Identification of Jadeite Filled with Inorganic Materials Using UV Fluorescence, Infrared Spectroscopy and LIBS Techniques
-
摘要:
通过走访翡翠市场得知存在无机材料充填的翡翠,目前与其相关的研究资料较少,对无机材料充填翡翠缺少鉴定依据。本模拟实验使用水玻璃和硅溶胶这两类无机材料对低档翡翠进行充填以了解其鉴定特征。利用常规宝石学测试、钻石观测仪荧光观察、红外光谱分析(FTIR)、激光诱导击穿光谱分析(LIBS)对无机充填翡翠样品进行测试。结果表明: ①翡翠充填后其透明度、颜色、密度及结构均有所改善。②通过钻石观测仪观察,样品中的翡翠颗粒显示出绿色荧光,实验充填材料在裂隙以及颗粒间显示蓝色荧光且颜色分布不均匀。③通过中红外反射光谱测试,硅溶胶与水玻璃的谱图有微弱差别,经无机材料充填的样品在1162cm-1、1070cm-1、949cm-1,以及579cm-1、529cm-1、470cm-1处的吸收峰逐渐减弱,峰形逐渐变圆滑或消失,结合近红外光谱7062cm-1、5204cm-1、4537cm-1范围的波谱形态和吸收峰特征鉴别充填翡翠。④激光诱导击穿光谱测试,验证了经过硅溶胶或钠钾水玻璃充填的翡翠中硅的含量偏高,钠钾水玻璃充填的翡翠具有钾含量高的特点。模拟实验充填的样品效果有待提高,但从中认识到无机材料充填翡翠的鉴定特征,对理解翡翠的优化处理机理有指导意义。
Abstract:BACKGROUND Through visiting the jadeite market, the existence of inorganic material-filled jadeite is known, but there is a lack of identification basis due to rare references.
OBJECTIVES To understand the identification characteristics of inorganic material-filled jadeite.
METHODS Two types of inorganic materials, water glass and silica sol, were used to fill low-grade jadeite in the simulation experiment. Conventional gemological tests, fluorescence image observation with DiamondViewTM, Fourier transform infrared (FTIR) spectroscopy, and laser-induced breakdown spectroscopy (LIBS) were used to test the inorganic filled jadeite samples.
RESULTS The transparency, color, density and structure of jadeite were improved after filling. Under the DiamondViewTM, the jadeite particles in the sample showed green fluorescence, and the filling around the cracks and between the particles displayed blue fluorescence with non-uniform distribution. Mid-infrared reflectance spectrum analysis showed that the spectra of silica sol and water-glass were slightly different from each other. The absorption peaks of the samples filled with inorganic materials at 1162cm-1, 1070cm-1, 949cm-1, 579cm-1, 529cm-1 and 470cm-1 gradually weakened, and the peak shape gradually became smooth or disappeared. In addition, the differences between the jadeite and inorganic filled jadeite can be determined by the near-infrared spectral morphology and the shape of the absorption peak changed in the range of 7062cm-1, 5204cm-1 and 4537cm-1. The laser-induced breakdown spectroscopy demonstrated that the content of the silicon in the jadeite filled with silicon sol or sodium and potassium water-glass was higher. The high potassium content was an important feature for the jadeite filled by sodium and potassium water-glass.
CONCLUSIONS The samples effect of the simulation experiment needs to be improved, but the identification characteristics of the filled jadeite with inorganic materials are recognized, which has caused a further breakthrough in the enhancement and treatment of jadeite identification.
