Determination of 19 Phenolic Pollutants in Reclaimed Land Samples by Derivation Gas Chromatography-Mass Spectrometry
-
摘要:
近年来国家对自然环境的保护愈加重视,更多被破坏或污染的土地需要进行复垦整治。在评价效果时,需要检测酚类等多项污染物指标。采用气相色谱与气相色谱-质谱联用等方法对酚类化合物直接测定时,存在色谱响应值低、稳定性差、检出限高等问题。本文针对复垦土地样品基质复杂、干扰因素多、前处理困难等特点,对该类样品的提取与净化方法进行筛选优化。根据酚类污染物检测中浓度范围大、重现性差等问题,对衍生化与非衍生化效果进行对比确定了提取和净化方法,结合衍生化条件的优化、实际样品测定结果等方面的综合研究,建立了复垦土地样品19种酚类污染物(其中2,4,6-三氯苯酚和2,4,5-三氯苯酚,以及2,3,4,5-四氯酚和2,3,5,6-四氯酚,因无法分离而合并计算)的衍生化气相色谱-质谱检测方法。该方法采用加速溶剂萃取仪,以正己烷-丙酮(体积比1:1)提取样品,提取液经浓缩、净化后,由五氟苄基溴衍生化,气相色谱-质谱联用仪测定。该方法基质加标回收率为73.3%~107.0%,检出限为0.67~3.95μg/kg,相比非衍生化方法的检出限(10~80μg/kg)显著降低;并且衍生物的稳定性更好,色谱响应值更高,各组分表现在色谱图上的峰高(峰面积)更均衡,对于低浓度样品的测定结果更加准确。该方法能有效去除基质干扰,可为复杂基质土壤样品中的酚类污染物痕量检测提供参考。
Abstract:BACKGROUND In recent years, more attention has been paid to the protection of the environment in China. More damaged or polluted land needs to be reclaimed. When evaluating the effect, it is necessary to detect several pollutant indexes for phenolic pollutants. In the direct determination of phenolic compounds by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS), there are challenges such as low chromatographic response, poor stability and high detection limit.
OBJECTIVES To establish a method to determine 19 phenolic pollutants in reclaimed land.
METHODS Based on the characteristics of complex matrix, multiple interference factors, and difficult pre-processing of reclaimed land samples, the extraction and purification methods of this type of sample were screened and optimized. The extraction and purification methods were determined by comparing the effects of derivatization and non-derivatization, combined with comprehensive research on the optimization of derivatization conditions and the measurement results of actual samples. A derivatized gas chromatography-mass spectrometry method for detecting 19 phenolic pollutants in reclaimed land samples was established (Among them, 2, 4, 6-trichlorophenol and 2, 4, 5-trichlorophenol, 2, 3, 4, 5-tetrachlorophenol and 2, 3, 5, 6-tetrachlorophenol were combined because of could not be separated). The samples were extracted with n-hexane and acetone (1:1, V/V) by ASE. The extract was concentrated, purified and derivatized by pentafluorobenzyl bromide. Finally, it was determined by GC-MS internal standard method.
RESULTS The standard-addition recoveries were 73.3%-107.0%. The method detection limits of phenolic compounds in soil were 0.67-3.95μg/kg, which was significantly lower than nonderivative method (10-80μg/kg). The derivatives had better stability and higher chromatographic response, the groups were more even in peak height (area) on the chromatogram. The derivatization method had better reproducibility and the results of low-concentration samples were more accurate.
CONCLUSIONS This method can be used effectively to avoid matrix interference and provide reference for trace determination of phenolic pollutants in soil samples with complex matrix.
