中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

基于红外光谱技术研究内蒙古乌奴格吐山斑岩铜钼矿蚀变和矿化特征

刘新星, 张弘, 张娟, 史维鑫, 张新乐, 成嘉伟, 卢克轩. 基于红外光谱技术研究内蒙古乌奴格吐山斑岩铜钼矿蚀变和矿化特征[J]. 岩矿测试, 2021, 40(1): 121-133. doi: 10.15898/j.cnki.11-2131/td.202005060010
引用本文: 刘新星, 张弘, 张娟, 史维鑫, 张新乐, 成嘉伟, 卢克轩. 基于红外光谱技术研究内蒙古乌奴格吐山斑岩铜钼矿蚀变和矿化特征[J]. 岩矿测试, 2021, 40(1): 121-133. doi: 10.15898/j.cnki.11-2131/td.202005060010
LIU Xin-xing, ZHANG Hong, ZHANG Juan, SHI Wei-xin, ZHANG Xin-le, CHENG Jia-wei, LU Ke-xuan. A Study on Alteration Mineral Assemblages and Mineralization Characteristics of a Wunugetushan Porphyry Copper-Molybdenum Deposit in Inner Mongolia, China, Based on Infrared Spectroscopy[J]. Rock and Mineral Analysis, 2021, 40(1): 121-133. doi: 10.15898/j.cnki.11-2131/td.202005060010
Citation: LIU Xin-xing, ZHANG Hong, ZHANG Juan, SHI Wei-xin, ZHANG Xin-le, CHENG Jia-wei, LU Ke-xuan. A Study on Alteration Mineral Assemblages and Mineralization Characteristics of a Wunugetushan Porphyry Copper-Molybdenum Deposit in Inner Mongolia, China, Based on Infrared Spectroscopy[J]. Rock and Mineral Analysis, 2021, 40(1): 121-133. doi: 10.15898/j.cnki.11-2131/td.202005060010

基于红外光谱技术研究内蒙古乌奴格吐山斑岩铜钼矿蚀变和矿化特征

  • 基金项目:
    国家自然科学基金项目(41702352);中国地质调查局地质调查项目(DD20190411,DD20190379-91);河北省高等学校科学技术研究项目(QN2019144);河北地质大学博士启动基金(BQ2017012)
详细信息
    作者简介: 刘新星, 博士, 副教授, 研究方向为遥感地质学。E-mail: liuxinxing963@163.com
    通讯作者: 张娟, 博士, 讲师, 研究方向为矿床学。E-mail: zhangjqtds@126.com
  • 中图分类号: P575.4

A Study on Alteration Mineral Assemblages and Mineralization Characteristics of a Wunugetushan Porphyry Copper-Molybdenum Deposit in Inner Mongolia, China, Based on Infrared Spectroscopy

More Information
  • 近年来,红外光谱技术在矿物学研究、地质勘探与找矿等方面发挥了重要作用。本文通过测量与分析内蒙古乌奴格吐山斑岩铜钼矿Z661钻孔岩心短波红外和热红外波段的光谱,快速厘定了该矿床的蚀变矿物类型及组合特征。结果表明:乌奴格吐山斑岩铜钼矿床蚀变矿物主要有石英、钾长石、绢云母、伊利石、高岭石和蒙脱石等。蚀变矿物组合在空间上呈现出明显的分带性,其中石英+伊利石+绢云母+钾长石与矿化关系最为密切,可作为找矿的标型矿物组合;结合钻孔Cu、Mo矿化分布特征,发现绢(白云母)2200nm处吸收峰位置的波长偏移与成矿中心距离有关,波长变小,更趋向于成矿中心;且伊利石结晶度(IC)越大,结晶度较高,矿化程度强。因而,该技术方法通过蚀变矿物波谱,能够快速圈定斑岩铜钼矿蚀变矿物组合,进而提高勘查效率。

  • 加载中
  • 图 1  内蒙古乌奴格吐山斑岩型铜钼矿地质图[20]

    Figure 1. 

    图 2  内蒙古乌奴格吐山斑岩型铜钼矿床岩心标本镜下照片(正交偏光)

    Figure 2. 

    图 3  不同矿物的实测与参考反射率波谱曲线(参考波谱来自TSG软件)

    Figure 3. 

    图 4  绢云母2200nm吸收位置随钻孔深度变化图

    Figure 4. 

    图 5  乌奴格吐山铜钼矿ZK661钻孔短波红外与热红外蚀变矿物及岩性分布柱状图

    Figure 5. 

    图 6  乌奴格吐山铜钼矿Z661钻孔波谱参数与铜钼矿化的关系

    Figure 6. 

