The Infrared Spectroscopy Characteristics of Alteration and Mineralizationin the Porphyry Copper Deposit in Pulang, Yunnan Province
-
摘要:
近年来红外光谱技术作为一种绿色、快速、无损、精确探测矿物的技术手段而倍受关注,针对斑岩型矿床蚀变矿物高度叠加、蚀变分带界线不明显、细粒蚀变矿物多、黏土蚀变矿物多等特征,该技术在蚀变矿物识别和勘探信息解读等方面优势突出。本文应用红外光谱技术对云南普朗斑岩铜矿区钻孔ZK1801岩心进行矿物识别和蚀变分带划分的研究,识别出钾硅酸盐化带、绿帘石-绿泥石化带、绿泥石-伊利石化带、石英-伊利石化带和泥化带。研究表明:普朗铜矿整个钻孔的蚀变矿物主要有石英、钾长石、绢云母、绿泥石、绿帘石、高岭石、蒙脱石、伊利石等;根据矿化特征,发现铜矿体广泛赋存在钾硅酸盐化带和绿帘石-绿泥石化带中,与矿化关系密切的蚀变矿物“石英+钾长石+绢云母”和“绿帘石+绿泥石”,可以作为普朗矿床勘查的标型蚀变矿物组合;研究区广泛发育的绢云母Al—OH波长随钻孔深度增加而逐渐从2210~2205nm减小到2202~2198nm,Al—OH波长2210~2205nm(长波绢云母)与矿化关系密切,可以作为普朗矿床勘查的指示信息。
Abstract:BACKGROUND Infrared spectroscopy technology, as a green, fast, non-destructive and accurate mineral detection technology, has drawn widespread attention of geologists all over the world in recent years. In view of the high superposition of altered minerals in porphyry deposits, the inconspicuous alteration zone boundaries, many fine-grain altered minerals, and clay altered minerals, this technology has outstanding advantages in the identification of altered minerals and interpretation of exploration information.
OBJECTIVES To analyze the characteristics of alteration and mineralization of the porphyry copper deposit in Pulang, Yunnan Province, and to provide the basis theory for porphyry copper deposits (especially in the Pulang deposit) exploration.
METHODS The core samples in the drill ZK1801 were detected using HyLogger-3 through infrared spectroscopy technology, and the spectral data was processed and analyzed by TSG 8.0.
RESULTS K-silicate alteration, epidote-chlorite alteration, chlorite-illite alteration, quartz-illite alteration and clay alteration were identified in the Pulang porphyry copper deposit. The main altered minerals included quartz, potassium feldspar, sericite, chlorite, epidote, kaolinite, smectite and illite. According to the characteristics of mineralization, it was found that copper ore bodies were widely present in the potassium silicate zone and epidote-chlorite zone.
CONCLUSIONS Quartz+potash, feldspar+sericite and epdote+chlorite can be typical altered mineral assemblages for exploration of the Pulang porphyry copper deposit. The Al-OH wavelength from 2210nm to 2205nm of sericite (long-wave sericite) is closely related to mineralization, which can be used as an indicator for prospecting in the Pulang deposit.