-
表 1 各组分保留时间、定量离子与辅助离子
Table 1. Retention time, quantitative ions and auxiliary ions of each component
序号 化合物 保留时间(min) 定量离子/辅助离子 1 2-氟苯酚-PFB(替代物) 16.19 181/292 2 苯酚-PFB 16.61 181/274 3 苊-d10(内标) 16.83 162/164 4 间-甲酚-PFB 17.89 181/288 5 邻-甲酚-PFB 18.35 181/288 6 对-甲酚-PFB 18.50 181/288 7 2-氯苯酚-PFB 19.65 308 8 2, 4-二甲酚-PFB 19.65 121 9 2, 6-二氯酚-PFB 21.57 181/342 10 4-氯-3-甲基苯酚-PFB 21.98 181/322 11 2, 4-二氯酚-PFB 22.62 181/342 12 2-硝基酚-PFB 23.64 181/319 13 2, 4, 6-三氯苯酚-PFB/2, 4, 5-三氯苯酚-PFB 23.79 181/376 14 2, 4-二硝基酚-PFB 25.19 181/161 15 4-硝基酚-PFB 25.61 181/319 16 2, 3, 4, 6-四氯酚-PFB 26.76 181/412 17 2, 3, 4, 5-四氯酚-PFB/2, 3, 5, 6-四氯酚-PFB 26.91 181/412 18 2, 3, 5, 6-四氯酚-PFB 28.34 181/161 19 2, 4, 6-三溴苯酚-PFB(替代物) 28.47 181/431 20 五氯苯酚-PFB 29.70 181/446 表 2 酚类化合物标准曲线
Table 2. Calibration curves of phenolic compounds
化合物 衍生后化合物 标准曲线 相关系数(r2) 2-氟苯酚(替1) 2-氟苯酚-PFB y=-0.0144696+0.00229139x 0.9972 苯酚 苯酚-PFB y=-0.0378798+0.00276533x 0.9981 间-甲酚 间-甲酚-PFB y=-0.0360363+0.00218262x 0.9989 邻-甲酚 邻-甲酚-PFB y=-0.0670299+0.00232614x 0.9977 对-甲酚 对-甲酚-PFB y=-0.0572942+0.0022358x 0.9974 2-氯苯酚 2-氯苯酚-PFB y=-0.102385+0.00450636x 0.9954 2, 4-二甲酚 2, 4-二甲酚-PFB y=-0.105425+0.00450302x 0.9962 2, 6-二氯酚 2, 6-二氯酚-PFB y=-0.0143943+0.00231734x 0.9977 4-氯-3-甲基苯酚 4-氯-3-甲基苯酚-PFB y=-0.10396+0.00239979x 0.9969 2, 4-二氯酚 2, 4-二氯酚-PFB y=-0.138599+0.00289315x 0.9970 2-硝基酚 2-硝基酚-PFB y=-0.0677484+0.00135676x 0.9961 2, 4, 6-三氯苯酚/2, 4, 5-三氯苯酚 2, 4, 6-三氯苯酚-PFB/2, 4, 5-三氯苯酚-PFB y=-0.147103+0.0029088x 0.9966 2, 4-二硝基酚 2, 4-二硝基酚-PFB y=-0.0550873+0.00259657x 0.9984 4-硝基酚 4-硝基酚-PFB y=-0.0800387+0.00145206x 0.9956 2, 3, 4, 6-四氯酚 2, 3, 4, 6-四氯酚-PFB y=-0.141921+0.00277173x 0.9957 2, 3, 4, 5-四氯酚/2, 3, 5, 6-四氯酚 2, 3, 4, 5-四氯酚-PFB/2, 3, 5, 6-四氯酚-PFB y=-0.127976+0.00369817x 0.9954 2-甲基-4, 6-二硝基酚 2-甲基-4, 6-二硝基酚-PFB y=-0.160452+0.00301742x 0.9945 2, 4, 6-三溴苯酚(替2) 2, 4, 6-三溴苯酚-PFB y=-0.144911+0.00221011x 0.9982 五氯苯酚 五氯苯酚-PFB y=-0.145926+0.00302867x 0.9981 表 3 三种提取方法的检出限、测定下限与精密度与回收率情况
Table 3. Detection limit, determination lower limit, precision and recovery of the three extraction methods
提取方式 方法检出限(μg/kg) 测定下限(μg/kg) 加标回收率(%) 回收率平均值(%) 相对标准偏差平均值(%) 索氏提取 0.97~4.36 3.88~17.4 73.3~102.0 88.9 4.9 超声波提取 0.78~5.06 3.11~20.2 71.4~97.3 82.4 5.4 加速溶剂萃取 0.67~3.95 2.68~15.8 75.4~107.0 91.0 4.4 表 4 酚类化合物衍生化方法检出限
Table 4. Detection limits of phenolic compounds by derivativation method