  • [1]

    Sillitoe R H. Porphyry-copper systems[J]. Economic Geology, 2010, 105: 3-41. doi: 10.2113/gsecongeo.105.1.3

    [2]

    Seedorff E, Dilles J H, Proffett J M, et al.Porphyry deposits: Characteristics and origin of hypogene features[C]//Proceedings of Economic Geology 100th Anniversary.2005: 251-298.

    [3]

    Sinclair W D.Porphyry deposits[C]//Goodfellow W D, ed.Mineral deposits of Canada: A synthesis of major deposit-types, district metallogeny, the evolution of geological provinces, and exploration methods.Geological Association of Canada, Mineral Deposits Division, Special Publication, 2007: 223-243.

    [4]

    Cooke D R, Hollings P, Wilkinson J J, et al. Geochemistry of porphyry deposits[J]. Treatise on Geochemistry, 2014, 1(3): 357-381.

    [5]

    Holliday J R, Cooke D R.Advances in geological models and exploration methods for copper±gold porphyry deposits[C]//Milkereit B, ed.Proceedings of exploration 07: Fifth decennial international conference on mineral exploration.Toronto: Prospectors and Developers Association of Canada, 2007: 791-809.

    [6]

    Richards J P. Tectono-magmatic precursors for porphyry Cu-(Mo-Au) deposit formation[J]. Economic Geology, 2003, 98: 1515-1533. doi: 10.2113/gsecongeo.98.8.1515

    [7]

    Hedenquist J W, Richards J P. The influence of geo-chemical techniques on the development of genetic models for porphyry copper deposits[J]. Reviews in Economic Geology, 1998, 10: 235-256. http://ci.nii.ac.jp/naid/10030175160

    [8]

    Thompson A J B, Hauff P L, Robitaille A J, et al. Alteration mapping in exploration: Application of short-wave infrared (SWIR) spectroscopy[J]. Society of Economic Geologists Newsletter, 1999, 39: 1-13. http://ci.nii.ac.jp/naid/10025313194

    [9]

    田丰, 冷成彪, 张兴春, 等. 短波红外光谱技术在西藏尼木地区岗讲斑岩铜-钼矿床中的应用[J]. 地球科学, 2019, 44(6): 2143-2154. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201906028.htm

    Tian F, Leng C B, Zhang X C, et al. Application of short wavelength infrared technique in exploration of mineral deposits: A review[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2019, 44(6): 2143-2154. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201906028.htm

    [10]

    Chang Z, Yang Z. Evaluation of inter-instrument variations among short wavelength infrared (SWIR) devices[J]. Economic Geology, 2012, 107(7): 1479-1488. doi: 10.2113/econgeo.107.7.1479

    [11]

    陈华勇, 张世涛, 初高彬, 等. 鄂东南矿集区典型矽卡岩-斑岩矿床蚀变矿物短波红外(SWIR)光谱研究与勘查应用[J]. 岩石学报, 2019, 35(12): 3629-3643. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201912005.htm

    Chen H Y, Zhang S T, Chu G B, et al. The short wave infrared (SWIR) spectral characteristics of alteration minerals and applications for ore exploration in the typical skarn-porphyry deposits, Edong ore district, eastern China[J]. Acta Petrologica Sinica, 2019, 35(12): 3629-3643. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201912005.htm

    [12]

    章革, 连长云, 王润生, 等. 便携式短波红外矿物分析仪(PIMA)在西藏墨竹工卡县驱龙铜矿区矿物填图中的应用[J]. 地质通报, 2005, 24(5): 480-484. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200505015.htm

    Zhang G, Lian C Y, Wang R S, et al. Application of the portable infrared mineral analyser (PIMA) in mineral mapping in the Qulong copper prospect, Mozhugongka County, Tibet[J]. Geological Bulletin of China, 2005, 24(5): 480-484. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200505015.htm

    [13]

    张世涛, 陈华勇, 张小波, 等. 短波红外光谱技术在矽卡岩型矿床中的应用——以鄂东南铜绿山铜铁金矿床为例[J]. 矿床地质, 2017, 36(6): 1263-1288. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201706002.htm

    Zhang S T, Chen H Y, Zhang X B, et al. Application of short wavelength infrared (SWIR) technique to exploration of skarn deposit: A case study of Tonglvshan Cu-Fe-Au deposit, Edongnan (southeast Hubei) ore concentration area[J]. Mineral Deposits, 2017, 36(6): 1263-1288. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201706002.htm

    [14]

    连长云, 章革, 元春华, 等. 短波红外光谱矿物测量技术在普朗斑岩铜矿区热液蚀变矿物填图中的应用[J]. 矿床地质, 2005, 24(6): 621-637. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200506005.htm

    Lian C Y, Zhang G, Yuan C H, et al. Application of SWIR reflectance spectroscopy to Pulang porphyry copper ore district, Yunnan Province[J]. Mineral Deposits, 2005, 24(6): 621-637. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200506005.htm