-
[1] Richards J P. Tectono-magmatic precursors for porphyry Cu-(Mo-Au) deposit formation[J]. Economic Geology, 2003, 98: 1515-1533. doi: 10.2113/gsecongeo.98.8.1515
[2] Sillitoe R H. Porphyry-copper systems[J]. Economic Geology, 2010, 105: 3-41. doi: 10.2113/gsecongeo.105.1.3
[3] 刘新星, 张弘, 张娟, 等. 基于红外光谱技术研究内蒙古乌奴格吐山斑岩铜钼矿蚀变和矿化特征[J]. 岩矿测试, 2021, 40(1): 121-133. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.202005060010
Liu X X, Zhang H, Zhang J, et al. A study on alteration mineral assemblages and mineralization characteristics of a Wunugetushan porphyry copper-molybdenum deposit in Inner Mongolia, China, based on infrared spectroscopy[J]. Rock and Mineral Analysis, 2021, 40(1): 121-133. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.202005060010
[4] 杨志明, 侯增谦, 杨竹森, 等. 短波红外光谱技术在浅剥蚀斑岩铜矿区勘查中的应用——以西藏念村矿区为例[J]. 矿床地质, 2012, 31(4): 699-717. doi: 10.3969/j.issn.0258-7106.2012.04.004
Yang Z M, Hou Z Q, Yang Z S, et al. Application of short wavelength infrared (SWIR) technique in exploration of poorly eroded porphyry Cu district: A case study of Niancun ore district, Tibet[J]. Mineral Deposits, 2012, 31(4): 699-717. doi: 10.3969/j.issn.0258-7106.2012.04.004
[5] 田丰, 冷成彪, 张兴春, 等. 短波红外光谱技术在西藏尼木地区岗讲斑岩铜-钼矿床中的应用[J]. 地球科学, 2019, 44(6): 2143-2154. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201906028.htm
Tian F, Leng C B, Zhang X C, et al. Application of short wavelength infrared technique in exploration of mineral deposit: A review[J]. Earth Science, 2019, 44(6): 2143-2154. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201906028.htm
[6] Clark R N, Swayze G A, Livo K E, et al. Imaging spectroscopy: Earth and planetary remote sensing with the USGS tetracorder and expert systems[J]. Journal of Geophysical Research, 2003, 108(E12): 5131. http://www.onacademic.com/detail/journal_1000035770124510_ba93.html
[7] 代晶晶, 赵龙贤, 姜琪, 等. 热红外高光谱技术在地质找矿中的应用综述[J]. 地质学报, 2020, 94(8): 2520-2533. doi: 10.3969/j.issn.0001-5717.2020.08.026
Dai J J, Zhao L X, Jiang Q, et al. Review of thermal-infrared spectroscopy applied in geological ore exploration[J]. Acta Geoscientica Sinica, 2020, 94(8): 2520-2533. doi: 10.3969/j.issn.0001-5717.2020.08.026
[8] Tappert M C, Rivard B, Giles D, et al. The mineral chemistry, near-infrared, and mid-infrared reflectance spectroscopy of phengite from the Olympic Dam IOCG deposit, South Australia[J]. Ore Geology Reviews, 2013, 53: 26-38. doi: 10.1016/j.oregeorev.2012.12.006
[9] Neal L C, Wilkinson J J, Mason P J, et al. Spectral characteristics of propylitic alteration minerals as a vectoring tool for porphyry copper deposits[J]. Journal of Geochemical Exploration, 2018, 184: 179-198. doi: 10.1016/j.gexplo.2017.10.019
[10] Duuring P, Hassan L, Zelic M, et al. Geochemical and spectral footprint of metamorphosed and deformed VMS-style mineralization in the Quinns District, Yilgarn Craton, western Australia[J]. Economic Geology, 2016, 111: 1411-1438. doi: 10.2113/econgeo.111.6.1411
[11] 连长云, 章革, 元春华, 等. 短波红外光谱矿物测量技术在热液蚀变矿物填图中的应用——以土屋斑岩铜矿床为例[J]. 中国地质, 2005, 32(3): 483-493. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200503019.htm
Lian C Y, Zhang G, Yuan C H, et al. Application of SWIR reflectance spectral in mapping hydrothermal alteration minerals: A case study of the Tuwu porphyry copper prospect, Xinjiang[J]. Geology in China, 2005, 24(6): 621-636. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200503019.htm
[12] 连长云, 章革, 元春华. 短波红外光谱矿物测量技术在普朗斑岩铜矿区热液蚀变矿物填图中的应用[J]. 矿床地质, 2005, 24(6): 621-636. doi: 10.3969/j.issn.0258-7106.2005.06.006
Lian C Y, Zhang G, Yuan C H. Application of SWIR reflectance spectroscopy to Pulang porphyry copper ore district, Yunnan Province[J]. Deposit Geology, 2005, 24(6): 621-636. doi: 10.3969/j.issn.0258-7106.2005.06.006