化合物 测定值(μg/kg) 相对标准偏差(%) 检出限(μg/kg) 测定下限(μg/kg) 1 2 3 4 5 6 7 2-氟苯酚(替1) 7.05 7.44 9.32 9.40 8.39 9.33 7.68 1.0 3.13 12.5 苯酚 8.02 7.76 9.27 9.44 9.05 9.89 8.40 0.8 2.47 9.88 间-甲酚 8.38 8.41 7.45 8.14 7.88 7.91 8.27 0.3 1.08 4.32 邻-甲酚 9.44 7.74 9.32 8.98 9.66 8.40 9.01 0.7 2.09 8.35 对-甲酚 8.17 8.37 9.04 8.55 9.15 8.80 9.39 0.4 1.39 5.56 2-氯苯酚 8.75 8.47 8.80 8.82 8.87 8.99 9.16 0.2 0.67 2.68 2, 4-二甲酚 8.72 8.64 8.35 8.11 8.40 8.19 7.85 0.3 0.96 3.83 2, 6-二氯酚 8.63 8.86 7.93 8.08 8.43 7.85 8.70 0.4 1.25 5.02 4-氯-3-甲基苯酚 9.43 10.3 8.86 10.5 9.21 9.63 9.96 0.6 1.85 7.42 2, 4-二氯酚 8.62 9.13 9.73 9.98 8.83 8.51 8.74 0.6 1.80 7.19 2-硝基酚 9.89 9.80 9.03 9.28 8.87 10.0 9.96 0.5 1.50 5.99 2, 4, 6-三氯苯酚/2, 4, 5-三氯苯酚 16.1 16.3 16.0 16.3 16.1 15.4 15.1 0.5 1.46 5.85 2, 4-二硝基酚 11.0 10.6 10.3 10.5 11.2 9.97 11.1 0.5 1.47 5.89 4-硝基酚 10.3 10.3 7.72 10.6 8.11 9.11 10.9 1.3 3.95 15.8 2, 3, 4, 6-四氯酚 8.58 9.24 8.51 8.12 8.71 8.31 9.26 0.4 1.37 5.47 2, 3, 4, 5-四氯酚/2, 3, 5, 6-四氯酚 16.9 16.0 16.3 16.6 18.1 16.5 16.5 0.7 2.12 8.49 2-甲基-4, 6-二硝基酚 8.93 8.25 7.73 7.65 8.04 8.78 9.02 0.6 1.78 7.13 2, 4, 6-三溴苯酚(替2) 7.99 8.08 8.64 7.33 7.21 7.87 7.77 0.5 1.50 6.01 五氯苯酚 10.5 10.9 10.3 9.65 11.1 10.8 10.9 0.5 1.54 6.16 表 5 酚类化合物加标回收率和精密度
Table 5. Spiked recovery and precision tests of phenolic compounds
酚类化合物 加标浓度40μg/kg 加标浓度100μg/kg 加标浓度200μg/kg RSD(%) 回收率(%) RSD(%) 回收率(%) RSD(%) 回收率(%) 2-氟苯酚(替1) 6.6 89.2 9.5 80.8 5.9 86.3 苯酚 6.1 94.4 3.6 85.3 8.1 75.3 间-甲酚 6.7 86.8 2.1 73.3 8.1 74.2 邻-甲酚 5.9 87.5 3.3 79.5 4.5 87.1 对-甲酚 5.5 104.0 4.8 82.1 9.6 83.6 2-氯苯酚 5.9 103.0 5.3 81.2 6.3 83.4 2, 4-二甲酚 5.9 84.5 2.9 82.6 7.0 79.9 2, 6-二氯酚 6.2 86.1 6.7 80.8 7.2 88.6 4-氯-3-甲基苯酚 5.0 107.0 1.8 85.0 9.1 92.6 2, 4-二氯酚 5.4 90.7 8.6 77.4 3.5 86.2 2-硝基酚 5.5 106.0 4.5 88.5 4.6 83.5 2, 4, 6-三氯苯酚/2, 4, 5-三氯苯酚 3.8 75.4 6.0 74.7 7.0 81.1 2, 4-二硝基酚 6.2 91.2 8.3 76.7 3.9 80.3 4-硝基酚 5.1 101.0 1.7 83.1 5.5 102.0 2, 3, 4, 6-四氯酚 3.7 103.0 5.3 83.2 5.8 82.1 2, 3, 4, 5-四氯酚/2, 3, 5, 6-四氯酚 5.9 78.3 8.2 83.5 8.0 103.0 2-甲基-4, 6-二硝基酚 5.5 82.1 6.4 80.8 2.1 73.6 2, 4, 6-三溴苯酚(替2) 4.6 81.7 6.2 73.3 8.2 82.8 五氯苯酚 4.1 105.0 2.4 82.8 8.7 78.4 表 6 金属矿区复垦土地样品酚类化合物检测结果
Table 6. Analytical results of phenolic compounds in dreclaimed land samples from metal mining areas
酚类化合物 含量(μg/kg) 重复样相对偏差(%) 检出限(μg/kg) 重复样1 重复样2 2-氟苯酚(替1) 109 96.2 6.2 3.13 苯酚 - - - 2.47 间-甲酚 - - - 1.08 邻-甲酚 < LOD < LOD - 2.09 对-甲酚 25.6 31.6 10 1.39 2-氯苯酚 < LOD < LOD - 0.67 2, 4-二甲酚 < LOD < LOD - 0.96 2, 6-二氯酚 - - - 1.25 4-氯-3-甲基苯酚 - - - 1.85 2, 4-二氯酚 2.43 2.32 2.3 1.80 2-硝基酚 122 138 6.2 1.50 2, 4, 6-三氯苯酚/2, 4, 5-三氯苯酚 31.0 27.5 6.0 0.74 2, 4-二硝基酚 7.84 6.87 6.6 1.47 4-硝基酚 - - - 3.95 2, 3, 4, 6-四氯酚 - - - 1.37 2, 3, 4, 5-四氯酚/2, 3, 5, 6-四氯酚 - - - 1.76 2-甲基-4, 6-二硝基酚 - - - 1.78 2, 4, 6-三溴苯酚(替2) 87.6 93.7 3.4 1.50 五氯苯酚 83.1 78.9 2.6 1.54 注:“-”表示未检出;LOD表示检出限。 -
