中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

黄河冲积扇平原浅层地下水中氮循环对砷迁移富集的影响

李谨丞, 曹文庚, 潘登, 王帅, 李泽岩, 任宇. 黄河冲积扇平原浅层地下水中氮循环对砷迁移富集的影响[J]. 岩矿测试, 2022, 41(1): 120-132. doi: 10.15898/j.cnki.11-2131/td.202110080140
引用本文: 李谨丞, 曹文庚, 潘登, 王帅, 李泽岩, 任宇. 黄河冲积扇平原浅层地下水中氮循环对砷迁移富集的影响[J]. 岩矿测试, 2022, 41(1): 120-132. doi: 10.15898/j.cnki.11-2131/td.202110080140
LI Jin-cheng, CAO Wen-geng, PAN Deng, WANG Shuai, LI Ze-yan, REN Yu. Influences of Nitrogen Cycle on Arsenic Enrichment in Shallow Groundwater from the Yellow River Alluvial Fan Plain[J]. Rock and Mineral Analysis, 2022, 41(1): 120-132. doi: 10.15898/j.cnki.11-2131/td.202110080140
Citation: LI Jin-cheng, CAO Wen-geng, PAN Deng, WANG Shuai, LI Ze-yan, REN Yu. Influences of Nitrogen Cycle on Arsenic Enrichment in Shallow Groundwater from the Yellow River Alluvial Fan Plain[J]. Rock and Mineral Analysis, 2022, 41(1): 120-132. doi: 10.15898/j.cnki.11-2131/td.202110080140

黄河冲积扇平原浅层地下水中氮循环对砷迁移富集的影响

  • 基金项目:
    国家自然科学基金项目(41972262);河北自然科学基金优秀青年科学基金项目(D2020504032);中央环保项目“黄河中下游流域地下水污染防治”(H2020419900S1-00001)
详细信息
    作者简介: 李谨丞, 硕士研究生, 主要从事水文地球化学与水资源研究。E-mail: ihegljc@163.com
    通讯作者: 曹文庚, 博士, 副研究员, 主要从事水文地球化学研究。E-mail: caowengeng@mail.cgs.gov.cn
  • 中图分类号: P641;O657.31

Influences of Nitrogen Cycle on Arsenic Enrichment in Shallow Groundwater from the Yellow River Alluvial Fan Plain

More Information
  • 黄河冲积扇平原浅层地下水砷含量超标情况严重,豫北平原的主体是黄河冲洪积扇平原。全面了解豫北平原浅层地下水氮循环驱动下砷的富集模式,对地下水资源的可持续利用和居民健康至关重要。本文采集豫北平原513组浅层地下水样品,采用原子荧光光谱法测定砷含量,原子吸收光谱和离子色谱等方法进行全分析及微量元素分析,对该地区高砷地下水的水化学成分以及地下水中硝酸盐、氨氮与砷之间的相关关系进行探究,并研究了氮循环对地下水中砷迁移富集的影响。结果表明:研究区浅层地下水中砷浓度超标率为17.3%。不同沉积环境条件下氮的赋存形态和转化方式是砷富集的重要驱动因素。山前冲洪积扇裙带中经硝化作用产生大量NO3-,浓度平均值为9.3mg/L,为各区最高,同时砷浓度为各区最低,平均值为1.3μg/L,NO3-与砷浓度之间良好的负相关性表明硝化作用产生大量NO3-,不利于含砷氧化铁的溶解;NH4+含量较高的冲洪积扇前洼地及黄河决口扇地区,为高砷地下水的聚集地,两地地下水砷浓度平均值分别为49.7μg/L和18.9μg/L,超标率达到87.5%和71.4%。地下水中砷含量与NH4+之间良好的正相关关系表明,反硝化和硝酸异化还原成铵(DNRA)过程消耗了地下水中的NO3-,生成大量NH4+,促进吸附了砷的铁氧化物的还原溶解而导致砷释放到地下水中,形成了富集砷的环境。

  • 加载中
  • 图 1  研究区地下水采样点分布图

    Figure 1. 

    图 2  水化学类型Piper三线图

    Figure 2. 

    图 3  研究区砷元素空间分布图

    Figure 3. 

    图 4  各沉积环境分区地下水(a)As、(b)NH4+和(c)NO3-浓度的箱线图

    Figure 4. 

    图 5  不同As浓度下地下水中SO42-与HCO3-比值气泡图

    Figure 5. 

    图 6  不同区域浅层地下水HCO3-/(Cl-+HCO3-)与As浓度关系散点图

    Figure 6. 

    图 7  不同分区浅层地下水(a)As-NH4+, (b)NH4+-Eh, (c)As-Fe2+和(d)Fe-NH4+散点图

    Figure 7. 

    图 8  豫北平原4个分区中氮循环及其对As富集驱动模式示意图

    Figure 8. 

    表 1  地下水主要化学组分统计特征

    Table 1.  Statistical characteristics of major chemical composition of groundwater