-
Key words:
- jadeite /
- water-glass /
- silica sol /
- DiamondViewTM /
- infrared spectroscopy /
- laser-induced breakdown spectroscopy
-
-
表 1 翡翠充填前与充填后的宝石学特征对比
Table 1. Comparison of gemological characteristics of jadeite samples before and after being filled
样品编号 充填前 样品编号 充填后 颜色 密度 放大观察 颜色 密度 放大观察 AY-1 白 3.26 粒状、结构松散 AGL-1 浅绿 3.28 粒状结构较致密,有色根 AF-1 浅绿 3.29 粒状结构较致密,有色根 AY-2 白 3.23 颗粒粗糙、结构松散 AGK-2 浅绿 3.25 粒状结构较致密,颜色均匀 AY-3 浅绿 3.27 粒状结构 AF-3 浅绿 3.29 粒状结构较致密,颜色均匀 AGK-3 浅绿 3.29 粒状结构较致密,颜色均匀 AY-4 白 3.24 颗粒粗糙、结构松散 AF-4 白 3.27 粒状结构较致密 AGL-4 白 3.26 粒状结构较致密 表 2 样品AF-1的硅、钾强度归一化处理结果
Table 2. Intensity normalization results of elements Si and K in sample AF-1
样品编号+测试点 Si (288.158nm) 积分面积 K (769.896nm) 积分面积 190~950nm全谱面积 Si归一化处理结果 K归一化处理结果 AF-1-1 1200 699.9 673600.00 0.178147268 0.103904394 AF-1-2 1411 577.0 726300.00 0.194272339 0.079443756 AF-1-3 1769 510.9 797600.00 0.221790371 0.064054664 AF-1-4 1480 463.9 772800.00 0.191511387 0.060028468 AF-1-5 1318 409.3 731600.00 0.180153089 0.055945872 AF-1-6 1444 424.2 731800.00 0.197321673 0.057966658 AF-1-7 1297 384.8 701800.00 0.184810487 0.054830436 AF-1-8 1283 371.9 685000.00 0.18729927 0.054291971 AF-1-9 1302 354.9 699500.00 0.186132952 0.05073624 AF-1-10 1465 377.6 725100.00 0.202041098 0.052075576 AF-1-11 1313 365.2 702500.00 0.186903915 0.051985765 AF-1-12 1194 347.1 656200.00 0.181956721 0.052895459 AF-1-13 1218 368.7 671800.00 0.18130396 0.054882405 AF-1-14 1320 372.7 698800.00 0.188895249 0.053334287 -
[1] Emmanuel F, Shun-Tien T W, Thomas M, et al. Identification of bleached and polymer-impregnated jadeite[J]. Gems & Gemology, 1992, 28(3): 176-187.
[2] Wenting L, Lei Z, Qiusheng Z. Rough jadeite with an artificial coating to imitate a weathered crust[J]. The Journal of Gemmology, 2021, 37(5): 472-473. doi: 10.15506/JoG.2021.37.5.472
[3] 秦宏宇, 刘瑞. 激光拉曼技术的珠宝成分检测[J]. 激光杂志, 2017, 38(7): 40-43. https://www.cnki.com.cn/Article/CJFDTOTAL-JGZZ201707011.htm
Qing H Y, Liu R. Laser Raman technique in jewelry component testing[J]. Laser Journal, 2017, 38(7): 40-43. https://www.cnki.com.cn/Article/CJFDTOTAL-JGZZ201707011.htm
[4] 于爽, 夏婧竹. 便携式差分喇曼光谱技术在翡翠鉴定中的研究[J]. 激光技术, 2021, 45(4): 511-515. https://www.cnki.com.cn/Article/CJFDTOTAL-JGJS202104016.htm
Yu S, Xia J Z. Study on shifted-excitation Raman difference spectroscopy in the identification of jades[J]. Laser Technology, 2021, 45(4): 511-515. https://www.cnki.com.cn/Article/CJFDTOTAL-JGJS202104016.htm
[5] 范建良, 郭守国, 刘学良, 等. 天然与处理翡翠的光谱学研究[J]. 激光与红外, 2007, 37(8): 769-772. doi: 10.3969/j.issn.1001-5078.2007.08.024
Fan J L, Guo S G, Liu X L, et al. Study on spectroscopy of natural and treated jadeite[J]. Laser & Infrared, 2007, 37(8): 769-772. doi: 10.3969/j.issn.1001-5078.2007.08.024
[6] 刘欣蔚, 陈美华, 刘媛. 高光谱成像技术在充胶处理宝石鉴定中的应用——以翡翠和绿松为例[J]. 宝石和宝石学杂志, 2019, 21(1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-BSHB201901003.htm
Liu X W, Chen M H, Liu Y. Application of hyperspectral imaging technique in identification of polymer-impregnated gemstone: Taking jadeite and turquoise as example[J]. Journal of Gems and Gemmology, 2019, 21(1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-BSHB201901003.htm
[7] 马平, 沈锡田, 邵天, 等. 常见翡翠的三维荧光光谱特征研究[J]. 光谱学与光谱分析, 2021, 41(3): 961-966. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN202103054.htm
Ma P, Shen X T, Shao T, et al. Study on three-dimensional fluorescence spectrum characteristics of common jadeite jade[J]. Spectroscopy and Spectral Analysis, 2021, 41(3): 961-966. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN202103054.htm
[8] 王亦帆, 邢莹莹, 赵军博, 等. 丙烯酸酯类聚合物在翡翠充填改性中的应用初探[J]. 当代化工, 2020, 49(6): 1047-1050, 1055. doi: 10.3969/j.issn.1671-0460.2020.06.010
Wang Y F, Xing Y Y, Zhao J B, et al. Preliminary study on the application of acrylic polymer in jade filling modification[J]. Contemporary Chemical Industry, 2020, 49(6): 1047-1050, 1055. doi: 10.3969/j.issn.1671-0460.2020.06.010
[9] 亓利剑, 袁心强, 彭国桢, 等. 翡翠中蜡质物和高分子聚合物充填处理尺度的判别[J]. 宝石和宝石学杂志, 2005, 7(3): 1-6. doi: 10.3969/j.issn.1008-214X.2005.03.001
Qi L J, Yuan X Q, Peng G Z, et al. Scale determination of wax and macro molecule polymer filled jadeite jade[J]. Journal of Gems and Gemmology, 2005, 7(3): 1-6. doi: 10.3969/j.issn.1008-214X.2005.03.001
[10] 吴瑞华, 王鸿雁, 张晓辉. 缅甸翡翠研究最新成果[M]. 武汉: 中国地质大学出版社, 2003: 5.