[1] 胡振琪. 中国土地复垦与生态重建20年: 回顾与展望[J]. 科技导报, 2009, 27(17): 25-29. doi: 10.3321/j.issn:1000-7857.2009.17.007
Hu Z Q. Land reclamation and ecological reconstruction in China in 20 years: Review and prospect[J]. Science and Technology Herald, 2009, 27(17): 25-29. doi: 10.3321/j.issn:1000-7857.2009.17.007
[2] 彭建, 蒋一军, 吴健生, 等. 我国矿山开采的生态环境效应及土地复垦典型技术[J]. 地理科学进展, 2005(2): 38-48. doi: 10.3969/j.issn.1007-6301.2005.02.005
Peng J, Jiang Y J, Wu J S, et al. Ecological environmental effects of mining in China and typical land reclamation technologies[J]. Advances in Geographical Sciences, 2005(2): 38-48. doi: 10.3969/j.issn.1007-6301.2005.02.005
[3] 卞正富. 我国煤矿区土地复垦与生态重建研究[J]. 资源与产业, 2005, 7(2): 18-24. doi: 10.3969/j.issn.1673-2464.2005.02.006
Bian Z F. Research on land reclamation and ecological reconstruction in coal mine areas of China[J]. Resources and Industry, 2005, 7(2): 18-24. doi: 10.3969/j.issn.1673-2464.2005.02.006
[4] Gospodarek J, Petryszak P, Kooczek H, et al. The effect of soil pollution with petroleum-derived substances on Porcellio Scaber Latr. (Crustacea, Isopoda)[J]. Environmental Monitoring and Assessment, 2019, 191(1): 38.1-38.10. http://www.ncbi.nlm.nih.gov/pubmed/30593601
[5] 张兆彤, 王金满, 张佳瑞. 矿区复垦土壤与植被交互影响的研究进展[J]. 土壤, 2018, 50(2): 239-247. https://www.cnki.com.cn/Article/CJFDTOTAL-TURA201802003.htm
Zhang Z T, Wang J M, Zhang J R. Research progress on the interaction between reclaimed soil and vegetation in mining areas[J]. Soil, 2018, 50(2): 239-247. https://www.cnki.com.cn/Article/CJFDTOTAL-TURA201802003.htm
[6] 蓝楠, 杨朝琦. 美国矿山土地复垦制度对我国的启示[J]. 安全与环境工程, 2010(4): 101-104. doi: 10.3969/j.issn.1671-1556.2010.04.026
Lan N, Yang C Q. Enlightenment of American mine land reclamation system to China[J]. Safety and Environmental Engineering, 2010(4): 101-104. doi: 10.3969/j.issn.1671-1556.2010.04.026
[7] 赵庆令, 李清彩, 谢江坤, 等. 应用富集系数法和地累积指数法研究济宁南部区域土壤重金属污染特征及生态风险评价[J]. 岩矿测试, 2015, 34(1): 129-137. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2015.01.017
Zhao Q L, Li Q C, Xie J K, et al. Characteristics of soil heavy metal pollution and its ecological risk assessment in South Jining District[J]. Rock and Mineral Analysis, 2015, 34(1): 129-137. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2015.01.017
[8] 徐维并, 李新纪, 佟柏龄. 衍生化预处理-气相色谱法测定水中酚类污染物[J]. 岩矿测试, 1994, 13(4): 293-297. http://www.ykcs.ac.cn/article/id/ykcs_19940488
