A Review of the Interaction Mechanism and Law between Vegetation and Rock Geochemical Background in Karst Areas
-
摘要:
岩溶地貌主要是由碳酸盐溶解形成的特殊景观,岩溶区植被的生长发育受到基岩的制约,并演化出各种机制来适应岩溶区的独特环境。本文综述了岩溶地区植物对岩溶环境适应机制及植物生长对碳酸盐岩风化的驱动作用。通过总结发现:①植物主要通过分泌碳酸酐酶等有机物促进矿物分解、生物钻孔作用改善岩石表面的持水性能、根劈作用加速破碎岩石的崩解等化学生物和物理作用,促进了碳酸盐岩的风化溶解,形成独特的岩溶地球化学背景。②岩溶区植物通过调整自身结构和生理功能来适应干旱、高钙和营养元素缺乏等逆境。植物的抗旱性主要通过生理生化过程、形态结构和水分的利用方式来适应干旱或缺水环境,不同的植物进化出不同水分利用方式,提高水分利用效率,减少蒸腾;植物的高钙适应性是通过生理结构和生理过程来实现的,在高钙环境下的优势植物可通过形成钙化根、草酸钙含晶细胞和叶片调节等方式保持植株钙含量处于相对稳定的状态,并且植物还可以通过调节体内钙库和控制钙的吸收转运来控制细胞内钙离子浓度;根系分泌的有机酸和菌根能帮助植被在土壤中获取营养元素,以应对土壤的营养元素缺乏。③岩溶植被在正向演替过程中,土壤保水保肥能力增强、稳定性增加,物种的生存几率增加,物种多样性也随着增加。植被演化出的适应机制影响了植物的分布和生长,推进植物群落的演替过程和促进植物多样性的形成。但是多样性与群落生态系统的稳定性间的内在关系,以及与非岩溶区的对比特征仍需要开展深入的研究和探索。
Abstract:Karst landforms are mainly special landscapes formed by carbonate dissolution.They are characterized by calcium abundance, lack of soil resources, and insufficient water resources. The growth and development of vegetation in the karst area is restricted by the bedrock. It is very important to understand the synergistic interaction between vegetation metabolism and geochemistry of carbonate rocks in karst areas to maintain the stability of structure and function of the karst ecosystem.
The mechanism and law of interaction between vegetation and rock geochemical background in karst areas from two aspects is expounded in this paper: vegetation community promotes weathering of carbonate rocks and geochemical background restricts vegetation.
Through summarizing: (1) Plants promote the weathering and dissolution of carbonate rocks through physicochemical and biological actions, such as secreting carbonic anhydrase organic matter, improving the water retention performance of rock surface through boring by organisms and accelerating the disintegration of broken rocks through root splitting, thus forming a unique karst geochemical background of drought, high calcium, shallow soil layer and lack of nutrients in the soil layer.
(2) With the long-term interaction between plants and the karst environment, plants adapt to environmental stress by adjusting their own structures and physiological functions, and even their unique plant succession rules. The plants that survived eventually evolved into unique karst plants that were drought-resistant, adaptable to high-calcium environments, and able to cope with nutrient deficiencies.
Due to the solubility of carbonate rocks, the hydrologic system forms a two-layer spatial structure of surface and underground, which makes it difficult to utilize groundwater resources. As a result, the available water resources of local plants are limited, and are prone to drought stress. The drought resistance of plants adapts to the drought or water shortage environment mainly through physiological and biochemical processes, morphological structure and water use. In the morphological structure of the plant, through the stomatal regulation and the xeric structural characteristics of the leaves, the transpiration water loss of the plant is minimized. Some karst plants can cope with drought stress through physiological and biochemical processes, which can reduce the damage caused by drought stress by increasing the activities of antioxidant enzymes and accumulating osmoregulatory substances through phytochemicals. Karst plants improve water use efficiency and reduce transpiration through different water use methods in the dry season. For example, some plants absorb deep soil, deep bedrock water or groundwater water through developed deep roots, and some plants even use fog water.
The adaptability of plants to high calcium is realized through physiological structure and process. In a high calcium environment, karst plants can limit the excess calcium transfer upward by forming calcified roots and keeping the calcium content in plants in a relatively stable state through the regulation of calcium oxalate crystal cells and leaves. Plants can also control the intracellular calcium ion concentration by regulating the calcium pool in vivo and controlling the absorption and transport of calcium.
