Characteristics of Photoluminescence and Raman Spectra, and the Occurrence of Trace Elements of Blue Amber from Dominican Republic and Mexico
-
摘要:
蓝珀主要产于多米尼加共和国、墨西哥与缅甸,其形成机制、组成成分及光谱特征与之特定的产出地理环境有密切的关联。因此,蓝珀的产地研究成为当前珠宝玉石、考古及生物矿物学研究领域的热点课题。前人主要应用红外光谱、X射线荧光光谱、质谱、同位素示踪等技术开展了较系统的蓝珀产地的溯源研究,但限于蓝珀材质的类同,不同产地蓝珀的光谱学等特征存在相似性。同时,因部分检测设备应用的普及性不高,因此给基于上述相应设备所关联的检测方法的应用带来了较大局限。本文应用光致发光(Photoluminescence,PL)与拉曼光谱结合微量元素分析对多米尼加共和国与墨西哥两个不同产地蓝珀的光谱与元素赋存特征予以研究。结果表明:①室温下,在以405nm为激发波长的PL光谱中,多米尼加蓝珀同时出现约450、475与502nm处峰位。相比之下,墨西哥蓝珀未见明显特征峰, 以上两产地蓝珀的PL光谱差异性可作为其产地溯源鉴定的直接依据。②在以785nm为激发波长的拉曼光谱中,多米尼加蓝珀在约154、468、901、1177及1312cm-1处的拉曼峰较墨西哥蓝珀在上述位置处的峰位更为明显。同时,多米尼加蓝珀对应的谱图中约1653cm-1与1446cm-1 处峰强比值N(N=I1653/I1446)明显高于墨西哥蓝珀的上述峰位比值;③两个产地蓝珀中均含有微量的S、Si、Fe与Cu, 且含量大小均呈现S>Si>Fe>Cu特征。相比之下,多米尼加蓝珀中Cu元素一般高于墨西哥蓝珀,因此Cu赋存含量特征可作为多米尼加蓝珀溯源的佐证依据之一。
Abstract:BACKGROUND Blue amber is mainly produced in the Dominican Republic, Mexico and Myanmar. Generally speaking, the formation mechanism, composition and spectral characteristics of blue amber are closely related to its specific geographical environment. Therefore, the study on the origin of blue amber has become a hot topic in the field of gemology, archaeology and biological mineralogy, and the origin of geographical districts of blue amber has become a hot research topic. Previous studies mainly used infrared spectroscopy, X-ray fluorescence spectroscopy, mass spectrometry, and isotope tracing to carry out a relatively systematic study on the origin of blue amber, but were limited to the similarity of blue amber, and the spectral characteristics of blue amber from different origins showing similarities. Due to the low popularity of the application of some detection devices, the application of the detection method based on the above-mentioned corresponding devices is greatly limited.
OBJECTIVES To identify photoluminescence (PL), Raman spectroscopy and trace element characteristics of blue amber with different origins.
METHODS Photoluminescence and Raman spectroscopy combined with trace element analysis were used to study the spectral and elemental occurrence characteristics of blue amber from Dominican Republic and Mexico.
RESULTS The results showed that: (1)At room temperature, using PL spectrum with 405nm as the excitation wavelength, the peaks at 450, 475 and 502nm appeared simultaneously for blue amber from Dominican Republic. In contrast, there was no significant characteristic peak in Mexican blue amber. The differences in PL spectrum of blue amber from the two origins can be used as a direct basis for the traceability and identification of its origin. (2)Using the Raman spectrum with 785nm as the excitation wavelength, the Raman peaks of blue amber from Dominican Republic at about 154, 468, 901, 1177 and 1312cm-1 were more prominent or sharper than those from Mexico. The ratio of the peak intensity at 1653 and 1446cm-1 (N=I1653/I1446) in the corresponding spectrum of the amber from Dominican Republic was significantly higher than that from Mexico. (3)Trace elements of S, Si, Fe and Cu were present in the blue amber from the two regions, and the content was S>Si>Fe>Cu. The content of Cu in blue amber from Dominican Republic was generally higher than that from Mexico. Therefore, the occurrence and content characteristics of Cu can be used as one of the evidences for the traceability of Dominican blue amber.
CONCLUSIONS The research work provides theoretical and technical support for the origin of blue amber with different geographical locations. It can also provide a salutary reference for identification of the geographical location for other gems.
-
表 1 多米尼加与墨西哥蓝珀微量元素赋存特征
Table 1. Occurrence characteristics of trace elements in ambers from Dominican Republic and Mexico
蓝珀产地 S含量(%) Si含量(%) Fe含量(%) Cu含量(%) (S+Si)含量(%) 多米尼加共和国 45.186 31.794 10.202 7.268 76.980 墨西哥 61.494 22.046 6.302 3.740 83.540 注:在不考虑琥珀中C、H、O、N等主量元素时,以其他少量或微量元素作为对比项作归一化定量研究。 -
[1] Brody R H, Edwards H G M, Pollard A M. A study of amber and copal sample using FT-Raman spectroscopy[J]. Spectrochimica Acta: Part A, 2001, 57(6): 1325-1338. doi: 10.1016/S1386-1425(01)00387-0
[2] 黄睿, 邢秋雨, 虞澜, 等. 不同产地琥珀的有机成分分析[J]. 桂林理工大学学报, 2017, 37(2): 280-284. doi: 10.3969/j.issn.1674-9057.2017.02.006
Huang R, Xing Q Y, Yu L, et al. Organic components analysis of amber from different origins[J]. Journal of Guilin University of Technology, 2017, 37(2): 280-284. doi: 10.3969/j.issn.1674-9057.2017.02.006
[3] Liu Y, Shi G H, Wang S. Color phenomena of blue amber[J]. Gems and Gemology, 2014, 50(2): 134-140.