Xu W B, Li X J, Tong B L. Derivatization pretreatment-gas chromatography for the determination of phenolic pollutants in water[J]. Rock and Mineral Analysis, 1994, 13(4): 293-297. http://www.ykcs.ac.cn/article/id/ykcs_19940488
[9] 何梦琦, 花磊, 李庆运, 等. 甲苯增强高气压光电离-飞行时间质谱高灵敏快速测量酚类化合物[J]. 分析化学, 2019, 47(3): 447-454. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201903019.htm
He M Q, Hua L, Li Q Y, et al. Toluene enhanced-high pressure photoionization-time-of-flight mass spectrometry for highly sensitive and rapid detection of phenolic compounds[J]. Chinese Journal of Analytical Chemistry, 2019, 47(3): 447-454. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201903019.htm
[10] 堵锡华, 王超. 醇和酚类污染物对欧洲林蛙蝌蚪及梨形四膜虫毒性的定量结构-活性模型[J]. 生态毒理学报, 2018, 13(6): 250-258. https://www.cnki.com.cn/Article/CJFDTOTAL-STDL201806025.htm
Du X H, Wang C. Quantitative structure-activity model of toxicity of alcohol and phenolic pollutants to Rana temporaria tadpoles and Tetrahymena pyriformis[J]. Asian Journal of Ecotoxicology, 2018, 13(6): 250-258. https://www.cnki.com.cn/Article/CJFDTOTAL-STDL201806025.htm
[11] Erchao L, Bolser D G, Kroll K J, et al. Comparative toxicity of three phenolic compounds on the embryo of fathead minnow, pimephales promelas[J]. Aquatic Toxicology, 2018, 201: 66. doi: 10.1016/j.aquatox.2018.05.024
[12] Santhi V S, Salame L, Muklada H, et al. Toxicity of phenolic compounds to entomopathogenic nematodes: A case study with Heterorhabditis bacteriophora exposed to lentisk (Pistacia lentiscus) extracts and their chemical components[J]. Journal of Invertebrate Pathology, 2019, 160: 43-53. doi: 10.1016/j.jip.2018.12.003
[13] 王选瑞, 张立娟, 王玉田, 等. 三维荧光结合二阶校正快速测定水中酚类[J]. 光谱学与光谱分析, 2020, 40(1): 113-118. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN202001022.htm
Wang X R, Zhang L J, Wang Y T, et al. Rapid determination of phenol in water by three-dimensional fluorescence combined with second-order calibration[J]. Spectroscopy and Spectral Analysis, 2020, 40(1): 113-118. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN202001022.htm
[14] 曹雨. 含酚废水处理技术的研究进展[J]. 辽宁化工, 2019, 48(5): 12-15. https://www.cnki.com.cn/Article/CJFDTOTAL-LNHG201905008.htm
Cao Y. Research progress of treatment technology of phenolic waste water[J]. Liaoning Chemical Industry, 2019, 48(5): 12-15. https://www.cnki.com.cn/Article/CJFDTOTAL-LNHG201905008.htm
[15] 刘万鹏. 酚类化合物降解新方法研究[D]. 杭州: 浙江工业大学, 2011.
Liu W P.New degradation methods of phenolic compounds[D].Hangzhou: Zhejiang University of Technology, 2011.