[13] 郭娜, 史维鑫, 黄一入, 等. 基于短波红外技术的西藏多龙矿集区铁格隆南矿床荣那矿段及其外围蚀变填图-勘查模型构建[J]. 地质通报, 2018, 37(2-3): 446-457. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2018Z1023.htm
Guo N, Shi W X, Huang Y R, et al. Alteration mapping and prospecting model construction in the Tiegelongnan ore deposit of the Duolong ore concentration area, northern Tibet, based on shortwave infrared technique[J]. Geological Bulletin of China, 2018, 37(2-3): 446-457. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2018Z1023.htm
[14] Guo N, Cudahy T, Tang J X, et al. Mapping white mica alteration associated with the Jiama porphyry-skarn Cu deposit, central Tibet using field SWIR spectrometry[J]. Ore Geology Reviews, 2019, 108: 147-157. doi: 10.1016/j.oregeorev.2017.07.027
[15] 陈华勇, 张世涛, 初高彬, 等. 鄂东南矿集区典型矽卡岩-斑岩矿床蚀变矿物短波红外(SWIR)光谱研究与勘查应用[J]. 岩石学报, 2019, 35(12): 3629-3643. doi: 10.18654/1000-0569/2019.12.04
Chen H Y, Zhang S T, Chu G B, et al. The short wave infrared (SWIR) spectral characteristics of alteration minerals and applications for ore exploration in the typical skarn-porphyry deposits, Edong ore district, eastern China[J]. Acta Petrologica Sinica, 2019, 35(12): 3629-3643. doi: 10.18654/1000-0569/2019.12.04
[16] 陈康, 纪广轩, 朱有峰, 等. 基于高光谱岩心扫描系统研究城门山铁路坎铜矿床的蚀变特征[J]. 岩矿测试, 2020, 39(6): 944-953. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.202005060005
Chen K, Ji G X, Zhu Y F, et al. Hyperspectral core scanning system analysis alteration characteristics of Chengmenshan Tielukan copper deposit[J]. Rock and Mineral Analysis, 2020, 39(6): 944-953. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.202005060005
[17] 郭娜, 黄一入, 郑龙, 等. 高硫-低硫化浅成低温热液矿床的短波红外矿物分布特征及找矿模型——以西藏铁格隆南(荣那矿段)、斯弄多矿床为例[J]. 地球学报, 2017, 38(5): 767-778. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201705016.htm
Guo N, Huang Y R, Zheng L, et al. Alteration zoning and prospecting model of epithermal deposit revealed by shortwave infrared technique: A case study of Tiegelongnan and Sinongduo deposits[J]. Acta Geoscientica Sinica, 2017, 38(5): 767-778. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201705016.htm
[18] 黄一入, 郭娜, 郑龙, 等. 基于遥感短波红外技术的三维蚀变填图——以低硫化浅成低温热液型矿床斯弄多为例[J]. 地球学报, 2017, 38(5): 779-789. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201705017.htm
Huang Y R, Guo N, Zheng L, et al. 3D geological alteration mapping based on remote sensing and shortwave infrared technology: A case study of the Sinongduo low-sulfidation epithermal deposit[J]. Acta Geoscientica Sinica, 2017, 38(5): 779-789. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201705017.htm
[19] 郭娜, 刘栋, 唐菊兴, 等. 基于短波红外技术的蚀变矿物特征及勘查模型——以斯弄多银铅锌矿床为例[J]. 矿床地质, 2018, 37(3): 556-570. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201803007.htm
Guo N, Liu D, Tang J X, et al. Characteristics of alteration minerals and prospecting model revealed by shortwave infrared technique: Take Sinongduo Ag-Pb-Zn deposit as an example[J]. Mineral Deposits, 2018, 37(3): 556-570. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201803007.htm
[20] 郭娜, 郭文铂, 刘栋, 等. 冈底斯成矿带陆相火山岩区浅成低温热液矿床蚀变分带模型——以西藏斯弄多矿床为例[J]. 岩石学报, 2019, 35(3): 833-848. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201903013.htm
Guo N, Guo W B, Liu D, et al. Alteration zoning model associated with Tibetan Sinongduo epithermal deposit, the continental volcanic areas of Gangdise metallogenic belt[J]. Acta Petrologica Sinica, 2019, 35(3): 833-848. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201903013.htm
[21] 代晶晶, 王登红, 代鸿章, 等. 川西甲基卡锂矿基地典型岩石及矿物反射波谱特征研究[J]. 岩矿测试, 2018, 37(5): 507-517. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201701110003
Dai J J, Wang D H, Dai H Z, et al. Reflectance spectral characteristics of rocks and minerals in Jiajika lithium deposits in West Sichuan[J]. Rock and Mineral Analysis, 2018, 37(5): 507-517. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201701110003
[22] 易锦俊. 闽西南马坑铁矿成因机制与找矿模式研究[D]. 北京: 中国地质大学(北京), 2018.