    [15]

    谭钢, 常国雄, 佘宏全, 等. 内蒙古乌奴格吐山斑岩铜钼矿床辉钼矿铼-锇同位素定年及其地质意义[J]. 矿床地质, 2010, 29(增刊): 506-508. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ2010S1257.htm

    Tan G, Chang G X, She H Q, et al. The Re-Os isotope dating of molybdenite and its geological significance in the porphyry copper-molybdenum deposit of Wunugetushan, Inner Mongolia[J]. Mineral Deposit, 2010, 29(Supplement): 506-508. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ2010S1257.htm

    [16]

    陈志广, 张连昌, 万博, 等. 内蒙古乌奴格吐山斑岩铜钼矿床低Sr-Yb型成矿斑岩地球化学特征及地质意义[J]. 岩石学报, 2008, 24(1): 115-128. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200801010.htm

    Chen Z G, Zhang L C, Wan B, et al. Geochemistry and geological significances of ore-forming porphyry with low Sr and Yb value in Wunugetushan copper-molybdenum deposit, Inner Mongolia[J]. Acta Petrologica Sinica, 2008, 24(1): 115-128. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200801010.htm

    [17]

    谭钢. 内蒙古乌奴格吐山斑岩铜钼矿床成矿作用研究[D]. 北京: 中国地质科学院, 2011.

    Tan G.The ore-forming processes and mineralization of Wunugetushan porphyry Cu-Mo deposit, Inner Mongolia[D]. Beijing: Chinese Academy of Geological Sciences, 2011.

    [18]

    李宁. 内蒙古乌奴格吐山铜钼矿成矿侵入岩特征及成矿时代[D]. 北京: 中国地质大学(北京), 2013.

    Li N.Study on characteristics of intrusive rocks related to mineralization and metallogenic time of Wunugetushan Cu-Mo deposit, Inner Mongolia[D]. Beijing: China University of Geosciences (Beijing), 2013.

    [19]

    王荣全, 宋雷鹰, 曹书武, 等. 乌奴格吐山斑岩铜-钼矿地球化学特征及评价标志[J]. 矿产与地质, 2007, 21(5): 515-519. https://www.cnki.com.cn/Article/CJFDTOTAL-KCYD200705006.htm

    Wang R Q, Song L Y, Cao S W, et al. Geochemical characteristics of the Wunugetushan porphyry Cu-Mo deposit and its evaluation indicators[J]. Mineral Resources and Geology, 2007, 21(5): 515-519. https://www.cnki.com.cn/Article/CJFDTOTAL-KCYD200705006.htm

    [20]

    尹煜春. 内蒙古乌奴格吐山次火山斑岩型铜-钼矿床控矿因素分析及找矿方向[J]. 矿产与地质, 2007, 21(3): 298-303. https://www.cnki.com.cn/Article/CJFDTOTAL-KCYD200703016.htm

    Yin Y C. Ore controlling factors of subvolcanic porphyry type copper molybdenum deposit in Wunugetushan of Inner Mongolia, and its ore prospecting orientation[J]. Mineral Resources and Geology, 2007, 21(3): 298-303. https://www.cnki.com.cn/Article/CJFDTOTAL-KCYD200703016.htm

    [21]

    王泉. 内蒙古满洲里-新巴尔虎右旗铜银多金属成矿带地质特征、成矿模式及预测[D]. 长春: 吉林大学, 2006.

    Wang Q.Geological characteristics, metallogenic model and prognosis of Manzhouli-Xinbaerhuyouqi Cu, Ag, polymetal metallogenic belt in Inner Mongolia[D]. Changchun: Jilin University, 2006.

    [22]

    张海心. 内蒙古乌奴格吐山铜钼矿床地质特征及成矿模式[D]. 长春: 吉林大学, 2006.

    Zhang H X.Geological characteristics and metallogenic model of the Wunugetushan porphyry Cu-Mo deposit, Inner Mongolia[D]. Changchun: Jilin University, 2006.

    [23]

    黄力军, 刘瑞德, 陆桂福, 等. 乌奴格吐山铜矿物化探异常特征及外围找矿[J]. 物探与化探, 2004, 28(5): 418-420, 424. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH200405011.htm

    Huang L J, Liu R D, Lu G F, et al. Characteristics of geophysical and geochemical anomalies in the Wunugetushan copper deposit and ore prospecting work on the outskirts[J]. Geophysical and Geochemical Exploration, 2004, 28(5): 418-420, 424. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH200405011.htm

    [24]

    秦克章, 李惠民, 李伟实, 等. 内蒙古乌奴格吐山斑岩铜钼矿床的成岩、成矿时代[J]. 地质论评, 1999, 45(2): 180-185. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP199902014.htm