[16] 周艳玲. 酚类化合物检测方法研究进展[J]. 环境监测管理与技术, 2011(B12): 70-77. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJS2011S1015.htm
Zhou Y L. Progress in detection methods of phenolic compounds[J]. Environmental Monitoring Management and Technology, 2011(B12): 70-77. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJS2011S1015.htm
[17] Fuad A R, Imad O. Development and validation of an HPLC-UV method for determination of eight phenolic compounds in date palms[J]. Journal of AOAC International, 2015, 98(5): 1335-1339. doi: 10.5740/jaoacint.15-010
[18] Wu Y L, Li Y Y, Peng Y T. Determination of seven phenolic compounds in mainstream cigarette smoke by gas chromatography-tandem mass spectrometry[J]. Journal of Chinese Mass Spectrometry Society, 2018, 39(3): 376-384. http://en.cnki.com.cn/Article_en/CJFDTotal-ZPXB201803015.htm
[19] Yamaguchi Y, Hayashi C. Determination of urinary total phenolic compounds with use of 4-aminoantipyrine: Suggested screening test for hyperthyroidism and for catecholamine-producing tumor[J]. Clinical Chemistry, 1977, 23(11): 2151-2154. doi: 10.1093/clinchem/23.11.2151
[20] 杨丽莉, 王美飞, 胡恩宇, 等. 超声波提取-气相色谱法测定土壤中21种酚类化合物[J]. 色谱, 2013, 31(11): 1081-1086. https://www.cnki.com.cn/Article/CJFDTOTAL-SPZZ201311009.htm
Yang L L, Wang M F, Hu E Y, et al. Ultrasonic extract-gas chromatography for the determination of 21 phenolic compounds in soil[J]. Chromatography, 2013, 31(11): 1081-1086. https://www.cnki.com.cn/Article/CJFDTOTAL-SPZZ201311009.htm
[21] 张永兵, 杨文武, 张钧. 土壤中6种酚类化合物的索氏提取-气相色谱测定法[J]. 环境与健康杂志, 2014, 31(4): 334-336. https://www.cnki.com.cn/Article/CJFDTOTAL-HJYJ201404018.htm
Zhang Y B, Yang W W, Zhang J. Soxhlet extraction and gas chromatography determination of 6 phenolic compounds in soil[J]. Journal of Environment and Health, 2014, 31(4): 334-336. https://www.cnki.com.cn/Article/CJFDTOTAL-HJYJ201404018.htm
[22] 张永兵, 杨文武, 丁金美, 等. 固相萃取-液相色谱法测定土壤中酚类化合物[J]. 环境科学与技术, 2015, 38(2): 110-114. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS201502022.htm
Zhang Y B, Yang W W, Ding J M, et al. Determination of phenolic compounds in soil by solid phase extraction and liquid chromatography[J]. Environmental Science and Technology, 2015, 38(2): 110-114. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS201502022.htm
[23] 黄毅, 何淼, 饶竹, 等. GDX-502树脂富集高效液相色谱法测定地表水中酚类化合物[J]. 岩矿测试, 2007, 26(2): 101-104. doi: 10.3969/j.issn.0254-5357.2007.02.005 http://www.ykcs.ac.cn/article/id/ykcs_20070237
Huang Y, He M, Rao Z, et al. Determination of phenolic compounds in surface water by high performance liquid chromatography with GDX-502 resin enrichment[J]. Rock and Mineral Analysis, 2007, 26(2): 101-104. doi: 10.3969/j.issn.0254-5357.2007.02.005 http://www.ykcs.ac.cn/article/id/ykcs_20070237
[24] 胡祖国, 曹攽, 李紫艺. 超声波萃取-气相色谱-质谱法测定土壤中7种酚类化合物[J]. 冶金分析, 2016(36): 27-32. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201602005.htm
Hu Z G, Cao B, Li Z Y. Ultrasonic extraction of 7 phenolic compounds in soil by gas chromatography-mass spectrometry[J]. Metallurgical Analysis, 2016(36): 27-32. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201602005.htm
[25] 桂建业, 张莉, 陈宗宇, 等. 加速溶剂萃取-气相色谱-质谱法测定固体废物中酚类化合物[J]. 理化检验(化学分册), 2012, 48(4): 423-426. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201204016.htm
Gui J Y, Zhang L, Chen Z Y, et al. Determination of phenolic compounds in solid waste by accelerated solvent extraction-gas chromatography-mass spectrometry[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2012, 48(4): 423-426. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201204016.htm