Yi J J. Study on the genetic mechanism and prospecting model of Makeng iron deposit in southwest Fujian[D]. Beijing: China University of Geosciences (Beijing), 2018.
[23] 史维鑫, 易锦俊, 王浩, 等. 马坑铁矿钻孔岩心红外光谱特征及蚀变分带特征研究[J]. 岩矿测试, 2020, 39(6): 934-943. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.202005060004
Shi W X, Yi J J, Wang H, et al. Study on the characteristics of infrared spectrum and the alteration zoning law of drill core in Makeng iron deposit[J]. Rock and Mineral Analysis, 2020, 39(6): 934-943. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.202005060004
[24] 回广骥, 高卿楠, 宋利强, 等. 新疆可可托海稀有金属矿床矿物和岩石热红外光谱特征[J]. 岩矿测试, 2021, 40(1): 134-144. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.202005060001
Hui G J, Gao Q N, Song L Q, et al. Thermal infrared spectra characteristics of rare metal minerals and rock in the Keketuohai deposit, Xinjiang[J]. Rock and Mineral Analysis, 2021, 40(1): 134-144. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.202005060001
[25] 张国亮. 新疆北山地区与云南普朗铜矿高光谱岩矿信息提取研究[D]. 长春: 吉林大学, 2017.
Zhang G L. Research on extraction of rocks and minerals information from hyperspectral data in Beishan area of Xinjiang and Pulang copper deposit of Yunnan[D]. Changchun: Jilin University, 2017.
[26] 石洪召, 范文玉, 胡志中, 等. 滇西北普朗铜矿床高钾中-酸性侵入岩年代学及其地质意义[J]. 地球科学, 2018, 43(8): 2600-2613. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201808005.htm
Shi H Z, Fan W Y, Hu Z Z, et al. Geochronology and geological significance of the Pulang high-K intermediate-acid intrusive rocks in the Zhongdian area, northwest Yunnan Province[J]. Earth Science, 2018, 43(8): 2600-2613. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201808005.htm
[27] 陈玲, 潘磊, 黄丰, 等. 云南普朗超大型斑岩铜矿床岩浆混合作用: 熔融包裹体证据[J]. 大地构造与成矿学, 2018, 42(5): 880-892. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201805009.htm
Chen L, Pan L, Huang F, et al. Magma mixing in the giant Pulang porphyry copper deposit, Yunnan Province: Evidence from melt inclusions[J]. Geotectonica Et Metallogenia, 2018, 42(5): 880-892. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201805009.htm
[28] 刘旭东. 滇西北普朗斑岩铜多金属矿床成矿流体演化[D]. 北京: 中国地质大学(北京), 2018.
Liu X D. The evolution of ore-forming fluid of the Pulang porphyry copper polymetallic deposit in the northwest Yunnan Province, China[D]. Beijing: China University of Geosciences (Beijing), 2018.
