-
摘要:
将标准样品和一定数量已知浓度水平的实际样品,在特定的实验室进行比对测试,从而获得某一项目分析测试方法的精密度控制水平,是当前技术规范或标准方法制定过程的常用手段。本文选取来自中国31个省(区、市)的大批量(871个)、不同浓度梯度、不同类型(34种)、具有地域代表性的实际土壤样品,开展了土壤中Zn元素含量测定的精密度控制研究,全部以盲样方式分发至76家不同的实验室,每个样品由2~4家不同实验室进行室内和室间平行比对测试,旨在提出更具有效性、代表性和普适性的精密度控制评价标准建议值。实验中选用当前国家土壤生态环境监测工作中最常用的两种标准方法——火焰原子吸收光谱法(AAS)和波长色散X射线荧光光谱法(XRF)测试土壤中Zn含量。数据分析结果表明,两种不同的测试方法下其精密度控制结果无显著差异;不同土壤类型可能会对精密度控制水平产生影响,主要原因在于不同土壤类型存在基质组成的差异,可能会导致消解程度或压片密实度不同。因此,在实际监测工作中,还需考虑不同类型土壤的分析测试条件需求差异和测试结果的可比性。
Abstract:BACKGROUND The current technical specification, or standard method, to obtain the precision control level of a certain test item is to send the standard sample and a certain number of actual samples, with a known concentration level, to specific laboratories for comparison testing.
OBJECTIVES To provide a more effective, representative and universal precision control evaluation standard.
METHODS 871 actual soil samples with different concentration gradients, types (34 kinds) and geographical representation from 31 provinces (autonomous regions and municipalities) were selected and distributed blind to 76 different laboratories. Each sample was subjected to indoor and inter-laboratory parallel comparison tests by 2 to 4 different laboratories. Two standard methods, flame atomic absorption spectrometry (AAS) and wavelength dispersive X-ray fluorescence spectrometry (WD-XRF), which are commonly used in soil ecological environment monitoring in China, were selected.
RESULTS When the concentration of Zn is less than 50mg/kg, it is proposed to control RD ≤ 15% in laboratory and RD' ≤ 20% inter laboratories for the open code test samples and standard samples, while RD ≤ 20% in laboratory and RD' ≤ 30% inter laboratories for the blind test samples. In the case of the concentration of Zn is 50-90mg/kg, it is proposed to control RD ≤ 10% in laboratory and RD' ≤ 20% inter laboratories for the open code test samples and standard samples, while RD ≤ 15% in laboratory and RD' ≤ 25% inter laboratories for the blind test samples. When the concentration of Zn is higher than 90mg/kg, it is proposed to control RD ≤ 10% in laboratory and RD' ≤ 15% inter laboratories for the open code test samples and standard samples, while RD ≤ 10% in laboratory and RD' ≤ 20% inter laboratories for the blind test samples.
CONCLUSIONS There is no significant difference in the precision control results under AAS and XRF analysis methods. Different soil types may affect the precision control level. The main reason is that different matrix compositions of different soil types lead to different levels of digestion or compaction. Therefore, in actual monitoring work, it is also necessary to consider the difference in requirements of analysis and test conditions for different types of soil and the comparability of test results.