Organic acids and mycorrhiza secreted by roots can help vegetation obtain nutrients in the soil to cope with nutrient deficiency in the soil. The organic acid content secreted by the roots of karst plants is usually higher than that of non-karst plants, and the increase of organic acid content can help plants to absorb trace elements. Arbuscular mycorrhizal fungi (AM) and ectomycorrhizal fungi (ECM) help plants adapt to nutrient deficiency by absorbing mineral nutrients from the soil.
(3) The vegetation succession in the karst area is similar to the general stage of vegetation succession in normal landforms, but the vegetation succession in the karst area has the particularity of self-generation. The vegetation succession from the middle to the top of the mountain takes a longer time. Vegetation succession changed physical and chemical properties and soil quality. In the process of succession, soil bulk density gradually decreases, and porosity gradually increases over time. At the same time, soil nutrients accumulate with the positive succession of vegetation. During the positive succession process of karst vegetation, the soil water and fertilizer retention capacity is enhanced, the stability is increased, and the survival probability of species and the species diversity are also increased. The special rock geochemical background in the karst area leads to the obvious changes in the spatial distribution of soil resources. High soil heterogeneity promotes the formation of plant community species diversity. For example, the tropical karst area in Xishuangbanna, Yunnan Province covers an area of 3600km2, accounting for 19% of the land area. The forest survey results in the karst area show that there are 153 families, 640 genera and 1394 species of vascular plants, accounting for 77.7% of the total floristic families, 56.1% of the genera and 37.9% of the species, respectively.
The karst plant community is the result of the long interaction between the plant and the environment, the continuous adaptation to the environment and the growth and reproduction. The karstification of plants, the adaptation mechanism of plants under the typical karst soil environment such as drought, high calcium stress and lack of nutrient elements, as well as the succession characteristics of karst vegetation shown in the adaptation process and the biodiversity of vegetation are a whole interaction. The site growth of vegetation promotes the weathering of carbonate rocks and the formation of soil, creating conditions for their own growth. Meanwhile, soil area and soil thickness are positively correlated with plant diversity. The succession of vegetation changes the physical and chemical properties of soil and improves the quality of soil, and the karstification of carbonate rocks promotes the growth of vegetation. The adaptive mechanism of vegetation affects the distribution and growth of plants and promotes the succession process of plant communities and the formation of plant diversity. Due to the spatial heterogeneity of the karst environment and the diversity of plant habitats, plant diversity in karst areas is manifested as few genera, few species and endemic species. However, the internal relationship between plant diversity and the stability of the community ecosystem, as well as the comparative characteristics with non-karst areas still need to be further studied and explored.
-
Key words:
- carbonate rock /
- vegetation /
- plant adaptation strategy /
- biodiversity /
- succession
-
图 1 岩溶地区苔藓叶片形态[25]
Figure 1.
图 2 岩溶植物在高钙环境中的适应机制[46]
Figure 2.
图 3 AM和ECM型植被根系影响根际土壤养分转运吸收的示意图[62]
Figure 3.
-
[1] Cao J H, Wu X, Huang F, et al. Global significance of the carbon cycle in the karst dynamic system: Evidence from geological and ecological processes[J]. China Geology, 2018, 1(1): 17-27. doi: 10.31035/cg2018004
[2] 周长松, 邹胜章, 谢浩, 等. 测试滞后对岩溶水样性质的影响研究[J]. 岩矿测试, 2019, 38(1): 92-101. doi: 10.15898/j.cnki.11-2131/td.201711040175 http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201711040175