[4] 江玮琦, 聂淑芬, 王雅玫. 多米尼加、墨西哥及缅甸蓝珀的荧光光谱特征[J]. 宝石和宝石学杂志, 2017, 19(2): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-BSHB201702001.htm
Jiang W Q, Nie S F, Wang Y M. Fluorescence spectral characteristics of blue amber from Dominica Republic, Mexico and Myanmar[J]. Journal of Gems and Gemology, 2017, 19(2): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-BSHB201702001.htm
[5] Zhang Z Q, Jiang X R, Wang Y M, et al. Fluorescence characteristics of blue amber from the Dominican Republic, Mexico, and Myanmar[J]. Gems and Gemology, 2020, 56(4): 484-496. doi: 10.5741/GEMS.56.4.484
[6] 亓利剑, 袁心强, 彭国祯, 等. 天然与人工处理琥珀的三维荧光光谱表征[J]. 宝石与宝石学杂志, 2005, 7(1): 10-16. https://www.cnki.com.cn/Article/CJFDTOTAL-BSHB200501002.htm
Qi L J, Yuan X Q, Peng G Z, et al. Three dimensional fluorescence spectra representation of natural and treated amber[J]. The Journal of Gems and Gemology, 2005, 7(1): 10-16. https://www.cnki.com.cn/Article/CJFDTOTAL-BSHB200501002.htm
[7] 王徽枢. 琥珀的拉曼光谱及荧光测量研究[J]. 矿物岩石, 1991, 11(2): 80-84. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS199102013.htm
Wang W S. A study on Raman spectra and fluoremetry of the amber[J]. Mineralogy and Petrology, 1991, 11(2): 80-84. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS199102013.htm
[8] 吴文杰, 王雅玫. 琥珀的激光拉曼光谱特征研究[J]. 宝石与宝石学杂志, 2014, 16(1): 40-45. https://www.cnki.com.cn/Article/CJFDTOTAL-BSHB201401008.htm
Wu W J, Wang Y M. Study on Raman spectrum characteristics of amber[J]. Journal of Gems and Gemology, 2014, 16(1): 40-45. https://www.cnki.com.cn/Article/CJFDTOTAL-BSHB201401008.htm
[9] Gaigalas A, Halas S. Stable isotopes (H, C, S) and the origin of baltic amber[J]. Geochronometria, 2009, 33: 33-36. doi: 10.2478/v10003-009-0001-9
[10] 王雅玫, 牛盼, 谢璐华. 应用稳定同位素示踪琥珀产地[J]. 宝石和宝石学杂志, 2013, 15(3): 9-17. doi: 10.3969/j.issn.1008-214X.2013.03.002
Wang Y M, Niu P, Xie L H. Stable isotopes tracing of origin of ambers[J]. Journal of Gems and Gemology, 2013, 15(3): 9-17. doi: 10.3969/j.issn.1008-214X.2013.03.002
[11] 王妍, 施光海, 师伟, 等. 三大产地(波罗的海、多米尼加和缅甸)琥珀红外光谱鉴别特征[J]. 光谱学与光谱分析, 2015, 35(8): 2164-2169. doi: 10.3964/j.issn.1000-0593(2015)08-2164-06
Wang Y, Shi G H, Shi W, et al. Infrared spectral characteristics of ambers from three main sources (Baltic, Dominica and Myanmar)[J]. Spectroscopy and Spectral Analysis, 2015, 35(8): 2164-2169. doi: 10.3964/j.issn.1000-0593(2015)08-2164-06
[12] 邢莹莹, 亓利剑, 麦义城, 等. 不同产地琥珀FTIR和13C NMR谱学表征及意义[J]. 宝石和宝石学杂志, 2015, 17(2): 8-16. doi: 10.3969/j.issn.1008-214X.2015.02.002
Xing Y Y, Qi L J, Mai Y C, et al. FTIR and 13C NMR spectrum characterization and significance of amber from different origins[J]. Journal of Gems and Gemology, 2015, 17(2): 8-16. doi: 10.3969/j.issn.1008-214X.2015.02.002
[13] Truica G I, Ditaranto N, Caggiani M C, et al. A multi-analytical approach to amber characterization[J]. Chemical Papers, 2014, 68: 15-21.