-
-
表 1 不同置信度下不同浓度梯度的RD和RD’值统计
Table 1. Statistics of RD and RD' values of different concentration ranges under different levels of confidence
精密度指标 置信度
(%)Zn含量 < 50mg/kg Zn含量在50~90mg/kg之间 Zn含量>90mg/kg 平均值
(%)中位值
(%)标准偏差
(%)平均值
(%)中位值
(%)标准偏差
(%)平均值
(%)中位值
(%)标准偏差
(%)RD 80 2.48 1.69 2.34 2.05 1.70 1.53 1.69 1.23 1.42 90 3.72 2.13 4.11 2.70 2.08 2.40 2.35 1.48 2.30 95 4.49 2.38 5.27 3.36 2.29 3.62 3.05 1.66 3.85 RD’ 80 6.64 5.78 4.73 4.75 4.37 3.24 4.52 3.78 3.15 90 8.26 6.28 6.45 5.23 4.99 4.54 5.79 4.89 4.82 95 10.03 6.38 9.57 6.92 5.32 6.33 7.13 5.04 7.14 表 2 不同浓度下不同测试方法的RD和RD’值统计
Table 2. Statistics of RD and RD'values of different methods under different concentration ranges
Zn含量
(mg/kg)XRF法RD值 AAS法RD值 AAS法RD’值 平均值
(%)中位值
(%)标准偏差
(%)平均值
(%)中位值
(%)标准偏差
(%)平均值
(%)中位值
(%)标准偏差
(%)< 50 2.67 1.35 3.91 6.14 3.55 7.60 9.40 5.60 10.92 50~90 3.48 1.70 7.61 6.27 3.53 8.19 6.88 4.63 7.06 >90 2.42 1.03 6.73 8.50 4.48 12.19 14.42 8.07 18.95 表 3 土壤环境质量监测中Zn元素平行测定精密度控制指标汇总
Table 3. Precision evaluation standard of Zn in soil environmental monitoring
Zn含量
(mg/kg)相对偏差(%) 数据来源 适用分析测定方法 RD RD’ <50
50~90
>90±25 ±30
±20 ±30
±15 ±25《土壤环境监测技术规范》
(HJ/T 166—2004)
(相对标准偏差)AAS <50
50~90
>90±10 ±15
±10 ±15
±5 ±10《农田土壤环境监测技术规范》
(NY/T 395—2012)AAS,ICP-MS,ICP-OES 56.2
88.4
68.1±2.8 ±7.3
±1.6 ±5.0
±3.2 ±4.1《土壤质量铜、锌的测定火焰原子吸收分光光度法》
(GB/T 17138—1997)
(标准样品的精密度控制结果)AAS < 0.1
0.1 ~1.0
1.0~10
10~100
>100±30 -
±25 -
±20 -
±10 -
±5 -《土壤和沉积物无机元素的测定波长色散X射线
荧光光谱法》
(HJ 780—2015)XRF < 50
50~90
>90±20 ±30
±15 ±25
±10 ±20本文建议值
(明码样品和标准样品可适度严格)AAS,XRF -
[1] 周江明. 中国耕地重金属污染现状及其人为污染源浅析[J]. 中国土壤与肥料, 2020(2): 83-92. https://www.cnki.com.cn/Article/CJFDTOTAL-TRFL202002013.htm
Zhou J M. Analysis on the current situation of heavy metal pollution in China's cultivated land and the sources of man-made pollution[J]. Soil and Fertilizer Sciences in China, 2020(2): 83-92. https://www.cnki.com.cn/Article/CJFDTOTAL-TRFL202002013.htm
[2] 陈卫平, 杨阳, 谢天, 等. 中国农田土壤重金属污染防治挑战与对策[J]. 土壤学报, 2018, 55(2): 261-272. https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201802001.htm
Chen W P, Yang Y, Xie T. Challenges and countermeasures for heavy metal pollution control in farmlands of China[J]. Acta Pedologica Sincia, 2018, 55(2): 261-272. https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201802001.htm
[3] 徐建明, 孟俊, 刘杏梅, 等. 我国农田土壤重金属污染防治与粮食安全保障[J]. 中国科学院院刊, 2018, 33(2): 153-159. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYX201802006.htm
Xu J M, Meng J, Liu X M, et al. Control of heavy metal pollution in farmland of China in terms of food security[J]. Bulletin of Chinese Academy of Sciences, 2018, 33(2): 153-159. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYX201802006.htm
[4] Nihal G, Latha R, Sudip M. Occurrence, geochemical fraction, ecological and health risk assessment of cadmium, copper and nickel in soils contaminated with municipal solid wastes[J]. Chemosphere, 2021, doi: 10.1016/j.chemosphere.2021.129573.