Zhou C S, Zou S Z, Xie H, et al. The effect of testing lag on chemical indexes of karst water[J]. Rock and Mineral Analysis, 2019, 38(1): 92-101. doi: 10.15898/j.cnki.11-2131/td.201711040175 http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201711040175
[3] Jiang Z, Lian Y, Qin X. Rocky desertification in southwest China: Impacts, causes, and restoration[J]. Earth-Science Reviews, 2014, 132: 1-12. doi: 10.1016/j.earscirev.2014.01.005
[4] Liu H, Jiang Z, Dai J, et al. Rock crevices determine woody and herbaceous plant cover in the karst critical zone[J]. Science China: Earth Sciences, 2019, 62(11): 1756-1763. doi: 10.1007/s11430-018-9328-3
[5] Sun P, He S, Yu S, et al. Dynamics in riverine inorganic and organic carbon based on carbonate weathering coupled with aquatic photosynthesis in a karst catchment, southwest China[J]. Water Research, 2021, 189: 116658. doi: 10.1016/j.watres.2020.116658
[6] Qi D H, Wieneke W X, Tao J P, et al. Soil pH is the primary factor correlating with soil microbiome in karst rocky desertification regions in the Wushan County, Chongqing, China[J]. Frontiers in Microbiology, 2018, 9: 1027. doi: 10.3389/fmicb.2018.01027
[7] Kang Y, Geng Z, Lu L, et al. Compound karst cave treatment and waterproofing strategy for EPB shield tunnelling in karst areas: A case study[J]. Frontiers in Earth Science, 2021, 9: 761573. doi: 10.3389/feart.2021.761573
[8] Tao S, Liankai Z, Pengyu L, et al. Transformation process of five water in epikarst zone: A case study in subtropical karst area[J]. Environmental Earth Sciences, 2022, 81(10): 293. doi: 10.1007/s12665-022-10328-6
[9] 曹建华, 袁道先, 章程, 等. 受地质条件制约的中国西南岩溶生态系统[J]. 地球与环境, 2004(1): 1-8. doi: 10.14050/j.cnki.1672-9250.2004.01.001
Cao J H, Yuan D X, Zhang C, et al. Karst ecosystem constrained by geological conditions in southwest China[J]. Earth and Environment, 2004(1): 1-8. doi: 10.14050/j.cnki.1672-9250.2004.01.001
[10] Tyler G. Inability to solubilize phosphate in limestone soils—Key factor controlling calcifuge habit of plants[J]. Plant and Soil, 1992, 145(1): 65-70. doi: 10.1007/BF00009542
[11] Zhang W, Zhao J, Pan F J, et al. Changes in nitrogen and phosphorus limitation during secondary succession in a karst region in southwest China[J]. Plant and Soil, 2015, 391: 77-91. doi: 10.1007/s11104-015-2406-8
[12] 曹建华, 袁道先, 潘根兴. 岩溶生态系统中的土壤[J]. 地球科学进展, 2003, 18(1): 37-44. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200301006.htm
Cao J H, Yuan D X, Pan G X. Some soil features in karst ecosystem[J]. Advance in Earth Sciences, 2003, 18(1): 37-44. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200301006.htm
[13] Cao J H, Yuan D X, Tong L Q, et al. An overview of karst ecosystem in southwest China: Current state and future management[J]. Journal of Resources and Ecology, 2015, 6(4): 247-256. doi: 10.5814/j.issn.1674-764x.2015.04.008
[14] 蓝高勇, 汪智军, 殷建军, 等. 岩溶泉补给地表溪流二氧化碳脱气作用研究[J]. 岩矿测试, 2021, 40(5): 720-730. doi: 10.15898/j.cnki.11-2131/td.202107310088 http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202107310088
Lan G Y, Wang Z J, Yin J J, et al. Study on carbon dioxide outgassing in a karst spring-fed surface stream[J]. Rock and Mineral Analysis, 2021, 40(5): 720-730. doi: 10.15898/j.cnki.11-2131/td.202107310088 http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.202107310088
[15] Folk R L, Roberts H H, Moore C H. Black phytokarst from Hell, Cayman Islands, British West Indies[J]. GSA Bulletin, 1973, 84(7): 2351-2360. doi: 10.1130/0016-7606(1973)84<2351:BPFHCI>2.0.CO;2
[16] Ibarra D E, Rugenstein J K C, Bachan A, et al. Modeling the consequences of land plant evolution on silicate weathering[J]. American Journal of Science, 2019, 319(1): 1-43. doi: 10.2475/01.2019.01
[17] Wang C, Li W, Shen T, et al. Influence of soil bacteria and carbonic anhydrase on karstification intensity and regulatory factors in a typical karst area[J]. Geoderma, 2018, 313: 17-24. doi: 10.1016/j.geoderma.2017.10.016
[18] Ignatova L, Rudenko N, Zhurikova E, et al. Carbonic anhydrases in photosynthesizing cells of C3 higher plants[J]. Metabolites, 2019, 9(4): 73.