[14] Beck C W. Spectroscopic investigations of amber[J]. Applied Spectroscopy Reviews, 1986, 22(1): 57-110. doi: 10.1080/05704928608060438
[15] 唐诗, 苏隽, 陆太进, 等. 化学气相沉积法再生钻石的实验室检测特征研究[J]. 岩矿测试, 2019, 38(1): 62-70. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201802070017
Tang S, Su J, Lu T J, et al. Research on laboratory testing features of chemical vapor deposition in overgrowth diamonds[J]. Rock and Mineral Analysis, 2019, 38(1): 62-70. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201802070017
[16] 杨池玉, 陆太进, 张健, 等. 河南产宝石级高温高压合成钻石的谱学特征及电磁性研究[J]. 岩矿测试, 2021, 40(2): 217-226. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201909050129
Yang C Y, Lu T J, Zhang J, et al. Spectral characteristics and electrical-magnetic properties of gem-quality synthetic diamonds under high temperature and pressure[J]. Rock and Mineral Analysis, 2021, 40(2): 217-226. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201909050129
[17] 严雪俊, 严俊, 方飚, 等. 钻石的紫外-可见-近红外光谱与光致发光光谱温敏特征及其鉴定指示意义[J]. 光学学报, 2019, 39(9): 0930005-1-0930005-7. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201909046.htm
Yan X J, Yan J, Fang B, et al. Temperature sensitivity of UV-visible-near infrared and photoluminescence spectra of diamond and its significance for identification[J]. Acta Optica Sinica, 2019, 39(9): 0930005-1-0930005-7. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201909046.htm
[18] 宋中华, 陆太进, 唐诗, 等. 高温高压改色处理Ia型褐色钻石的光谱鉴定特征[J]. 岩矿测试, 2020, 39(1): 85-91. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201905200067
Song Z H, Lu T J, Tang S, et al. Discrimination of HPHT-treated type Ia cape diamonds using optical and photoluminescence spectroscopy techniques[J]. Rock and Mineral Analysis, 2020, 39(1): 85-91. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201905200067
[19] Eaton-Magana S, Breeding C M. An introduction photo-luminescence spectroscopy for diamond and its applications in gemology[J]. Gems and Gemology, 2016, 52(1): 2-17. doi: 10.5741/GEMS.52.1.2
[20] 严俊, 孙青, 严雪俊, 等. 海水养殖黑色珍珠UV-Vis反射光谱的类型及其特异的PL光谱特征[J]. 光谱学与光谱分析, 2020, 40(9): 2781-2785. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN202009024.htm
Yan J, Sun Q, Yan X J, et al. The categories of the UV-Vis reflectance spectra of seawater cultured black pearl and its unique PL spectral characteristics[J]. Spectroscopy and Spectral Analysis, 2020, 40(9): 2781-2785. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN202009024.htm
[21] Otter L M, Agbaje O B A, Huong L T, et al. Akoya cultured pearl farming in the eastern Australia[J]. Gems and Gemology, 2017, 53(4): 423-437.
[22] Zhou C H, Homkrajae A, Yan H J W, et al. Update on the identification of dye treatment in yellow or "golden" cultured pearls[J]. Gems and Gemology, 2012, 48(4): 284-291. doi: 10.5741/GEMS.48.4.284
[23] Kwak K, Lee L, Jeong E. Identification of dyed golden south sea pearls using UV-Vis and PL tests[J]. The Journal of the Gemological Association of Hong Kong, 2016, 37: 58-61.
[24] Chen S Z, Lu D B. Slurry sampling introduction with electrothermal vaporization for multielement analysis of amber by ICP-AES[J]. Atomic Spectroscopy, 2006, 27(4): 128-133.
[25] Guo H S, Yu X Y, Zheng Y Y, et al. Inclusion and trace element characteristics of emeralds from Swat Valley, Pakistan[J]. Gems and Gemology, 2020, 56(3): 336-355. doi: 10.5741/GEMS.56.3.336
[26] 李欣桐, 先怡衡, 樊静怡, 等. 应用扫描电镜-X射线衍射-电子探针技术研究河南淅川绿松石矿物学特征[J]. 岩矿测试, 2019, 38(4): 373-381. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201809090102
Li X T, Xian Y H, Fang J Y, et al. Application of XRD-SEM-XRD-EMPA to study the mineralogical characteristics of turquoise from Xichuang, Henan Province[J]. Rock and Mineral Analysis, 2019, 38(4): 373-381. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201809090102
[27] Bowersox G W, Snee L W, Foord E E, et al. Emeralds of the Panjshir Valley, Afghanistan[J]. Gems and Gemology, 1991, 27(1): 26-39. doi: 10.5741/GEMS.27.1.26
[28] 邵惠萍, 严雪俊, 严俊, 等. 应用傅里叶变换红外光谱与紫外可见吸收光谱鉴别两类海水养殖灰色珍珠[J]. 岩矿测试, 2019, 38(5): 489-496. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201809280109
Shao H P, Yan X J, Yan J, et al. Identification of two kinds of seawater cultured gray pearls by Fourier transform infrared spectroscopy and ultraviolet-visible absorption spectroscopy[J]. Rock and Mineral Analysis, 2019, 38(5): 489-496. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201809280109