Determination of Selenium, Major and Minor Elements in Selenium-rich Soil Samples by X-ray Fluorescence Spectrometry with Powder Pellet Preparation
-
摘要:
目前土壤中Se主要采用原子荧光光谱法测定,存在用酸量大、前处理相对复杂等缺点,对于高含量Se的测定则需要高倍稀释,无疑会扩大分析误差。本文采用粉末压片波谱-能谱复合X射线荧光光谱法测定湖北富硒土壤样品中的Se等17个主次量元素,波谱分析10个元素的同时,能谱分析As、Cu、Rb、Sr、Zr、Ba、Ni等7个元素,大幅节省了测定时间。通过将不同国家标准物质按比例混合的方式配置混合标准样品,解决了现有Se标准物质在5~72μg/g含量范围不足的问题。对于高含量Se的测定,通过谱图分析,波谱数据优于能谱数据,对其精密度、准确度考核,相对标准偏差(RSD)小于10%,高含量Se样品的RSD小于0.70%,能够满足Se含量大于3.00μg/g土壤样品的定量分析要求,同时可提供16个主次量元素的定量或近似定量分析结果。
Abstract:BACKGROUND At present, the content of Se in soil is mainly determined by atomic fluorescence spectrometry, which has disadvantages such as large usage of acid and relatively complex pretreatment. Determination of high content of Se requires high dilution, which expands the analysis error.
OBJECTIVES To establish a method for the determination of Se and other elements in Se-rich soil samples by wavelength dispersive and energy dispersive X-ray fluorescence (WD-ED XRF).
METHODS WD-ED XRF was used to determine 17 major and minor elements such as Se in Hubei selenium-rich soil samples with powder pellet. While 10 elements were analyzed by WD-XRF, As, Cu, Rb, Sr, Zr, Ba, Ni were analyzed by ED-XRF, which significantly reduced the measurement time.
RESULTS By mixing different certified reference materials in proportion to configure mixed certified reference materials, the problem of insufficient content of the existing Se reference materials in the range of 5-72μg/g was solved. For the determination of high content Se, the relative standard deviation was less than 10%, and the RSD of high content Se sample was less than 0.70%, through the precision and accuracy assessment.
CONCLUSIONS The proposed method satisfies the quantitative analysis of soil samples with Se content greater than 3.00μg/g, and provides the quantitative or approximate quantitative analysis results of 16 major and minor elements.
-
-
表 1 波长色散-能量色散X射线荧光光谱仪测量条件
Table 1. Measurement conditions of elements by WD-ED X-ray fluorescence spectrometer
波长色散测量条件 元素 谱线 电压(kV) 电流(mA) 滤光片 分析晶体 准直器(μm) 探测器 脉高分析器 2θ(º) 低限 高限 峰值 背景 Na Kα12 30 120 None PX1 700 Flow 25 75 27.7034 1.8196 Mg Kα12 30 120 None PX1 700 Flow 28 72 22.9178 1.8228 Al Kα12 30 120 None PE 300 Flow 27 73 144.8636 -1.8032 Si Kα12 30 120 None PE 300 Flow 34 66 109.0776 1.5716 P Kα12 30 120 None Ge 300 Flow 30 67 140.9834 -1.1014 K Kα12 30 120 None LiF200 300 Flow 33 66 136.6882 -2.7074 Ca Kα12 30 120 None LiF200 300 Flow 33 66 113.1246 2.0476 Ti Kα12 60 60 Al/200 LiF200 300 Flow 37 62 86.1620 -1.3728 Mn Kα12 60 60 Al/200 LiF220 150 Flow 39 59 95.1696 1.5694 Fe Kα12 60 60 Al/200 LiF220 150 Scint 31 69 85.6652 -1.0046 V Kα12 60 60 Al/200 LiF220 300 Flow 26 69 123.1436 -0.6186 Cr Kα12 60 60 Al/200 LiF200 150 Flow 35 60 69.3302 0.8222 Se Kα12 60 60 None LiF200 300 Scint 19 78 31.8598 0.7874 能量色散测量条件 元素 谱线 能量 解谱类型 电压(kV) 电流(mA) 滤光片 衰减器 探测器 背景 感兴趣区(keV) 低限 高限 As Kβ13 11.72 ED-R 60 60 Al/200 D=0.6 SDD Yes 11.47 11.83 Ba Kα12 32.06 ED-R 60 60 Brass/400 D=3.0 SDD Yes 31.57 32.58 Br Kα12 11.91 ED-R 60 60 Al/200 D=0.6 SDD Yes 11.88 