    Perez-Alvarez E P, Garcia R, Barrulas P, et al. Classification of wines according to several factors by ICP-MS multi-element analysis[J]. Food Chemistry, 2019, 270: 273-280. doi: 10.1016/j.foodchem.2018.07.087

    [22]

    Petrov P, Russell B, Douglas D N, et al. Interference-free determination of sub ng kg-1 levels of long-lived 93Zr in the presence of high concentrations (μg kg-1) of 93Mo and 93Nb using ICP-MS/MS[J]. Analytical and Bioanalytical Chemistry, 2017, 410(3): 1029-1037. http://www.ncbi.nlm.nih.gov/pubmed/29030672

    [23]

    Xing S, Zhang W, Qiao J, et al. Determination of ultra-low level plutonium isotopes (239Pu, 240Pu) in environmental samples with high uranium[J]. Talanta, 2018, 189: 357-364. http://www.sciencedirect.com/science/article/pii/S0039914018305447

    [24]

    El-Eswed B I, Aldagag O M, Khalili F I, et al. Efficiency and mechanism of stabilization/solidification of Pb(Ⅱ), Cd(Ⅱ), Cu(Ⅱ), Th(Ⅳ) and U(Ⅵ) in metakaolin based geopolymers[J]. Applied Clay Science, 2017, 140: 148-156. doi: 10.1016/j.clay.2017.02.003

    [25]

    符靓, 施树云, 陈晓青. 电感耦合等离子体串联质谱法测定活性白土中痕量毒理性元素[J]. 分析化学, 2018, 46(8): 1253-1260. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201808017.htm

    Fu L, Shi S Y, Chen X Q. Accurate determination of trace toxic elements in activated clay using inductively coupled plasma tandem mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2018, 46(8): 1253-1260. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201808017.htm

    [26]

    Kopp J F, Müller S M, Pohl G, et al. A quick and simple method for the determination of six trace elements in mammalian serum samples using ICP-MS/MS[J]. Journal of Trace Elements in Medicine and Biology, 2019, 54: 221-225. doi: 10.1016/j.jtemb.2019.04.015

    [27]

    王丙涛, 赵旭, 涂小珂, 等. ICP-MS/MS检测食品中磷、硒、砷的含量[J]. 现代食品科技, 2017, 33(7): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-GZSP201707041.htm

    Wang B T, Zhao X, Tu X K, et al. The determination of P, As and Se in food by triple quadrupole inductively coupled plasma mass spectrometry[J]. Modern Food Science and Technology, 2017, 33(7): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-GZSP201707041.htm

    [28]

    Fu L, Xie H, Huang J, et al. Rapid determination of trace elements in serum of hepatocellular carcinoma patients by inductively coupled plasma tandem mass spectrometry[J]. Analytica Chimica Acta, 2020, 1112: 1-7. doi: 10.1016/j.aca.2020.03.054

    [29]

    Balcaen L, Bolea-Fernandez E, Resano M, et al. Inductively coupled plasma-tandem mass spectrometry (ICP-MS/MS): A powerful and universal tool for the interference-free determination of (ultra) trace elements-A tutorial review[J]. Analytica Chimica Acta, 2015, 894: 7-19. doi: 10.1016/j.aca.2015.08.053

    [30]

    Amaral C D B, Amais R S, Fialho L L, et al. A novel strategy to determine As, Cr, Hg and V in drinking water by ICP-MS/MS[J]. Analytical Methods, 2015, 7: 1215-1220. doi: 10.1039/C4AY02811B

    [31]

    Walkner C, Gratzer R, Meisel T, et al. Multi-element analysis of crude oils using ICP-QQQ-MS[J]. Organic Geochemistry, 2017, 103: 22-30. doi: 10.1016/j.orggeochem.2016.10.009

    [32]

    Amaral C D B, Machado R C, Virgilio A, et al. Critical evaluation of internal standardization in ICP tandem mass spectrometry and feasibility of the oxygen reaction for boron determination in plants[J]. Journal of Analytical Atomic Spectrometry, 2016, 31(6): 1179-1184. http://smartsearch.nstl.gov.cn/paper_detail.html?id=8d8ef648fc041185bcc1b3830a8cc7a1

    [33]

    Fu L, Xie H, Shi S. Multielement analysis of Zanthoxylum bungeanum Maxim. essential oil using ICP-MS/MS[J]. Analytical and Bioanalytical Chemistry, 2018, 410: 3769-3778. http://www.ncbi.nlm.nih.gov/pubmed/29651525

    [34]

    Sesi N N, Hieftje G M. Studies into the interelement matrix effect in inductively coupled plasma spectrometry[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 1996, 51(13): 1601-1628. http://www.sciencedirect.com/science/article/pii/S0584854796015601

    [35]

    张杨赞. 高盐样品基体效应的研究及SPE-ICP-MS分析方法的建立[D]. 天津: 天津大学, 2019: 23-35.

    Zhang Y Z.The research on matrix effect of high salt samples and the establishment of analysis method using solid phase extraction-inductively coupled plasma mass spectrometry[D].Tianjin: Tianjin University, 2019: 23-35.

    [36]

    Virgilio A, Amais R S, Amaral C D B, et al. Reactivity and analytical performance of oxygen as cell gas in inductively coupled plasma tandem mass spectrometry[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2016, 126: 31-36. http://smartsearch.nstl.gov.cn/paper_detail.html?id=7b3078b4c3446359e5f8685d20bee6f1

    [37]

    江波, 黄建华. 应用ICP-MS/MS准确测定紫苏好油中的重金属元素[J]. 中国粮油快报, 2019, 34(1): 125-130. https://www.cnki.com.cn/Article/CJFDTOTAL-ZLYX201901023.htm

    Jiang B, Huang J H. Accurately determination the heavy metal elements in perilla seed oil applying ICP-MS/MS[J]. Journal of the Chinese Cereals and Oil Association, 2019, 34(1): 125-130. https://www.cnki.com.cn/Article/CJFDTOTAL-ZLYX201901023.htm

    [38]

    刘元元, 胡静宇. 电感耦合等离子体串联质谱法测定高纯钼中痕量镉[J]. 冶金分析, 2018, 38(5): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201805001.htm

    Liu Y Y, Hu J Y. Determination of trace cadmium in high-purity molybdenum by inductively coupled plasma tandem mass spectrometry[J]. Metallurgical Analysis, 2018, 38(5): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201805001.htm

    [39]

    Balcaen L, Bolea-Fernandez E, Resano M, et al. Accurate determination of ultra-trace levels of Ti in blood serum using ICP-MS/MS[J]. Analytica Chimica Acta, 2014, 809: 1-8. http://www.sciencedirect.com/science/article/pii/S0003267013013251

  • 加载中

(3)

(5)

计量
  • 文章访问数:  1282
  • PDF下载数:  66
  • 施引文献:  0
出版历程
收稿日期:  2020-04-09
修回日期:  2020-07-30
录用日期:  2021-01-12
刊出日期:  2021-03-28

目录