[19] Rodriguez-Navarro C, Cizer Ö, Kudłacz K, et al. The multiple roles of carbonic anhydrase in calcium carbonate mineralization[J]. CrystEngComm, 2019, 21(48): 7407-7423. doi: 10.1039/C9CE01544B
[20] Xie T, Wu Y. The role of microalgae and their carbonic anhydrase on the biological dissolution of limestone[J]. Environmental Earth Sciences, 2014, 71(12): 5231-5239. doi: 10.1007/s12665-013-2925-7
[21] Li W, Yu L J, He Q F, et al. Effects of microbes and their carbonic anhydrase on Ca2+ and Mg2+ migration in column-built leached soil-limestone karst systems[J]. Applied Soil Ecology, 2005, 29(3): 274-281. doi: 10.1016/j.apsoil.2004.12.001
[22] 李为, 余龙江, 袁道先, 等. 不同岩溶生态系统土壤及其细菌碳酸酐酶的活性分析及生态意义[J]. 生态学报, 2004, 24(3): 438-443. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB200403006.htm
Li W, Yu L J, Yuan D X, et al. Researches on activity of carbonic anhydrase from soil and its bacteria in different karst ecosystems and its ecological significance[J]. Acta Ecologica Sinica, 2004, 24(3): 438-443. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB200403006.htm
[23] 曹建华, 袁道先. 石生藻类、地衣、苔藓与碳酸盐岩持水性及生态意义[J]. 地球化学, 1999, 28(3): 248-256. doi: 10.3321/j.issn:0379-1726.1999.03.006
Cao J H, Yuan D X. Relationship between water-holding of carbonate rock and saxicolous algae, lichen and moss and its ecological significance[J]. Geochimica, 1999, 28(3): 248-256. doi: 10.3321/j.issn:0379-1726.1999.03.006
[24] Cao J, Wang F. Reform of carbonate rock subsurface by crustose lichens and its environmental significance[J]. Acta Geologica Sinica (English Edition), 1998, 72(1): 94-99. doi: 10.1111/j.1755-6724.1998.tb00736.x
[25] Cao W, Xiong Y, Zhao D, et al. Bryophytes and the symbiotic microorganisms, the pioneers of vegetation restoration in karst rocky desertification areas in southwestern China[J]. Applied Microbiology and Biotechnology, 2020, 104(2): 873-891. doi: 10.1007/s00253-019-10235-0
[26] Dahl T W, Arens S K M. The impacts of land plant evolution on Earth's climate and oxygenation state—An interdisciplinary review[J]. Chemical Geology, 2020, 547: 119665. doi: 10.1016/j.chemgeo.2020.119665
[27] 曹建华, 王福星. 广西弄岗自然保护区森林群落内环境生物岩溶侵蚀营力之特征[J]. 中国岩溶, 1996, 15(1): 66-73. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR1996Z1009.htm
Cao J H, Wang F X. Characteristics of biokarst erosional agent inside forest community in Longgang Natural Forest Reserve, Gaungxi, China[J]. Carsologica Sinica, 1996, 15(1): 66-73. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR1996Z1009.htm
[28] Puglisi E, Squartini A, Terribile F, et al. Pedosedimentary and microbial investigation of a karst sequence record[J]. Science of the Total Environment, 2022, 810: 151297. doi: 10.1016/j.scitotenv.2021.151297
[29] Bátori Z, Vojtkó A, Farkas T, et al. Large- and small-scale environmental factors drive distributions of cool-adapted plants in karstic microrefugia[J]. Annals of Botany, 2016, 119(2): 301-309.
[30] Li F, Shi T, Tang X, et al. Bacillus amyloliquefaciens PDR1 from root of karst adaptive plant enhances Arabidopsis thaliana resistance to alkaline stress through modulation of plasma membrane H+-ATPase activity[J]. Plant Physiology and Biochemistry, 2020, 155: 472-482. doi: 10.1016/j.plaphy.2020.08.019
[31] Tan F S, Song H Q, Fu P L, et al. Hydraulic safety margins of co-occurring woody plants in a tropical karst forest experiencing frequent extreme droughts[J]. Agricultural and Forest Meteorology, 2020, 292-293: 108107. doi: 10.1016/j.agrformet.2020.108107
[32] Stocker B D, Zscheischler J, Keenan T F, et al. Drought impacts on terrestrial primary production underestimated by satellite monitoring[J]. Nature Geoscience, 2019, 12(4): 264-270. doi: 10.1038/s41561-019-0318-6
[33] Zhao S, Pereira P, Wu X, et al. Global karst vegetation regime and its response to climate change and human activities[J]. Ecological Indicators, 2020, 103: 106208.