[5] Weissmannova H D, Pavlovsky J. Indices of soil contami-nation by heavy metals-Methodology of calculation for pollution assessment (minireview)[J]. Environmental Monitoring and Assessment, 2017, doi. org/10.1007/s10661-017-6340-5. http://www.onacademic.com/detail/journal_1000040120686610_9461.html
[6] 杜文娟. 浅谈环境监测在生态环境保护中的作用及发展措施[J]. 中国资源综合利用, 2020, 38(1): 129-131. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWZS202001039.htm
Du W J. Discussion on the function and development measures of environmental monitoring in ecological environment protection[J]. China Resources Comprehensive Utilization, 2020, 38(1): 129-131. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWZS202001039.htm
[7] 单中炳. 试析土壤监测质量控制问题[J]. 中国资源综合利用, 2019, 37(8): 135-137. doi: 10.3969/j.issn.1008-9500.2019.08.038
Shan Z B. Analysis on quality control of soil monitoring[J]. China Resources Comprehensive Utilization, 2019, 37(8): 135-137. doi: 10.3969/j.issn.1008-9500.2019.08.038
[8] Niu X J, Wang X H, Gao J, et al. Has third-party monitoring improved environmental data quality? An analysis of air pollution data in China[J]. Journal of Environmental Management, 2020, doi. org/10.1016/j. jenvman. 2019.109698. http://www.sciencedirect.com/science/article/pii/S0301479719314161
[9] 王玉云, 赵兵. 环境监测中王水水浴、微波消解——原子荧光法测定土壤中砷和汞的方法探究[J]. 四川环境, 2018, 37(6): 102-107. https://www.cnki.com.cn/Article/CJFDTOTAL-SCHJ201806019.htm
Wang Y Y, Zhao B. Study on determination of arsenic and mercury in soil by aqua regia water bath, microwave digestion-atomic fluorescence method in environmental monitoring[J]. Sichuan Environment, 2018, 37(6): 102-107. https://www.cnki.com.cn/Article/CJFDTOTAL-SCHJ201806019.htm
[10] 李佳. 浅谈环境监测工作质量管理体系运行方法[J]. 环境保护与循环经济, 2019, 39(11): 72-73. doi: 10.3969/j.issn.1674-1021.2019.11.020
Li J. Talking about the operation method of environmental monitoring work quality management system[J]. Environmental Protection and Circular Economy, 2019, 39(11): 72-73. doi: 10.3969/j.issn.1674-1021.2019.11.020
[11] Piekut A, Baranowska R, Marchwinska-Wyrwal E, et al. Is the soil quality monitoring an effective tool in consumers' protection of agricultural crops from cadmium soil contamination?-A case of the Silesia Region (Poland)[J]. Environmental Monitoring and Assessment, 2018, 190(1): 25. doi: 10.1007/s10661-017-6413-5
[12] 邓述培, 范鹏飞, 唐玉霜, 等. X射线荧光光谱(XRF)法测定土壤污染样品中9种重金属元素[J]. 中国无机分析化学, 2019, 9(4): 12-15. doi: 10.3969/j.issn.2095-1035.2019.04.003
Deng S P, Fan P F, Tang Y S, et al. Determination of 9 kinds of soil pollution of heavy metals in samples by X-ray fluorescence spectrometry[J]. Chinese Journal of Inorganic Analytical Chemistry, 2019, 9(4): 12-15. doi: 10.3969/j.issn.2095-1035.2019.04.003
[13] 毛雪飞, 刘霁欣, 钱永忠. 土壤重金属快速检测技术研究进展[J]. 中国农业科学, 2019, 52(24): 4555-4566. doi: 10.3864/j.issn.0578-1752.2019.24.010
Mao X F, Liu J X, Qian Y Z. Technical review of fast detection of heavy metals in soil[J]. Scientia Agricultura Sinica, 2019, 52(24): 4555-4566. doi: 10.3864/j.issn.0578-1752.2019.24.010
[14] 夏新, 陈纯, 米方卓, 等. 原子荧光法测定土壤中砷的质量控制评价标准研究[J]. 中国环境监测, 2015, 31(3): 19-23. doi: 10.3969/j.issn.1002-6002.2015.03.004
Xia X, Chen C, Mi F Z, et al. The quality control index on atomic absorption spectrometry for the analysis of Zn in water[J]. Environmental Monitoring in China, 2015, 31(3): 19-23. doi: 10.3969/j.issn.1002-6002.2015.03.004
[15] 田志仁, 姜晓旭, 蒋月, 等. 土壤中镉元素测定精密度评价标准研究[J]. 环境监控与预警, 2019, 11(2): 26-30. doi: 10.3969/j.issn.1674-6732.2019.02.005