    Chen K Z, Li H M, Li W S, et al. Intrusion and mineralization ages of the Wunugetushan porphyry Cu-Mo deposit, Inner Mongolia, northwestern China[J]. Geological Review, 1999, 45(2): 180-185. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP199902014.htm

    [25]

    陈殿芬, 艾永德, 李荫清, 等. 乌奴格吐山斑岩铜钼矿床中金属矿物的特征[J]. 岩石矿物学杂志, 1996, 15(4): 59-63, 65-67. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW604.007.htm

    Chen D F, Ai Y D, Li Y Q, et al. Characteristics of metallic minerals from the Wunugetushan porphyry copper-molybdenum deposit[J]. Acta Petrologica et Mineralogica, 1996, 15(4): 59-63, 65-67. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW604.007.htm

    [26]

    秦克章, 王之田. 内蒙古乌奴格吐山铜-钼矿床稀土元素的行为及意义[J]. 地质学报, 1993, 67(4): 323-335. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE199304003.htm

    Qin K Z, Wang Z T. Rare earth element behaviour in the Wunugetushan Cu-Mo deposit, Inner Mongolia, and its significance[J]. Acta Geologica Sinica, 1993, 67(4): 323-335. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE199304003.htm

    [27]

    金力夫, 孙凤兴. 内蒙乌奴格吐山斑岩铜钼矿床地质及深部预测[J]. 长春: 长春地质学院学报, 1990(1): 61-67. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ199001010.htm

    Jin L F, Sun F X. Correlation between the northern southern ore sections in Wunugetushan porphyry copper deposit, Inner Mongolia, China[J]. Changchun: Journal of Changchun University of Earth Science, 1990(1): 61-67. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ199001010.htm

    [28]

    叶欣, 王莉娟. 乌奴格吐山斑岩铜钼矿床流体包裹体与成矿作用研究[J]. 地质与勘探, 1989(6): 14-21. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT198906002.htm

    Ye X, Wang L J. A study on fluid inclusion and metallogenesis of a porphyry Cu-Mo deposit, Urugetu Hill, Inner Mongolia, China[J]. Geology and Exploration, 1989(6): 14-21. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT198906002.htm

    [29]

    郭娜, 刘栋, 唐菊兴, 等. 基于短波红外技术的蚀变矿物特征及勘查模型——以斯弄多银铅锌矿床为例[J]. 矿床地质, 2018, 37(3): 556-570. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201803007.htm

    Guo N, Liu D, Tang J X, et al. Characteristics of alteration minerals and prospecting model revealed by shortwave infrared technique: Take Sinongduo Ag-Pb-Zn deposit as an example[J]. Mineral Deposits, 2018, 37(3): 556-570. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201803007.htm

    [30]

    Commonwealth Scientific and Industrial Research Organi-sation.The specatral geolgist software help of common minerals[M]. 2019.

    [31]

    黄一入, 郭娜, 郑龙, 等. 基于遥感短波红外技术的三维蚀变填图——以低硫化浅成低温热液型矿床斯弄多为例[J]. 地球学报, 2017, 38(5): 779-789. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201705017.htm

    Huang Y R, Guo N, Zheng L, et al. 3D geological alteration mapping based on remote sensing and shortwave infrared technology: A case study of the Sinongduo low-sulfidation epithermal deposit[J]. Acta Geoscientica Sinica, 2017, 38(5): 779-789. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201705017.htm

    [32]

    彭自栋. 甘肃岗岔金矿短波红外找矿应用及伊利石成因矿物学研究[D]. 北京: 中国地质大学(北京), 2015.

    Peng Z D.Short wave infrared and illite's genetic mineralogy study of gold deposit in Hezuo, Gansu Province[D]. Beijing: China University of Geosciences (Beijing), 2015.

    [33]

    郭娜. 甲玛斑岩-矽卡岩型铜矿床蚀变矿物组合研究——基于高光谱短波红外技术[D]. 成都: 成都理工大学, 2012.

    Guo N.The altered mineral assemblage research in Jiama porphyry-skarn copper deposit-Based on hyperspectral high frequency wave infrared technology[D]. Chengdu: Chengdu University of Technology, 2012.

    [34]

    Yang K, Huntington J F, Gemmell J B, et al. Variations in composition and abundance of white mica in the hydrothermal alteration system at Hellyer, Tasmania, as revealed by infrared reflectance spectroscopy[J]. Journal of Geochemical Exploring, 2011, 108(2): 143-156. doi: 10.1016/j.gexplo.2011.01.001

  • 加载中

(6)

计量
  • 文章访问数:  1642
  • PDF下载数:  12
  • 施引文献:  0
出版历程
收稿日期:  2020-05-06
修回日期:  2020-10-16
录用日期:  2020-12-11
刊出日期:  2021-01-28

目录