[34] Ding Y, Nie Y, Chen H, et al. Water uptake depth is coordinated with leaf water potential, water-use efficiency and drought vulnerability in karst vegetation[J]. New Phytologist, 2021, 229(3): 1339-1353. doi: 10.1111/nph.16971
[35] 邓艳, 蒋忠诚, 曹建华, 等. 弄拉典型峰丛岩溶区青冈栎叶片形态特征及对环境的适应[J]. 广西植物, 2004, 24(4): 317-322. doi: 10.3969/j.issn.1000-3142.2004.04.005
Deng Y, Jiang Z C, Cao J H, et al. Characteristics comparison of the leaf anatomy of Cyclobalanopsis glauca and its adaptation to the environment of typical karst peak cluster area in Nongla[J]. Guihaia, 2004, 24(4): 317-322. doi: 10.3969/j.issn.1000-3142.2004.04.005
[36] 李小方, 曹建华, 杨慧, 等. 富钙偏碱的岩溶土壤对檵木叶片显微结构的影响[J]. 信阳师范学院学报: 自然科学版, 2008, 21(3): 412-416. doi: 10.3969/j.issn.1003-0972.2008.03.026
Li X F, Cao J H, Yang H, et al. Effect of the lime-stone soil with rich ciumon the lamina anatomical structure of Loropetalum Chinense[J]. Journal of Xinyang Normal University: Natural Science Edition, 2008, 21(3): 412-416. doi: 10.3969/j.issn.1003-0972.2008.03.026
[37] Guo Y Y, Yu H Y, Yang M M, et al. Effect of drought stress on lipid peroxidation, osmotic adjustment and antioxidant enzyme activity of leaves and roots of Lycium ruthenicum Murr. seedling[J]. Russian Journal of Plant Physiology, 2018, 65(2): 244-250. doi: 10.1134/S1021443718020127
[38] Meng H L, Zhang W, Zhang G H, et al. Unigene-based RNA-seq provides insights on drought stress responses in Marsdenia tenacissima[J]. Plos One, 2018, 13(11): e0202848. doi: 10.1371/journal.pone.0202848
[39] Yang Y J, Bi M H, Nie Z F, et al. Evolution of stomatal closure to optimize water-use efficiency in response to dehydration in ferns and seed plants[J]. New Phytologist, 2021, 230(5): 2001-2010. doi: 10.1111/nph.17278
[40] Fu P L, Liu W J, Fan Z X, et al. Is fog an important water source for woody plants in an Asian tropical karst forest during the dry season?[J]. Ecohydrology, 2016, 9(6): 964-972. doi: 10.1002/eco.1694
[41] 吴沿友, 李西腾, 郝建朝, 等. 不同植物的碳酸酐酶活力差异研究[J]. 广西植物, 2006, 26(4): 366-369. doi: 10.3969/j.issn.1000-3142.2006.04.007
Wu Y Y, Li X T, Hao J C, et al. Study on the difference of the activities of carbonic anhydrase in different plants[J]. Guihaia, 2006, 26(4): 366-369. doi: 10.3969/j.issn.1000-3142.2006.04.007
[42] Luo Z, Nie Y, Ding Y, et al. Replenishment and mean residence time of root-zone water for woody plants growing on rocky outcrops in a subtropical karst critical zone[J]. Journal of Hydrology, 2021, 603: 127136. doi: 10.1016/j.jhydrol.2021.127136
[43] Savi T, Petruzzellis F, Moretti E, et al. Grapevine water relations and rooting depth in karstic soils[J]. Science of the Total Environment, 2019, 692: 669-675. doi: 10.1016/j.scitotenv.2019.07.096
[44] Huang W, Zhong Y, Song X, et al. Seasonal differences in water-use sources of impatiens hainanensis (Balsaminaceae), a limestone-endemic plant based on "fissure-soil" habitat function[J]. Sustainability, 2021, 13(16): 8721. doi: 10.3390/su13168721
[45] Tang R J, Luan S. Regulation of calcium and magnesium homeostasis in plants: From transporters to signaling network[J]. Current Opinion in Plant Biology, 2017, 39: 97-105. doi: 10.1016/j.pbi.2017.06.009
[46] Liu C, Huang Y, Wu F, et al. Plant adaptability in karst regions[J]. Journal of Plant Research, 2021, 134: 889-906. doi: 10.1007/s10265-021-01330-3
[47] Jin W, Long Y, Fu C, et al. Ca2+ imaging and gene expre-ssion profiling of Lonicera Confusa in response to calcium-rich environment[J]. Scientific Reports, 2018, 8(1): 7068. doi: 10.1038/s41598-018-25611-5
[48] Li W, Xu F, Chen S, et al. A comparative study on Ca content and distribution in two Gesneriaceae species reveals distinctive mechanisms to cope with high rhizospheric soluble calcium[J]. Frontiers in Plant Science, 2014, 5: 647.