Tian Z R, Jiang X X, Jiang Y, et al. A research of evaluation standards of precision control on the detection of Cd in soil[J]. Environmental Monitoring and Forewarning, 2019, 11(2): 26-30. doi: 10.3969/j.issn.1674-6732.2019.02.005
[16] 张甘霖, 王秋兵, 张凤荣, 等. 中国土壤系统分类土族和土系划分标准[J]. 土壤学报, 2013, 50(4): 826-834. https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201304024.htm
Zhang G L, Wang Q B, Zhang F R, et al. Critria for establishment of soil family and soil series in Chinese soil taxonomy[J]. Acta Pedologica Sinica, 2013, 50(4): 826-834. https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201304024.htm
[17] 芶凯平. 浅谈环境监测盲样考核方法[J]. 环境科学导刊, 2017, 36(增刊2): 203-204. https://www.cnki.com.cn/Article/CJFDTOTAL-YNHK2017S2029.htm
Gou K P. Talking about the evaluation method of blind sample of environmental monitoring[J]. Environmental Science Survey, 2017, 36(Supplement 2): 203-204. https://www.cnki.com.cn/Article/CJFDTOTAL-YNHK2017S2029.htm
[18] 王婷, 郭峰. 土壤例行监测样品采集的质量保证和质量控制探讨[J]. 安徽农学通报, 2016, 22(18): 79, 92. https://www.cnki.com.cn/Article/CJFDTOTAL-AHNB201618031.htm
Wang T, Guo F. Quality assurance and quality control of soil sample collecting in soil environmental quality monitoring[J]. Anhui Agricultural Science Bulletin, 2016, 22(18): 79, 92. https://www.cnki.com.cn/Article/CJFDTOTAL-AHNB201618031.htm
[19] 张雪梅, 罗小玲. 建设用地土壤环境调查监测外部质量控制措施浅析[J]. 广东化工, 2020, 47(15): 277, 279. https://www.cnki.com.cn/Article/CJFDTOTAL-GDHG202015133.htm
Zhang X M, Luo X L. Analysis of the external quality control measures for soil environmental monitoring of development land[J]. Guangdong Chemical Industry, 2020, 47(15): 277, 279. https://www.cnki.com.cn/Article/CJFDTOTAL-GDHG202015133.htm
[20] 刘琳娟, 黄娟, 张晔霞, 等. 建立土壤监测分析质量管理及评估体系的探讨[J]. 环境监控与预警, 2019, 11(3): 58-62. doi: 10.3969/j.issn.1674-6732.2019.03.013
Liu L J, Huang J, Zhang Y X, et al. Discussion on establishing quality management and evaluation system of soil monitoring and analysis[J]. Environmental Monitoring and Forewarning, 2019, 11(3): 58-62. doi: 10.3969/j.issn.1674-6732.2019.03.013
[21] 杨琦. 浅谈土壤污染环境监测的质量控制和评价方法[J]. 南方农机, 2018, 49(21): 92. doi: 10.3969/j.issn.1672-3872.2018.21.071
Yang Q. Talking about the quality control and evaluation method of soil pollution environment monitoring[J]. China Southern Agricultural Machinery, 2018, 49(21): 92. doi: 10.3969/j.issn.1672-3872.2018.21.071
[22] 田志仁, 封雪, 姜晓旭, 等. 生态环境监测工作中应用AAS/AFS和XRF法测定土壤重金属数据质量评价[J]. 岩矿测试, 2019, 38(5): 479-488. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201811080119
Tian Z R, Feng X, Jiang X X, et al. Evaluation of data quality on the detection of heavy metals in soils by atomic absorption spectrometry or atomic fluorescence spectrometry and X-ray fluorescence spectrometry in ecological environment monitoring[J]. Rock and Mineral Analysis, 2019, 38(5): 479-488. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201811080119
[23] 帅立, 袁卫峰, 巢楚越. 生态环境监测工作中应用AAS/AFS和XRF法测定土壤重金属比较研究[J]. 江西化工, 2020, 36(5): 38-39. doi: 10.3969/j.issn.1008-3103.2020.05.012
Shai L, Yuan W F, Chao C Y. AAS/AFS and XRF are used to determine heavy metals in soil in ecological monitoring[J]. Jiangxi Chemical Industry, 2020, 36(5): 38-39. doi: 10.3969/j.issn.1008-3103.2020.05.012
[24] 叶伟红, 洪正昉, 郑翔翔. 土壤中7种重金属和砷测定的精密度控制指标研究[J]. 中国环境监测, 2020, 36(4): 115-122. https://www.cnki.com.cn/Article/CJFDTOTAL-IAOB202004017.htm
Ye W H, Hong Z F, Zheng X X. Study on the indexes of precision control for the determination of 7 heavy metals and arsenic in soil[J]. Environmental Monitoring in China, 2020, 36(4): 115-122. https://www.cnki.com.cn/Article/CJFDTOTAL-IAOB202004017.htm