[26] 钟颖, 于赤灵, 彭平安. 固相萃取-离子色谱/气相色谱-质谱法联合检测油田水中的有机酸和酚类化合物[J]. 色谱, 2010, 28(10): 923-928. https://www.cnki.com.cn/Article/CJFDTOTAL-SPZZ201010004.htm
Zhong Y, Yu C L, Peng P A. Determination of organic acids and phenolic compounds in oilfield water by SPE/GC-MS[J]. Chromatography, 2010, 28(10): 923-928. https://www.cnki.com.cn/Article/CJFDTOTAL-SPZZ201010004.htm
[27] 滕宝祺, 李欣昕, 冯芳. 衍生化技术在酚类化合物分析中的研究进展[J]. 北方药学, 2012, 9(5): 32-34. https://www.cnki.com.cn/Article/CJFDTOTAL-BFYX201205029.htm
Teng B Q, Li X X, Feng F. Research progress of derivatization technology in the analysis of henolic compounds[J]. Northern Pharmacy, 2012, 9(5): 32-34. https://www.cnki.com.cn/Article/CJFDTOTAL-BFYX201205029.htm
[28] 韩超, 沈浩, 李舟, 等. 气相色谱-质谱法测定纺织品中17种酚类化合物[J]. 纺织学报, 2012, 33(11): 91-96. doi: 10.3969/j.issn.0253-9721.2012.11.019
Han C, Shen H, Li Z, et al. Determination of 17 phenolic compounds in textiles by gas chromatography-mass spectrometry[J]. Chinese Journal of Textiles, 2012, 33(11): 91-96. doi: 10.3969/j.issn.0253-9721.2012.11.019
[29] 顾娟红, 潘葵, 黄丽娟, 等. 气相色谱/质谱联用测定纺织品中5种苯酚类化合物[J]. 印染助剂, 2014, 31(9): 46-48. doi: 10.3969/j.issn.1004-0439.2014.09.013
Gu J H, Pan K, Huang L J, et al. Determination of 5 phenols in textiles by GC-MS[J]. Printing and Dyeing Assistant, 2014, 31(9): 46-48. doi: 10.3969/j.issn.1004-0439.2014.09.013
[30] 李娟, 王荟. 水中多种酚类化合物衍生化方法研究[J]. 环境监控与预警, 2014, 6(5): 23-25. doi: 10.3969/j.issn.1674-6732.2014.05.008
Li J, Wang H. Study on derivatives of phenolic compounds in water[J]. Environmental Monitoring and Early Warning, 2014, 6(5): 23-25. doi: 10.3969/j.issn.1674-6732.2014.05.008
[31] 张莉, 桂建业, 张永涛, 等. 改性聚合物萃取-五氟苄基衍生化-气相色谱-质谱法测定水中酚类化合物[J]. 理化检验(化学分册), 2013, 49(10): 1155-1158. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201310003.htm
Zhang L, Gui J Y, Zhang Y T, et al. Determination of phenolic compounds in water by modified polymer extract-pentafluoro-benzyl derivation-gas chromatography-mass spectrometry[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2013, 49(10): 1155-1158. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201310003.htm
[32] 周浩, 张瑶琴, 刘中, 等. 衍生化气相色谱-质谱联用法测定土壤中多种酚类化合物[J]. 环境监测管理与技术, 2017, 32(4): 53-56. doi: 10.3969/j.issn.1006-2009.2017.04.013
Zhou H, Zhang Y Q, Liu Z, et al. Derivated gas chromatography-mass spectrometry for the determination of phenolic compounds in soil[J]. Environmental Monitoring Management and Technology, 2017, 32(4): 53-56. doi: 10.3969/j.issn.1006-2009.2017.04.013
[33] 王加忠, 刘剑, 罗熹, 等. 硅烷化-GC/MS联用测定卷烟主流烟气中7种酚类化合物[J]. 烟草科技, 2017, 50(6): 53-60. https://www.cnki.com.cn/Article/CJFDTOTAL-YCKJ201706009.htm
Wang J Z, Liu J, Luo X, et al. Determination of 7 phenolic compounds in mainstream cigarette smoke by silanization-GC/MS[J]. Tobacco Science and Technology, 2017, 50(6): 53-60. https://www.cnki.com.cn/Article/CJFDTOTAL-YCKJ201706009.htm
[34] 方志青, 李秋华, 贺华中, 等. 衍生气相色谱法测定饮用水中4种酚类污染物[J]. 四川师范大学学报(自然科学版), 2013, 36(1): 111-114. doi: 10.3969/j.issn.1001-8395.2013.01.024
Fang Z Q, Li Q H, He H Z, et al. Determination of 4 phenolic pollutants in drinking water by derived gas chromatography[J]. Journal of Sichuan Normal University (Natural Science), 2013, 36(1): 111-114. doi: 10.3969/j.issn.1001-8395.2013.01.024
[35] 乔宁强, 薛志伟, 王刚峰, 等. 索氏提取-原子荧光光谱法测定含油岩心中的汞和砷[J]. 岩矿测试, 2019, 38(4): 461-467. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201812030128
Qiao N Q, Xue Z W, Wang G F, et al. Determination of mercury and arsenic in oil-bearing core by Soxhelt extraction-atomic fluorescence spectrometry[J]. Rock and Mineral Analysis, 2019, 38(4): 461-467. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201812030128