[49] Li Q, Yu L J, Deng Y, et al. Leaf epidermal characters of Lonicera japonica and Lonicera confuse and their ecology adaptation[J]. Journal of Forestry Research, 2007, 18(2): 103-108. doi: 10.1007/s11676-007-0020-1
[50] Meng W, Ren Q, Tu N, et al. Characteristics of the adaptations of epilithic mosses to high-calcium habitats in the karst region of southwest China[J]. The Botanical Review, 2022, 88(2): 204-219. doi: 10.1007/s12229-021-09263-1
[51] Wei X, Deng X, Xiang W, et al. Calcium content and high calcium adaptation of plants in karst areas of southwestern Hunan, China[J]. Biogeosciences, 2018, 15(9): 2991-3002. doi: 10.5194/bg-15-2991-2018
[52] Tang S, Liu J, Lambers H, et al. Increase in leaf organic acids to enhance adaptability of dominant plant species in karst habitats[J]. Ecology and Evolution, 2021, 11(15): 10277-10289. doi: 10.1002/ece3.7832
[53] 张雅洁, 刘云根, 王妍, 等. 岩溶地区典型蕨类植物卷柏根系分泌有机酸特征[J]. 东北林业大学学报, 2021, 49(4): 52-55.
Zhang Y J, Liu Y G, Wang Y, et al. Characteristics of organic acids secretion by roots of typical ferns selaginella tamariscin in karst area[J]. Journal of Northeast Forestry University, 2021, 49(4): 52-55.
[54] Li F, He X, Sun Y, et al. Distinct endophytes are used by diverse plants for adaptation to karst regions[J]. Scientific Reports, 2019, 9(1): 5246. doi: 10.1038/s41598-019-41802-0
[55] Liu C, Liu Y, Guo K, et al. Effects of nitrogen, phosphorus and potassium addition on the productivity of a karst grassland: Plant functional group and community perspectives[J]. Ecological Engineering, 2018, 117: 84-95. doi: 10.1016/j.ecoleng.2018.04.008
[56] Chen H, Li D, Xiao K, et al. Soil microbial processes and resource limitation in karst and non-karst forests[J]. Functional Ecology, 2018, 32(5): 1400-1409. doi: 10.1111/1365-2435.13069
[57] Zhu J, Li M, Whelan M. Phosphorus activators contribute to legacy phosphorus availability in agricultural soils: A review[J]. Science of the Total Environment, 2018, 612: 522-537. doi: 10.1016/j.scitotenv.2017.08.095
[58] Xing D, Wu Y, Yu R, et al. Photosynthetic capability and Fe, Mn, Cu, and Zn contents in two Moraceae species under different phosphorus levels[J]. Acta Geochimica, 2016, 35(3): 309-315. doi: 10.1007/s11631-016-0099-1
[59] 陈保冬, 张莘, 伍松林, 等. 丛枝菌根影响土壤-植物系统中重金属迁移转化和累积过程的机制及其生态应用[J]. 岩矿测试, 2019, 38(1): 1-25. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201807110083
Chen B D, Zhang X, Wu S L, et al. The role of arbuscular mycorrhizal fungi in heavy metal translocation, transformation and accumulation in the soil plant continuum: Underlying mechanisms and ecological implications[J]. Rock and Mineral Analysis, 2019, 38(1): 1-25. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201807110083
[60] Li Q, Umer M, Guo Y, et al. Karst soil patch heterogeneity with gravels promotes plant root development and nutrient utilization associated with arbuscular mycorrhizal fungi[J]. Agronomy, 2022, 12(5): 1063.
[61] Lin G, Guo D, Li L, et al. Contrasting effects of ectomy-corrhizal and arbuscular mycorrhizal tropical tree species on soil nitrogen cycling: The potential mechanisms and corresponding adaptive strategies[J]. Oikos, 2017, 127: 518-530.
[62] Yang Y, Zhang X, Hartley I P, et al. Contrasting rhizosphere soil nutrient economy of plants associated with arbuscular mycorrhizal and ectomycorrhizal fungi in karst forests[J]. Plant and Soil, 2021, 470: 81-93.
[63] Liang Y, Pan F, Jiang Z, et al. Accumulation in nutrient acquisition strategies of arbuscular mycorrhizal fungi and plant roots in poor and heterogeneous soils of karst shrub ecosystems[J]. BMC Plant Biology, 2022, 22(1): 188.