12.00 Cu Kα12 8.04 ED-R 60 60 Al/200 D=0.6 SDD Yes 7.91 8.25 Ga Kα12 9.24 ED-R 60 60 Al/200 D=0.6 SDD Yes 9.01 9.43 Ge Kα12 9.87 ED-R 60 60 Al/200 D=0.6 SDD Yes 9.80 10.04 Ni Kα12 7.47 ED-R 60 60 Al/200 D=0.6 SDD Yes 7.33 7.63 Pb Lβ1 12.61 ED-R 60 60 Al/200 D=0.6 SDD Yes 12.36 12.87 Rb Kα12 13.37 ED-R 60 60 Al/200 D=0.6 SDD Yes 13.16 13.60 Se Kα12 11.21 ED-R 60 60 Al/200 D=0.6 SDD Yes 10.90 11.48 Sr Kα12 14.14 ED-R 60 60 Al/200 D=0.6 SDD Yes 13.87 14.41 Ti Kα12 4.51 ED-R 60 60 Al/200 D=0.6 SDD Yes 4.28 4.67 Y Kα12 14.93 ED-R 60 60 Al/200 D=0.6 SDD Yes 14.95 15.24 Zn Kα12 8.63 ED-R 60 60 Al/200 D=0.6 SDD Yes 8.45 8.81 Zr Kα12 15.75 ED-R 60 60 Al/200 D=0.6 SDD Yes 15.40 16.07 Rh Kα12 19.18 ED-R 60 60 Al/200 D=0.6 SDD Yes 18.32 19.83 表 2 配置的混合标准样品信息
Table 2. Information of mixed reference materials
混合标准样品编号 采用的标准物质编号 称样质量(g) Se含量(μg/g) HC-Se1 GBW07280 4.0000 72.19 GBW07407 6.0000 HC-Se2 GBW07166 4.0017 32.54 GBW07449 6.0028 HC-Se3 GBW07268 4.0042 20.36 GBW07406 5.8799 HC-Se4 GBW07283 4.0002 12.24 GBW07401 5.5382 HC-Se5 GBW07278 4.0003 5.78 GBW07403 6.0002 表 3 方法检出限
Table 3. Detection limit of the methods
元素 方法检出限(μg/g) 元素 方法检出限(μg/g) Na2O 33.03 As 0.41 MgO 17.33 Cu 1.25 Al2O3 101.6 Rb 0.83 SiO2 79.02 Sr 1.00 P2O5 5.93 Zr 0.97 K2O 6.17 Ba 3.75 TiO2 26.46 Se(能谱) 0.45 MnO 6.39 Se(波谱) 0.91 Fe2O3 6.28 Ni 1.69 表 4 方法精密度与准确度
Table 4. Precision and accuracy tests of the method
元素 GBW07347(n=10) GBW07277(n=10) 平均值(%) 标准值(%) RSD (%) 平均值(%) 标准值(%) RSD (%) Na2O 1.6 2.46 2.90 0.47 0.32 3.72 MgO 1.57 1.6 1.75 8.22 8.59 3.01 Al2O3 13.14 15.95 1.77 2.48 2.66 6.00 SiO2 49.65 51.24 0.74 15.43 13.74 1.64 P2O5 0.17 0.18 1.61 0.03 0.05 6.29 K2O 2.44 2.6 7.83 0.58 0.51 3.17 TiO2 0.76 0.75 2.95 0.23 0.1 7.88 MnO 0.09 0.09 1.89 0.06 0.06 1.81 Fe2O3 12.57 13.05 0.65 1.75 1.24 1.84 元素 GBW07347(n=10) GBW07277(n=10) 平均值(μg/g) 标准值(μg/g) RSD (%) 平均值(μg/g) 标准值(μg/g) RSD (%) As 15.43 24.2 8.17 94051 93300 0.31 Cu 6086 5000 1.06 249 140 1.53 Rb 77.69 52.7 1.35 20.68 无定值 5.88 Sr 429 399 0.66 477 无定值 0.92 Zr 136 134 2.04 - 无定值 - Ba 553 576 0.61 143 无定值 1.45 Se 3.79 4 9.44 26.05 28 0.61 Ni 2400 2390 1.11 - 33.6 - -
[1] Yu T, Yang Z F, Lv Y Y, et al. The origin and geochemical cycle of soil selenium in a Se-rich area of China[J]. Journal of Geochemical Exploration, 2014, 139: 97-108. doi: 10.1016/j.gexplo.2013.09.006
[2] 杨忠芳, 余涛, 侯青叶, 等. 海南岛农田土壤Se的地球化学特征[J]. 现代地质, 2012, 26(5): 837-849. doi: 10.3969/j.issn.1000-8527.2012.05.001
Yang Z F, Yu T, Hou Q Y, et al. Geochemical characteristics of soil selenium in farmland of Hainan Island[J]. Geoscience, 2012, 26(5): 837-849. doi: 10.3969/j.issn.1000-8527.2012.05.001
[3] 李杰, 杨志强, 刘枝刚, 等. 南宁市土壤硒分布特征及其影响因素探讨[J]. 土壤学报, 2012, 49(5): 1012-1020. https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201205021.htm
Li J, Yang Z Q, Liu Z G, et al. Distribution of selenium in soils of Nanning City and its influencing factors[J]. Acta Pedologica Sinica, 2012, 49(5): 1012-1020. https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201205021.htm
[4] 商靖敏, 罗维, 吴光红, 等. 洋河流域不同土地利用类型土壤硒(Se)分布及影响因素[J]. 环境科学, 2015, 36(1): 301-308. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201501046.htm