[36] 周立军, 张玲金, 苏建茹, 等. 固体模拟样品中多环芳烃有机污染物提取方法研究[J]. 岩矿测试, 2003, 22(2): 113-116. doi: 10.3969/j.issn.0254-5357.2003.02.007 http://www.ykcs.ac.cn/article/id/ykcs_20030230
Zhou L J, Zhang L J, Su J R, et al. Study on extraction techniques of polynuclear aromatic hydrocarbons in spiked solid samples[J]. Rock and Mineral Analysis, 2003, 22(2): 113-116. doi: 10.3969/j.issn.0254-5357.2003.02.007 http://www.ykcs.ac.cn/article/id/ykcs_20030230
[37] 王馨蕾, 崔兆杰. 超声波提取-气相色谱氢火焰测定土壤中六溴环十二烷[J]. 环境科学研究, 2019, 32(3): 493-499. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKX201903016.htm
Wang X L, Cui Z J. Ultrasonic extraction and determination of hexabromocyclododecane in soil by gas chromatography with hydrogen flame[J]. Environmental Science Research, 2019, 32(3): 493-499. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKX201903016.htm
[38] 胡德新, 马德起, 安鹏升, 等. 超声提取-离子色谱法测定铁矿石中水溶性氟氯溴及硝酸根[J]. 岩矿测试, 2012, 31(2): 287-290. doi: 10.3969/j.issn.0254-5357.2012.02.017 http://www.ykcs.ac.cn/article/id/ykcs_20120217
Hu D X, Ma D Q, An P S, et al. Determination of water soluble fluoride, chloride, bromide and nitrate in iron ores by supersonic extraction-ion chromatography[J]. Rock and Mineral Analysis, 2012, 31(2): 287-290. doi: 10.3969/j.issn.0254-5357.2012.02.017 http://www.ykcs.ac.cn/article/id/ykcs_20120217
[39] Barros F, Dykes L, Awika J M, et al. Accelerated solvent extraction of phenolic compounds from sorghum brans[J]. Journal of Cereal Science, 2013, 58(2): 305-312. doi: 10.1016/j.jcs.2013.05.011
[40] 石丽明, 刘美美, 王晓华, 等. 加速溶剂萃取提取土壤中正构烷烃的方法研究[J]. 岩矿测试, 2010, 29(2): 104-108. doi: 10.3969/j.issn.0254-5357.2010.02.003 http://www.ykcs.ac.cn/article/id/ykcs_20100203
Shi L M, Liu M M, Wang X H, et al. Study on accelerated solvent extraction of n-alkanes in soil samples[J]. Rock and Mineral Analysis, 2010, 29(2): 104-108. doi: 10.3969/j.issn.0254-5357.2010.02.003 http://www.ykcs.ac.cn/article/id/ykcs_20100203
[41] 龚迎莉, 孙玮琳, 汪双清, 等. 生油岩中有机质加速溶剂萃取和索氏萃取方法对比[J]. 岩矿测试, 2009, 28(5): 416-422. doi: 10.3969/j.issn.0254-5357.2009.05.004 http://www.ykcs.ac.cn/article/id/ykcs_20090504
Gong Y L, Sun W L, Wang S Q, et al. A comparative study on extraction of organic matters in source rocks by accelerated solvent extraction and Soxhlet extraction[J]. Rock and Mineral Analysis, 2009, 28(5): 416-422. doi: 10.3969/j.issn.0254-5357.2009.05.004 http://www.ykcs.ac.cn/article/id/ykcs_20090504
[42] 吴宇峰, 李利荣, 时庭锐, 等. 土壤和沉积物中17种有机氯农药残留量的测定[J]. 环境科学与技术, 2007, 30(1): 43-44, 122. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS200701015.htm
Wu Y F, Li L R, Shi T R, et al. Determination of 17 organochlorine pesticide residues in soil and sediments[J]. Environmental Science and Technology, 2007, 30(1): 43-44, 122. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS200701015.htm
[43] 鲁炳闻, 刘海萍, 徐鹏, 等. 土壤标准样品中有机氯农药的加速溶剂萃取/净化方法优化[J]. 中国测试, 2015, 41(3): 55-60. https://www.cnki.com.cn/Article/CJFDTOTAL-SYCS201503013.htm
Lu B W, Liu H P, Xu P, et al. Optimization of accelerated solvent extraction/purification method for organochlorine pesticides in soil standard samples[J]. China Measurement & Test, 2015, 41(3): 55-60. https://www.cnki.com.cn/Article/CJFDTOTAL-SYCS201503013.htm
[44] Helaleh M I H, Tanaka K, Fujii S I, et al. GC/MS determination of phenolic compounds in soil samples using Soxhlet extraction and derivatization techniques[J]. Analytical Sciences, 2001, 17(10): 1225-1227. http://www.ncbi.nlm.nih.gov/pubmed/11990602