[25] 滕曼, 吴晓凤, 贾立明, 等. 我国环境监测实验室土壤铅检测能力比对分析[J]. 环境与健康杂志, 2018, 35(6): 547-548. https://www.cnki.com.cn/Article/CJFDTOTAL-HJYJ201806026.htm
Teng M, Wu X F, Jia L M, et al. Comparative analysis of soil lead detection capability in environmental monitoring laboratories of China[J]. Journal of Environment and Health, 2018, 35(6): 547-548. https://www.cnki.com.cn/Article/CJFDTOTAL-HJYJ201806026.htm
[26] 王宇游, 夏新, 米方卓, 等. 《土壤环境质量标准》中六种重金属测定精密度控制指标研究[J]. 土壤通报, 2014, 45(6): 1500-1504. https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB201406033.htm
Wang Y Y, Xia X, Mi F Z, et al. Study on the indexes of precision quality control for 6 heavy metals in soil environmental quality standard[J]. Chinese Journal of Soil Science, 2014, 45(6): 1500-1504. https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB201406033.htm
[27] 朱梦杰. 便携式XRF测定仪在土壤检测中的应用及其影响因素[J]. 中国环境监测, 2019, 35(6): 129-137. https://www.cnki.com.cn/Article/CJFDTOTAL-IAOB201906020.htm
Zhu M J. Application of portable XRF analyzer in soil detection and its influencing factors[J]. Environmental Monitoring in China, 2019, 35(6): 129-137. https://www.cnki.com.cn/Article/CJFDTOTAL-IAOB201906020.htm
[28] 张艾蕊, 王海, 王海峰, 等. 微波氧燃烧样品前处理法在元素分析中的应用[J]. 分析测试学报, 2016, 35(12): 1654-1660. doi: 10.3969/j.issn.1004-4957.2016.12.025
Zhang A R, Wang H, Wang H F, et al. Application of microwave-induced combustion as sample pretreatment method in elemental analysis[J]. Journal of Instrumental Analysis, 2016, 35(12): 1654-1660. doi: 10.3969/j.issn.1004-4957.2016.12.025
[29] 彭洪柳, 杨周生, 赵婕, 等. 高精度便携式X射线荧光光谱仪在污染农田土壤重金属速测中的应用研究[J]. 农业环境科学学报, 2018, 37(7): 1386-1395. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201807011.htm
Peng H L, Yang Z S, Zhao J, et al. Use of high-precision portable X-ray fluorescence spectrometer on the heavy metal rapid determination for contaminated agricultural soils[J]. Journal of Agro-Environment Science, 2018, 37(7): 1386-1395. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201807011.htm
[30] 刀谞, 霍晓芹, 张霖琳, 等. 我国土壤中主要元素监测技术及难点[J]. 中国环境监测, 2018, 34(5): 12-21. https://www.cnki.com.cn/Article/CJFDTOTAL-IAOB201805003.htm
Dao X, Huo X Q, Zhang L L, et al. Overview of main soil element heavy metal monitoring technology and difficulties in China[J]. Environmental Monitoring in China, 2018, 34(5): 12-21. https://www.cnki.com.cn/Article/CJFDTOTAL-IAOB201805003.htm
[31] 刘玉纯, 林庆文, 马玲, 等. 粉末压片制样-X射线荧光光谱法分析地球化学调查样品测量条件的优化[J]. 岩矿测试, 2018, 37(6): 671-677. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201801300014
Liu Y C, Lin Q W, Ma L, et al. Optimization of measurement conditions for geochemical survey sample analysis by X-ray fluorescence spectrometry with pressed powder pellet sample preparation[J]. Rock and Mineral Analysis, 2018, 37(6): 671-677. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201801300014
[32] 王娜, 徐铁民, 魏双, 等. 微波消解-电感耦合等离子体质谱法测定超细粒度岩石和土壤样品中的稀土元素[J]. 岩矿测试, 2020, 39(1): 68-76. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201904010043
Wang N, Xu T M, Wei S, et al. Determination of are earth elements in ultra-fine-grained rock and soil samples by microwave digestion-inductively coupled plasma mass spectrometry[J]. Rock and Mineral Analysis, 2020, 39(1): 68-76. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201904010043
[33] 王文婷. 原子吸收法对全国土壤详查样品总铬的研究[J]. 山西冶金, 2019, 42(6): 59-60, 62. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYZ201906023.htm
Wang W T. Study on total chromium in soil samples from national soil survey by AAS[J]. Shanxi Metallurgy, 2019, 42(6): 59-60, 62. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYZ201906023.htm
-