Shang J M, Luo W, Wu G H, et al. Spatial distribution of Se in soils from different land use types and its influencing factors within the Yanghe Watershed, China[J]. Environmental Sciences, 2015, 36(1): 301-308. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201501046.htm
[5] 李杰, 刘久臣, 汤奇峰, 等. 川西高原地区水体中硒含量及分布特征研究[J]. 岩矿测试, 2018, 37 (2): 183-192. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201709250154
Li J, Liu J C, Tang Q F, et al. Study of the content and distribution of selenium in water samples from the western Sichuan Plateau and the incidence of Kaschin Beck disease[J]. Rock and Mineral Analysis, 2018, 37(2): 183-192. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201709250154
[6] 谢邦廷, 贺灵, 江官军, 等. 中国南方典型富硒区土壤硒有效性调控与评价[J]. 岩矿测试, 2017, 36(3): 273-281. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201610100152
Xie B T, He L, Jiang G J, et al. Regulation and evaluation of selenium availability in Se-rich soils in southern China[J]. Rock and Mineral Analysis, 2017, 36(3): 273-281. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201610100152
[7] 杨良策, 李明龙, 陈林, 等. 恩施市高Se区农田土壤Se地球化学特征[J]. 资源环境与工程, 2017, 30(6): 852-855. https://www.cnki.com.cn/Article/CJFDTOTAL-HBDK201606011.htm
Yang L C, Li M L, Chen L, et al. Geochemical characteristics of soil selenium in farmland of Enshi, western Hubei[J]. Resources Environment & Engineering, 2017, 30(6): 852-855. https://www.cnki.com.cn/Article/CJFDTOTAL-HBDK201606011.htm
[8] 张亚峰, 苗国文, 马强, 等. 青海省海东市平安区土壤Se的地球化学特征[J]. 地球与环境, 2019, 47(1): 74-80. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201901010.htm
Zhang Y F, Miao G W, Ma Q, et al. Geochemical characteristics of Se in soil of the Pingan District, Haidong City, Qinghai Province[J]. Earth and Environment, 2019, 47(1): 74-80. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201901010.htm
[9] 石天平, 梁述廷. 富硒土壤中Se(Ⅳ)和Se(Ⅵ)测定[J]. 安徽地质, 2019, 29(1): 69-70. https://www.cnki.com.cn/Article/CJFDTOTAL-AHDZ201901013.htm
Shi T P, Liang S T. Determinations of Se(Ⅳ) and Se(Ⅵ) in selenium-rich soil[J]. Geology of Anhui, 2019, 29(1): 69-70. https://www.cnki.com.cn/Article/CJFDTOTAL-AHDZ201901013.htm
[10] 李植忠, 关雄俊, 吴健玲, 等. 工业硫磺中As、Se的测定[J]. 光谱学与光谱分析, 2002, 22(5): 868-870. doi: 10.3321/j.issn:1000-0593.2002.05.049
Li Z T, Guan X J, Wu J L, et al. Determination of arsenic and selenium in the industrial sulphur[J]. Spectroscopy and Spectral Analysis, 2002, 22(5): 868-870. doi: 10.3321/j.issn:1000-0593.2002.05.049
[11] 张俊峰, 栾海光, 李杨. 电感耦合等离子体原子发射光谱(ICP-AES)法测定粗锑中的As、Bi、Cd、Cu、Fe、Pb和Se[J]. 中国无机分析化学, 2018, 8(3): 36-39. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFX201803011.htm
Zhang J F, Luan H G, Li Y. Determination of As, Bi, Cd, Cu, Fe, Pb and Se in crude antimony by inductively coupled plasma atomic emission spectrometry (ICP-AES)[J]. Chinese Journal of Inorganic Analytical Chemistry, 2018, 8(3): 36-39. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFX201803011.htm
[12] 赵宗生, 赵小学, 姜晓旭, 等. 原子荧光光谱测定土壤和水系沉积物中硒的干扰来源及消除方法[J]. 岩矿测试, 2019, 38(3): 333-340. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201809190106