Wu R H, Wang H Y, Zhang X H. The latest achievements of jade research in Myanmar[M]. Wuhan: China University of Geosciences Press, 2003: 5.
[11] 王以群, 郭守国, 王学良. 最新翡翠充填改善工艺技术原理与特征[J]. 中国宝石, 2004, 13(4): 80-81.
Wang Y Q, Guo S G, Wang X L. Principle and characteristics of the latest improvement technology of jadeite filling[J]. China Gems, 2004, 13(4): 80-81.
[12] 郭守国, 王以群. 宝玉石学[M]. 上海: 学林出版社, 2005: 161.
Guo S G, Wang Y Q. Gemmology[M]. Shanghai: Academia Press, 2005: 161.
[13] 吕璐. 翡翠无机材料充填实验探索[D]. 武汉: 中国地质大学(武汉), 2009.
Lyu L. Exploration filling experiment of jadeite with inorganic material[D]. Wuhan: China University of Geosciences (Wuhan), 2009.
[14] 胡嗣卓, 付雪松, 黄鹏, 等. 硅酸盐黏结剂制备摩擦材料的性能研究[J]. 无机盐工业, 2019, 51(12): 39-43. doi: 10.11962/1006-4990.2019-0055
Hu S Z, Fu X S, Huang P, et al. Study on performance of friction material combined by silicate inorganic binder[J]. Inorganic Chemicals Industry, 2019, 51(12): 39-43. doi: 10.11962/1006-4990.2019-0055
[15] 宋来, 张宏奎, 王成刚, 等. 复合硬化改性水玻璃粘结剂的研究[J]. 铸造, 2018, 67(10): 871-874. doi: 10.3969/j.issn.1001-4977.2018.10.002
Song L, Zhang H K, Wang C G, et al. Research on modified and compound hardened water glass binder[J]. Foundry, 2018, 67(10): 871-874. doi: 10.3969/j.issn.1001-4977.2018.10.002
[16] 杨宏波, 刘朝辉, 班国东, 等. 无机硅酸盐涂料耐水性提高途径分析[J]. 涂料工业, 2017, 47(8): 9-14. https://www.cnki.com.cn/Article/CJFDTOTAL-TLGY201708002.htm
Yang H B, Liu C H, Ban G D, et al. Analysis on improvement of water resistance of inorganic silicate coatings[J]. Paint & Coatings Industry, 2017, 47(8): 9-14. https://www.cnki.com.cn/Article/CJFDTOTAL-TLGY201708002.htm
[17] 忻方海, 刘伟华, 宋来, 等. 一种铸造用抗吸湿型无机粘结剂的研究[J]. 现代铸铁, 2020, 40(6): 53-55, 64. doi: 10.3969/j.issn.1003-8345.2020.06.014
Xin F H, Liu W H, Song L, et al. Study on an foundry-used anti-moisture absorption inorganic binder[J]. Modern Cast Iron, 2020, 40(6): 53-55, 64. doi: 10.3969/j.issn.1003-8345.2020.06.014
[18] 段晓娜, 孙羊羊, 张海红, 等. 硅溶胶的研究进展及应用[J]. 硅酸盐通报, 2014, 33(4): 836-840. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201404028.htm
Duan X N, Sun Y Y, Zhang H H, et al. Research progress and application of silica sol[J]. Bulletin of the Chinese Ceramic Society, 2014, 33(4): 836-840. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201404028.htm
[19] 杨丽静, 田辉平, 龙军, 等. 碱性硅溶胶稳定性的研究[J]. 石油炼制与化工, 2010, 41(6): 12-16. doi: 10.3969/j.issn.1005-2399.2010.06.003
Yang L J, Tian H P, Long J, et al. Study on the stability or alkaline silica sol[J]. Petroleum Processing and Petrochemicals, 2010, 41(6): 12-16. doi: 10.3969/j.issn.1005-2399.2010.06.003
[20] 王峰, 陈平安, 朱伯铨, 等. 硅溶胶对铝酸盐水泥结合刚玉质浇注料微观结构和性能的影响[J]. 硅酸盐学报, 2018, 46(3): 427-433. https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB201803017.htm
Wang F, Chen P A, Zhu B Q, et al. Effect of silica sol on microstructure and properties of corundum castables bonded with aluminate cement[J]. Journal of the Chinese Ceramic Society, 2018, 46(3): 427-433. https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB201803017.htm