[64] Sipos J, Hodecek J, Kuras T, et al. Principal deter-minants of species and functional diversity of carabid beetle assemblages during succession at post-industrial sites[J]. Bulletin of Entomological Research, 2017, 107(4): 466-477.
[65] 李亚锦, 郑景明, 王根柱, 等. 喀斯特区天然林不同演替阶段功能性状特征及其影响因素研究——以云南大黑山为例[J]. 地球学报, 2021, 42(3): 397-406. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB202103013.htm
Li Y J, Zheng J M, Wang G Z, et al. A study of functional traits of natural secondary forests and their influencing factors in different succession stages in karst areas: A case study of Dahei Mountain, Yunnan Province[J]. Acta Geoscientica Sinica, 2021, 42(3): 397-406. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB202103013.htm
[66] 文丽, 宋同清, 杜虎, 等. 中国西南喀斯特植物群落演替特征及驱动机制[J]. 生态学报, 2015, 35(17): 5822-5833. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201517028.htm
Wen L, Song T Q, Du H, et al. The succession characteristics and its driving mechanism of plant community in karst region, southwest China[J]. Acta Ecologica, 2015, 35(17): 5822-5833. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201517028.htm
[67] Zhang Y, Xu X, Li Z, et al. Improvements in soil quality with vegetation succession in subtropical China karst[J]. Science of the Total Environment, 2021, 775(25): 145876.
[68] 李先琨, 蒋忠诚, 吕仕洪, 等. 广西岩溶植被及其多样性[C]//第三届广西青年学术年会论文集, 2004.
Li X K, Jiang Z C, Lyu S H, et al. Karst vegetation and its diversity in Guangxi[C]//Proceedings of the 3rd Guangxi Youth Academic Annual Conference, 2004.
[69] 司彬, 姚小华, 任华东, 等. 滇东喀斯特植被恢复演替过程中土壤理化性质分析[J]. 水土保持研究, 2009, 30(6): 1122-1125. https://www.cnki.com.cn/Article/CJFDTOTAL-STBY200901035.htm
Si B, Yao X H, Ren H D, et al. Study on soil physical and chemical properties in the process of vegetation succession in karst area of eastern Yunnan[J]. Research of Soil and Water Conservation, 2009, 30(6): 1122-1125. https://www.cnki.com.cn/Article/CJFDTOTAL-STBY200901035.htm
[70] Wang M, Chen H, Zhang W, et al. Soil nutrients and stoichiometric ratios as affected by land use and lithology at county scale in a karst area, southwest China[J]. Science of the Total Environment, 2018, 619-620: 1299-1307.
[71] Zhong F, Xu X, Li Z, et al. Relationships between lithology, topography, soil, and vegetation, and their implications for karst vegetation restoration[J]. CATENA, 2022, 209: 105831.
[72] Li Y, Liu X, Yin Z, et al. Changes in soil microbial communities from exposed rocks to arboreal rhizosphere during vegetation succession in a karst mountainous ecosystem[J]. Journal of Plant Interactions, 2021, 16(1): 550-563.
[73] 杨泽良, 任建行, 况园园, 等. 桂西北喀斯特不同植被演替阶段土壤微生物群落多样性[J]. 水土保持研究, 2019, 26(3): 185-191. https://www.cnki.com.cn/Article/CJFDTOTAL-STBY201903030.htm
Yang Z L, Ren J X, Kuang Y Y, et al. Dynamics of soil microbial communities along vegetation restoration gradient in karst area[J]. Research of Soil and Water Conservation, 2019, 26(3): 185-191. https://www.cnki.com.cn/Article/CJFDTOTAL-STBY201903030.htm
[74] Song M, Peng W X, Du H, et al. Responses of soil and microbial C∶N∶P stoichiometry to vegetation succession in a karst region of southwest China[J]. Forests, 2019, 10: 755.
[75] Teixeira H M, Cardoso I M, Bianchi F J J A, et al. Linking vegetation and soil functions during secondary forest succession in the Atlantic forest[J]. Forest Ecology and Management, 2020, 457(1): 117696.
[76] Yan Y, Dai Q, Wang X, et al. Response of shallow karst fissure soil quality to secondary succession in a degraded karst area of southwestern China[J]. Geoderma, 2019, 348(15): 76-85.
[77] 李恩香. 广西岩溶植被演替过程中主要生态因子的特征[D]. 南宁: 广西师范大学, 2002.
Li E X. The characteristics of eco-factors under different karst vegetation in the process of succession[D]. Nanning: Guangxi Normal University, 2002.