Zhao Z S, Zhao X X, Jiang X X, et al. Interference sources and elimination methods for the determination of selenium in soil and water sediment by atomic fluorescence spectrometry[J]. Rock and Mineral Analysis, 2019, 38(3): 333-340. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201809190106
[13] 张维宇, 张土秀, 倪天增. 程序控温石墨消解-原子荧光光谱法测定土壤中的硒[J]. 中国无机分析化学, 2011, 1(4): 36-39. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFX201104010.htm
Zhang W Y, Zhang S X, Ni T Z. Determination of total selenium in soil by atomic fluorescence spectrometry with program temperature-controlled graphite digestion[J]. Chinese Journal of Inorganic Analytical Chemistry, 2011, 1(4): 36-39. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFX201104010.htm
[14] 王晶, 肖娅萍, 梁晓庆, 等. 氢化物发生-原子荧光法测定不同产地绞股蓝及其根际土壤中As, Hg, Se[J]. 光谱学与光谱分析, 2012, 32(3): 813-816. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201203053.htm
Wang J, Xiao Y P, Liang X Q, et al. Determination of arsenic, mercury and selenium in gynostemma pentaphyllum and rhizospheric soil samples collected from different regions by hydride generation atomic fluorescence spectrometry[J]. Spectroscopy and Spectral Analysis, 2012, 32(3): 813-816. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201203053.htm
[15] 张勤, 李国会, 樊守忠, 等. X射线荧光光谱法测定土壤和水系沉积物等样品中碳、氮、氟、氯、硫、溴等42种主次和痕量元素[J]. 分析试验室, 2008, 27(11): 51-57. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY200811016.htm
Zhang Q, Li G H, Fan S Z, et al. Study on determination of 42 major, minor and trace elements in soil and stream sediment samples[J]. Chinese Journal of Analysis Laboratory, 2008, 27(11): 51-57. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY200811016.htm
[16] 刘玉纯, 林庆文, 马玲, 等. 粉末压片制样-X射线荧光光谱法分析地球化学调查样品测量条件的优化[J]. 岩矿测试, 2018, 37(6): 671-677. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201801300014
Lui Y C, Lin Q W, Ma L, et al. Optimization of measurement conditions for geochemical survey sample analysis by X-ray fluorescence spectrometry with pressed powder pellet sample preparation[J]. Rock and Mineral Analysis, 2018, 37(6): 671-677. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201801300014
[17] 阿丽莉, 贺攀红, 张盼盼. 粉末压片-X射线荧光光谱法测定地质样品中镧铈镨钕钐[J]. 冶金分析, 2019, 39(9): 39-45. A L L, https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201909007.htm
He P H, Zhang P P. Determination of lanthanum, cerium, praseodymium, neodymium and samarium in geological sample by X-ray fluorescence spectrometry with pressed powder pellet[J]. Metallurgical Analysis, 2019, 39 (9): 39-45. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201909007.htm
[18] 田衎, 郭伟臣, 杨永, 等. 波长色散X射线荧光光谱法测定土壤和水系沉积物中13种重金属元素[J]. 冶金分析, 2019, 39(10): 30-36. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201910006.htm
Tian K, Guo W C, Yang Y, et al. Determination of thirteen heavy metals in soil and stream sediment by wavelength dispersive X-ray fluorescence spectrometry[J]. Metallurgical Analysis, 2019, 39(10): 30-36. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201910006.htm