[29] 周晓丹, 杨帆, 吴静, 等. 云南普朗斑岩铜矿床外围东部斑岩体岩石地球化学特征研究[J]. 矿物岩石地球化学通报, 2018, 37(4): 731-740. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201804018.htm
Zhou X D, Yang F, Wu J, et al. A study on petrological and geochemical characteristics of the porphyry bodies in the eastern periphery of the Pulang porphyry copper deposit, Yunnan[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2018, 37(4): 731-740. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201804018.htm
[30] 邢凯, 舒启海, 赵鹤森, 等. 滇西普朗斑岩铜矿床中磷灰石的地球化学特征及其地质意义[J]. 岩石学报, 2018, 34(5): 1427-1440. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201805015.htm
Xing K, Shu Q H, Zhao H S, et al. Geochemical characteristics and geological significance of apatites in the Pulang porphyry copper deposit, NW Yunnan Province[J]. Acta Petrologica Sinica, 2018, 34(5): 1427-1440. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201805015.htm
[31] 冯乾, 黄明亮, 胥磊落, 等. 锆石和磷灰石原位地球化学成分对普朗斑岩铜成矿的指示意义[J]. 矿物学报, 2019, 39(6): 681-689. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201906008.htm
Feng Q, Huang M L, Xu L L, et al. In situ geochemical compositions of the zircon and apatite and their implications for the Pulang porphyry Cu mineralization[J]. Acta Mineralogica Sinica, 2019, 39(6): 681-689. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201906008.htm
[32] 李华伟, 董国臣, 董朋生, 等. 滇西北中甸弧成矿岩体中榍石化学成分特征及其成岩成矿标识[J]. 地球科学, 2020, 45(6): 1999-2010. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202006015.htm
Li H W, Dong G C, Dong P S, et al. Titanite chemical compositions and their implications for petrogenesis and mineralization in the Zhongdian Arc, NW Yunnan, China[J]. Earth Science, 2020, 45(6): 1999-2010. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202006015.htm
[33] 杨镇. 义敦岛弧晚三叠世斑岩铜矿成矿作用[D]. 北京: 中国地质大学(北京), 2017.
Yang Z. Late Triassic mineralization of the porphyry copper deposits in Yidun Arc, southwest China[D]. Beijing: China University of Geosciences (Beijing), 2017.
[34] 王国强, 和翠英, 羊劲松, 等. 滇西普朗矿区北矿段及外围成矿条件及找矿标志[J]. 现代矿业, 2018, 34(7): 27-31. doi: 10.3969/j.issn.1674-6082.2018.07.007
Wang G Q, He C Y, Yang J S, et al. Metallogenic conditions prospecting criteria of the northern ore-section and periphery of Pulang mining area in western Yunnan Province[J]. Modern Mining, 2018, 34(7): 27-31. doi: 10.3969/j.issn.1674-6082.2018.07.007
[35] Cao K, Yang Z M, Mavrogenes J, et al. Geology and genesis of the giant Pulang porphyry Cu-Au district, Yunnan, southwest China[J]. Economic Geology, 2019, 114(2): 1-100. http://www.onacademic.com/detail/journal_1000042327415699_e229.html
[36] Li W K, Yang Z M, Cao K, et al. Redox-controlled generation of the giant porphyry Cu-Au deposit at Pulang, southwest China[J]. Contributions to Mineralogy and Petrology, 2019, 174(12): 1-34. http://www.onacademic.com/detail/journal_1000041575228499_cd41.html
[37] 李芙蓉. 云南普朗矿区北部Ⅲ号斑岩体的岩石学及年代学研究[D]. 昆明: 昆明理工大学, 2018.
Li F R. Study on the petrology and chronology of No. Ⅲ porphyry body in the north of Pulang, Yunnan Province[D]. Kunming: Kunming University of Science and Technology, 2018.
[38] 汪重午, 郭娜, 郭科, 等. 基于短波红外技术的斑岩-矽卡岩型矿床中绿泥石蚀变分布特征研究: 以西藏甲玛铜多金属矿为例[J]. 地质与勘探, 2014, 50(6): 1137-1146. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201406014.htm
Wang C W, Guo N, Guo K, et al. Characteristics of the chlorite alteration in the porphyry-skarn deposit based on short-wave infrared technology: A case study of the Jiama copper-polymetallic deposit in Tibet[J]. Geology and Exploration, 2014, 50(6): 1137-1146. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201406014.htm
[39] Wang R, Cudahy T, Laukamp C, et al. White mica as a hyperspectral tool in exploration for the Sunrise Dam and Kanowna Belle gold deposits, western Australia[J]. Economic Geology, 2017, 112(5): 1153-1176. doi: 10.5382/econgeo.2017.4505
[40] Yang K, Huntington J F, Gemmell J B, et al. Variations in composition and abundance of white mica in the hydrothermal alteration system at Hellyer, Tasmania, as revealed by infrared reflectance spectroscopy[J]. Journal of Geochemical Exploring, 2011, 108(2): 143-156. doi: 10.1016/j.gexplo.2011.01.001