[21] Norazmi F S, Chaudhary K T, Mazalan E, et al. Effect of various amount of ammonium hydroxide on morphology of silica nanoparticles grown by sol-gel[J]. Malaysian Journal of Fundamental and Applied Sciences, 2018, 14: 482-484. doi: 10.11113/mjfas.v14n0.1278
[22] Owoeye S S, Abegunde S M, Babatunde O. Effects of process variable on synthesis and characterization of amorphous silica nanoparticles using sodium silicate solutions as precursor by sol-gel method[J]. Nano-Structures & Nano-Objects, 2021, 25: 1-8.
[23] 陈玉娴, 张定军, 白雪, 等. 溶胶-凝胶法制备纳米二氧化硅微球的研究[J]. 应用化工, 2018, 47(6): 1123-1126. doi: 10.3969/j.issn.1671-3206.2018.06.012
Chen Y X, Zhang D J, Bai X, et al. Preparation of nanometer silica spheres by sol-gel method[J]. Applied Chemical Industry, 2018, 47(6): 1123-1126. doi: 10.3969/j.issn.1671-3206.2018.06.012
[24] 解志益, 周涵, 李庆超, 等. 纳米硅溶胶的制备及在水泥基材料中的应用研究进展[J]. 材料导报, 2020, 34(S2): 1160-1163. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB2020S2034.htm
Xie Z Y, Zhou H, Li Q C, et al. Preparation, application of colloidal nano-silica and its research progress in cement-based materials[J]. Materials Reports, 2020, 34(S2): 1160-1163. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB2020S2034.htm
[25] 刘浩, 王周福, 王玺堂, 等. Al2O3-硅溶胶体系胶凝特征及流变行为研究[J]. 人工晶体学报, 2015, 44(11): 3319-3323. doi: 10.3969/j.issn.1000-985X.2015.11.073
Liu H, Wang Z F, Wang X T, et al. Gelation process and rheological properties of silica sol with alumina micropowder[J]. Journal of Synthetic Crystals, 2015, 44(11): 3319-3323. doi: 10.3969/j.issn.1000-985X.2015.11.073
[26] 周楠, 戴雷, 史述宾, 等. 改性硅溶胶的研究现状及进展[J]. 中国胶粘剂, 2016, 25(11): 54-59. https://www.cnki.com.cn/Article/CJFDTOTAL-GXLJ201611017.htm
Zhou N, Dai L, Shi S B, et al. Research status and progress of modified ludox[J]. China Adhesives, 2016, 25(11): 54-59. https://www.cnki.com.cn/Article/CJFDTOTAL-GXLJ201611017.htm
[27] 张蓓莉, 系统宝石学[M]. 北京: 地质大学出版社, 2006: 52-53, 62.
Zhang B L. Systematic gemmology[M]. Beijing: Geological Publishing House, 2006: 52-53, 62.
[28] 杨池玉, 陆太进, 张健, 等. 河南产宝石级高温高压合成钻石的谱学特征及电磁性研究[J]. 岩矿测试, 2021, 40(2): 217-226. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201909050129
Yang C Y, Lu T J, Zhang J, et al. Spectral characteristics and electrical & magnetic properties of gem-quality high pressure high temperature grown synthetic diamonds[J]. Rock and Mineral Analysis, 2021, 40(2): 217-226. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201909050129
[29] 涂彩, 汤红云, 陆晓颖. DiamondViewTM在宝石检测中的应用[J]. 上海计量测试, 2014, 41(3): 16-17, 20. doi: 10.3969/j.issn.1673-2235.2014.03.004
Tu C, Tang H Y, Lu X Y. On the application of DiamondViewTM in gem identification[J]. Shanghai Measurement and Testing, 2014, 41(3): 16-17, 20. doi: 10.3969/j.issn.1673-2235.2014.03.004
[30] Lai T A. Application of the DiamondView in separating impregnated jadeite[J]. Gems & Gemology, 2016: 327-328.