[19] 邓述培, 范鹏飞, 唐玉霜, 等. X射线荧光光谱(XRF)法测定土壤污染样品中9种重金属元素[J]. 中国无机分析化学, 2019, 9(4): 12-15. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFX201904003.htm
Deng S P, Fan P F, Tang Y S, et al. Determination of 9 kinds of soil pollution of heavy metals elements in samples by X-ray fluorescence spectrometry[J]. Chinese Journal of Inorganic Analytical Chemistry, 2019, 9(4): 12-15. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFX201904003.htm
[20] 闵秀云, 王德荣, 高春亮, 等. 粉末压片-X射线荧光光谱法测定盐湖样品中的主次元素[J]. 盐湖研究, 2016, 24(2): 32-36. https://www.cnki.com.cn/Article/CJFDTOTAL-YHYJ201602007.htm
Min X Y, Wang D R, Gao C L, et al. Major and minor elements from salt lake samples determined by pressed powder pellet method and X-ray fluorescence spectrometry[J]. Journal of Salt Lake Research, 2016, 24(2): 32-36. https://www.cnki.com.cn/Article/CJFDTOTAL-YHYJ201602007.htm
[21] 王佳妮, 张晗, 洪子肖, 等. X射线荧光光谱法测定螺旋藻中23种微量元素[J]. 分析试验室, 2016, 35(2): 130-134. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY201602003.htm
Wang J N, Zhang H, Hong Z X, et al. Determination of 23 trace elements in spirulina using X-ray fluorescence spectrometry[J]. Chinese Journal of Analysis Laboratory, 2016, 35(2): 130-134. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY201602003.htm
[22] 李小莉, 安树清, 徐铁民, 等. 超细粉末压片制样X射线荧光光谱测定碳酸岩样品中多种元素及CO2[J]. 光谱学与光谱分析, 2015, 35(6): 1741-1745. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201506062.htm
Li X L, An S Q, Xu T M, et al. Ultra-fine pressed powder pellet sample preparation XRF determination of multi-elements and carbon dioxide in carbonate[J]. Spectroscopy and Spectral Analysis, 2015, 35(6): 1741-1745. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201506062.htm
[23] 刘菊琴, 李小莉. 波长与能量色散复合型X射线荧光光谱仪测定海洋沉积物, 水系沉积物, 岩石和土壤样品中15种稀土元素[J]. 冶金分析, 2018, 38(5): 7-12. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201805002.htm
Liu J Q, Li X L. Determination of fifteen rare earth elements in ocean sediment, stream sediment, rock and soil samples by wavelength dispersion energy dispersion combined type X-ray fluorescence spectrometer[J]. Metallurgical Analysis, 2018, 38(5): 7-12. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201805002.htm
[24] 张颖, 朱爱美, 张迎秋, 等. 波长与能量色散复合式X射线荧光光谱技术测定海洋沉积物元素[J]. 分析化学, 2019, 47(7): 1090-1097. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201907019.htm
Zhang Y, Zhu A M, Zhang Y Q, et al. Fast analysis of major and minor elements in marine sediments by wavelength and energy dispersive X-ray fluorescence spectrometer[J]. Chinese Journal of Analytical Chemistry, 2019, 47(7): 1090-1097. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201907019.htm
[25] 沈亚婷, 李迎春, 孙梦荷, 等. 波长与能量色散复合式X射线荧光光谱仪特性研究及矿区土壤分析[J]. 光谱学与光谱分析, 2017, 37(7): 2216-2224. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201707044.htm
Shen Y T, Li Y C, Sun M H, et al. Studies on characteristics on a combined wavelength and energy dispersion X-ray fluorescence spectrometer and determinations of major, minor and trace elements in soils around a mining area[J]. Spectroscopy and Spectral Analysis, 2017, 37(7): 2216-2224. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201707044.htm