[78] Liu Y, Qi W, He D, et al. Soil resource availability is much more important than soil resource heterogeneity in determining the species diversity and abundance of karst plant communities[J]. Ecology and Evolution, 2021, 11(23): 16680-16692.
[79] 朱华, 王洪, 李保贵, 等. 西双版纳石灰岩森林的植物区系地理研究[J]. 广西植物, 1996, 16(4): 317-330. https://www.cnki.com.cn/Article/CJFDTOTAL-GXZW604.005.htm
Zhu H, Wang H, Li B G, et al. A phytogeographical reserch on the forest flora of limestone hills in Xishuangbanna[J]. Guihaia, 1996, 16(4): 317-330. https://www.cnki.com.cn/Article/CJFDTOTAL-GXZW604.005.htm
[80] 欧祖兰, 苏宗明, 李先琨. 广西岩溶植被植物区系[J]. 广西植物, 2004, 24(4): 302-310. https://www.cnki.com.cn/Article/CJFDTOTAL-GXZW200404003.htm
Ou Z L, Su Z M, Li X K. Flora of karst vegetation in Guangxi[J]. Guihaia, 2004, 24(4): 302-310. https://www.cnki.com.cn/Article/CJFDTOTAL-GXZW200404003.htm
[81] 黄俞淞, 吴望辉, 蒋日红, 等. 广西弄岗国家级自然保护区植物物种多样性初步研究[J]. 广西植物, 2013(3): 346-355. https://www.cnki.com.cn/Article/CJFDTOTAL-GXZW201303014.htm
Huang Y S, Wu W H, Jiang R H, et al. Primary study on spsecdiver sity of plant in Longgang National Nature Response of Guangxi[J]. Guihaia, 2013(3): 346-355. https://www.cnki.com.cn/Article/CJFDTOTAL-GXZW201303014.htm
[82] 容丽, 杨龙. 贵州的生物多样性与喀斯特环境[J]. 贵州师范大学学报: (自然科学版), 2004, 22(4): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-NATR200404001.htm
Rong L, Yang L. Biodiversity of Guizhou Province and its karst environment[J]. Journal of Guizhou Normal University (Natural Sciences), 2004, 22(4): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-NATR200404001.htm
[83] 曹晓栋, 杨波, 黄梅, 等. 贵州省宽阔水国家级自然保护区草本植物区系及物种多样性研究[J]. 西北植物学报, 2021, 41(9): 1559-1569. https://www.cnki.com.cn/Article/CJFDTOTAL-DNYX202109018.htm
Cao X D, Yang B, Huang M, et al. Flora and species diversity of herbaceous plants in Kuankuoshui National Nature Reserve of Guizhou[J]. Acta Botanica Boreali-Occidentalia Sinica, 2021, 41(9): 1559-1569. https://www.cnki.com.cn/Article/CJFDTOTAL-DNYX202109018.htm
[84] 区智, 李先琨, 吕仕洪, 等. 桂西南岩溶植被演替过程中的植物多样性[J]. 广西科学, 2003, 10(1): 63-67. https://www.cnki.com.cn/Article/CJFDTOTAL-GXKK200301016.htm
Qu Z, Li X K, Lyu S H, et al. Species diversity in the process of succession of karst vegetation in southwest Guangxi[J]. Guangxi Sciences, 2003, 10(1): 63-67. https://www.cnki.com.cn/Article/CJFDTOTAL-GXKK200301016.htm
[85] 王万海, 郑洁, 兰洪波, 等. 贵州茂兰自然保护区喀斯特森林被子植物多样性的空间格局[J]. 贵州师范大学学报(自然科学版), 2021, 39(4): 58-62. https://www.cnki.com.cn/Article/CJFDTOTAL-NATR202104008.htm
Wang W H, Zheng J, Lan H B, et al. The spatial patterns of angiosperm diversity within the karst forest in Maolan Nature Reserve of Guizhou[J]. Journal of Guizhou Normal University (Natural Sciences), 2021, 39(4): 58-62. https://www.cnki.com.cn/Article/CJFDTOTAL-NATR202104008.htm
[86] Li K, Zhang M, Li Y, et al. Karren habitat as the key in influencing plant distribution and species diversity in Shilin Geopark, southwest China[J]. Sustainability, 2020, 12(14): 5808.
[87] Laura de la P, Juan P F, Sara P. Disentangling water sources in a gypsum plant community. Gypsum crystallization water is a key source of water for shallow-rooted plants[J]. Annals of Botany, 2021, 129(1): 1-13.