[31] 陈和生, 孙振亚, 邵景昌. 八种不同来源二氧化硅的红外光谱特征研究[J]. 硅酸盐通报, 2011, 30(4): 934-937. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201104040.htm
Chen H S, Sun Z Y, Shao J C. Investigation on FT-IR spectroscopy for eight different sources of SiO2[J]. Bulletin of the Chinese Ceramic Society, 2011, 30(4): 934-937. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201104040.htm
[32] 姜广明, 马海旭, 梁杨, 等. 硅溶胶及含硅溶胶无机建筑涂料的性能分析[J]. 工程质量, 2019, 37(4): 68-70, 74. doi: 10.3969/j.issn.1671-3702.2019.04.017
Jiang G M, Ma H X, Liang Y, et al. Performance analysis of silica sol and containing silica solinorganic building coating[J]. Construction Quality, 2019, 37(4): 68-70, 74. doi: 10.3969/j.issn.1671-3702.2019.04.017
[33] 许进. 改性水玻璃的红外光谱分析[J]. 铸造, 2008(8): 834-837. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZZZ200808023.htm
Xu J. Infrared spectroscopy analysis of modified sodium silicate[J]. Foundry, 2008(8): 834-837. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZZZ200808023.htm
[34] 李晓静, 虞澜, 祖恩东. 近红外光谱分析技术在宝石研究中的应用[J]. 光谱学与光谱分析, 2018, 38(1): 54-57. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201801011.htm
Li X J, Yu L, Zu E D. Application of near infrared spectroscopy in the study of gems[J]. Spectroscopy and Spectral Analysis, 2018, 38(1): 54-57. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201801011.htm
[35] 陆婉珍. 现代近红外光谱分析技术[M]. 北京: 中国石化出版社, 2007: 29-31.
Lu W Z. Modern near-infrared spectroscopic analysis techniques[M]. Beijing: China Petrochemical Press, 2007: 29-31.
[36] 胡爱萍, 孙静昱, 韩晓岚, 等. 采用便携式近红外矿物分析仪鉴别注胶翡翠[J]. 宝石和宝石学杂志, 2009, 11(1): 35-38. doi: 10.3969/j.issn.1008-214X.2009.01.008
Hu A P, Sun J Y, Han X L, et al. Identification of injection-plastic jadeite jade by portable near-infrared mineral analyser[J]. Journal of Gems and Gemmology, 2009, 11(1): 35-38. doi: 10.3969/j.issn.1008-214X.2009.01.008
[37] 严衍禄, 赵龙莲, 韩东海, 等. 近红外光谱分析基础与应用[M]. 北京: 中国轻工业出版社, 2005: 499-502.
Yan Y L, Zhao L L, Han D H, et al. Fundamentals and applications of near infrared spectroscopy[M]. Beijing: China Light Industry Press, 2005: 499-502.
[38] 孙海涛, 吕淑红. BJKF-1型便携式近红外矿物分析仪在宝玉石鉴定中的应用[J]. 岩矿测试, 2008, 27(6): 418-422. doi: 10.3969/j.issn.0254-5357.2008.06.005 http://www.ykcs.ac.cn/article/id/ykcs_20080605
Sun H T, Lyu S H. Application of BJKF-1 portable near-infrared mineral analyzer in identification of gemstones and jades[J]. Rock and Mineral Analysis, 2008, 27(6): 418-422. doi: 10.3969/j.issn.0254-5357.2008.06.005 http://www.ykcs.ac.cn/article/id/ykcs_20080605
[39] 张蕊, 孙兰香, 陈彤, 等. 基于激光诱导击穿光谱技术的岩石表面指纹图谱分析及分类方法[J]. 地质学报, 2020, 94(3): 991-998. doi: 10.3969/j.issn.0001-5717.2020.03.023
Zhang R, Sun L X, Chen T, et al. Fingerprint analysis and classification of rock surface based on laser-induced breakdown spectroscopy[J]. Acta Geologica Sinica, 2020, 94(3): 991-998. doi: 10.3969/j.issn.0001-5717.2020.03.023
[40] Body D, Chadwick B L. Optimization of the spectral data processing in a LIBS simultaneous elemental analysis system[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2001, 56(6): 725-736. doi: 10.1016/S0584-8547(01)00186-0
-