[26] 李小莉, 薄玮, 徐进力, 等. 高压覆膜制样-X射线荧光光谱法测定多金属矿中的多种元素[J]. 中国无机分析化学, 2020, 10(2): 34-38. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFX202002007.htm
Li X L, Bo W, Xu J L, et al. Determination of multi elements in polymetallic ore by XRF with high pressure pressed pellet covered with polyester film[J]. Chinese Journal of Inorganic Analytical Chemistry, 2020, 10(2): 34-38. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFX202002007.htm
[27] 杨小丽, 刘星恒. XRF法测定以Cu、Pb、Zn为主的多金属矿中的主次元素[J]. 现代仪器, 2012, 18(4): 18-21. https://www.cnki.com.cn/Article/CJFDTOTAL-XDYI201204007.htm
Yang X L, Lui X H. Determination of major and minor elements in Cu, Pb, Zn primarily polymetallic ore by X-ray fluorescence spectrometry[J]. Modern Instrumen, 2012, 18(4): 18-21. https://www.cnki.com.cn/Article/CJFDTOTAL-XDYI201204007.htm
[28] 朱建明, 梁小兵, 李社红, 等. 湖北恩施渔塘坝自然硒的分布及其环境意义[J]. 地质论评, 2005, 51(4): 428-435. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200504011.htm
Zhu J M, Liang X B, Li S H, et al. The distribution of native selenium in Yutangba and its environmental significance[J]. Geological Review, 2005, 51(4): 428-435. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200504011.htm
[29] 李明龙, 徐辉, 许克元, 等. 恩施地区富硒地层分布规律及其控制因素探讨[J]. 资源环境与工程, 2018, 32(4): 557-562. https://www.cnki.com.cn/Article/CJFDTOTAL-HBDK201804009.htm
Li M L, Xu H, Xu K Y, et al. Discussion on distribution regularity and controlling factors of selenium-rich strata in Enshi, Hubei Province[J]. Resources Environment & Engineering, 2018, 32(4): 557-562. https://www.cnki.com.cn/Article/CJFDTOTAL-HBDK201804009.htm
[30] 余涛, 杨忠芳, 王锐, 等. 恩施典型富硒区土壤硒与其他元素组合特征及来源分析[J]. 土壤, 2018, 50(6): 1119-1125. https://www.cnki.com.cn/Article/CJFDTOTAL-TURA201806010.htm
Yu T, Yang Z F, Wang R, et al. Characteristics and sources of soil selenium and other elements in typical high selenium soil area of Enshi[J]. Soils, 2018, 50(6): 1119-1125. https://www.cnki.com.cn/Article/CJFDTOTAL-TURA201806010.htm
[31] 邹辉, 王卉, 段碧辉, 等. 恩施州宣恩地区富硒土壤硒含量特征及影响因素研究[J]. 资源环境与工程, 2018, 32(4): 546-550. https://www.cnki.com.cn/Article/CJFDTOTAL-HBDK201804007.htm
Zou H, Wang H, Duan B H, et al. Study on selenium contents characteristics of selenium-rich soil in Xuan'en area of Enshi and its influencing factors[J]. Resources Environment & Engineering, 2018, 32(4): 546-550. https://www.cnki.com.cn/Article/CJFDTOTAL-HBDK201804007.htm
[32] 李清彩, 赵庆令. 粉末压片制样波长色散X射线荧光光谱法测定钼矿石中9种元素[J]. 岩矿测试, 2014, 33(6): 839-843. http://www.ykcs.ac.cn/article/id/29977e2b-27e8-4c8c-9ca8-a1fa8c863efd
Li Q C, Zhao Q L. Determination of 9 elements in molybdenum ore by wavelength dispersive X-ray fluorescence spectrometry with powder pelleting preparation[J]. Rock and Mineral Analysis, 2014, 33(6): 839-843. http://www.ykcs.ac.cn/article/id/29977e2b-27e8-4c8c-9ca8-a1fa8c863efd
[33] 龚琦. 对电感耦合等离子体发射光谱法中一些问题的认识[J]. 冶金分析, 2018, 38(9): 26-30. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201809005.htm
Gong Q. Understanding of some issues about inductively coupled plasma optical emission spectrometry[J]. Metallurgical Analysis, 2018, 38(9): 26-30. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201809005.htm
-