    研究区(n=513) pH TDS (mg/L) Eh (mg/L) NO3- (mg/L) NH4+ (mg/L) Fe2+ (mg/L) As (μg/L)
    最小值 6.1 271.3 -281.0 <0.01 <0.016 <0.04 <0.1
    最大值 8.4 7825.0 337.0 239.4 2.82 14.8 190.0
    平均值 7.4 1012.2 -9.0 3.8 0.18 1.4 7.4
    中值 7.4 797.0 -23.0 0.1 0.03 0.7 2.2
    SD 0.3 782.0 122.9 13.4 0.69 1.8 17.5
    CV 0.04 0.8 -13.7 3.6 3.8 1.3 2.4
    A区(n=164) pH TDS (mg/L) Eh (mg/L) NO3- (mg/L) NH4+ (mg/L) Fe2+ (mg/L) As (μg/L)
    最小值 6.9 271.3 -245.0 <0.01 <0.016 <0.04 <0.1
    最大值 8.3 5561.0 337.0 68.2 1.2 4.2 16.0
    平均值 7.4 1006.0 83.4 9.3 0.04 0.4 1.3
    中值 7.4 800.5 96.0 5.2 0.02 0.1 0.5
    SD 0.3 699.2 101.9 12.9 0.12 0.7 2.1
    CV 0.04 0.7 1.2 1.4 2.6 1.7 1.7
    B区(n=262) pH TDS (mg/L) Eh (mg/L) NO3- (mg/L) NH4+ (mg/L) Fe2+ (mg/L) As (μg/L)
    最小值 6.1 326.0 -281.0 <0.01 <0.016 <0.04 <0.1
    最大值 8.4 7825.0 308.0 239.4 2.3 14.8 91.0
    平均值 7.4 1100.4 -44.5 1.4 0.13 1.6 4.6
    中值 7.4 844.5 -53.5 0.1 0.05 0.9 2.6
    SD 0.3 918.2 113.6 14.8 0.26 2.0 7.6
    CV 0.05 0.8 -2.6 10.3 2.1 1.2 1.7
    C区(n=24) pH TDS (mg/L) Eh (mg/L) NO3- (mg/L) NH4+ (mg/L) Fe2+ (mg/L) As (μg/L)
    最小值 7.0 431.0 -229.0 0.03 <0.016 <0.04 <0.1
    最大值 8.0 1151.5 127.0 4.7 2.82 9.3 190.0
    平均值 7.5 752.9 -105.7 0.6 1.27 3.6 49.7
    中值 7.4 738.0 -124.0 0.3 0.50 2.8 21.0
    SD 0.2 221.8 78.9 1.0 2.81 2.7 55.2
    CV 0.03 0.3 -0.7 1.6 2.2 0.7 1.1
    D区(n=63) pH TDS (mg/L) Eh (mg/L) NO3- (mg/L) NH4+ (mg/L) Fe2+ (mg/L) As (μg/L)
    最小值 6.9 361.0 -261.0 0.05 <0.016 <0.04 <0.1
    最大值 7.9 1990.4 121.0 17.6 2.7 4.8 64.0
    平均值 7.5 760.1 -64.9 0.4 0.34 1.9 18.9
    中值 7.6 690.8 -85.0 0.04 0.22 2.0 16.0
    SD 0.2 271.7 78.2 2.2 0.40 1.0 13.6
    CV 0.03 0.4 -1.2 5.5 1.2 0.6 0.7
    注:SD为标准差; CV为变异系数; CV=SD/平均值。
    下载: 导出CSV
  • [1]

    Daniele P, Stefano G, Eleonora F, et al. Arsenic-fluoride co-contamination in groundwater: Background and anomalies in a volcanic-sedimentary aquifer in central Italy[J]. Journal of Geochemical Exploration, 2020, 217. http://www.sciencedirect.com/science/article/pii/S0375674220301837

    [2]

    Podgorski J, Berg M. Global threat of arsenic in groundwater[J]. Science, 2020, 368(6493): 845-850. doi: 10.1126/science.aba1510

    [3]

    杨文蕾, 沈亚婷. 水稻对砷吸收的机理及控制砷吸收的农艺途径研究进展[J]. 岩矿测试, 2020, 39(4): 475-492. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.202004160052

    Yang W L, Shen Y T. A review of research progress on the absorption mechanism of arsenic and agronomic pathwaysto control arsenic absorption[J]. Rock and Mineral Analysis, 2020, 39(4): 475-492. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.202004160052

    [4]

    郭华明, 倪萍, 贾永锋, 等. 原生高砷地下水的类型、化学特征及成因[J]. 地学前缘, 2014, 21(4): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201404002.htm

    Guo H M, Ni P, Jia Y F, et al. Chemical characteristics and genesis of geogenic high-arsenic groundwater in the world[J]. Earth Science Frontiers, 2014, 21(4): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201404002.htm

    [5]

    Cao W G, Guo H M, Zhang Y L, et al. Controls of paleo-channels on groundwater arsenic distribution in shallow aquifers of alluvial plain in the Hetao Basin, China[J]. Science of the Total Environment, 2018, 613-614(1): 958-968. http://www.sciencedirect.com/science/article/pii/s0048969717325330

    [6]

    Kumar M, Das A, Das N, et al. Co-occurrence perspective of arsenic and fluoride in the groundwater of Diphu, Assam, northeastern India[J]. Chemosphere, 2016, 150: 227-238. doi: 10.1016/j.chemosphere.2016.02.019

    [7]

    Pi K F, Wang Y X, Xie X J, et al. Hydrogeochemistry of co-occurring geogenic arsenic, fluoride and iodine in groundwater at Datong Basin, northern China[J]. Journal of Hazardous Materials, 2015, 300: 652-661. doi: 10.1016/j.jhazmat.2015.07.080

    [8]

    Wen D G, Zhang F C, Zhang E Y, et al. Arsenic, fluoride and iodine in groundwater of China[J]. Journal of Geochemical Exploration, 2013, 135: 1-21. doi: 10.1016/j.gexplo.2013.10.012

    [9]

    Janardhana R N. Arsenic in the geo-environment: A review of sources, geochemical processes, toxicity and removal technologies[J]. Environmental Research, 2021, 203: 111782. http://www.sciencedirect.com/science/article/pii/S0013935121010768

    [10]

    郭华明, 郭琦, 贾永锋, 等. 中国不同区域高砷地下水化学特征及形成过程[J]. 地球科学与环境学报, 2013, 35(3): 83-96. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX201303010.htm

    Guo H M, Guo Q, Jia Y F, et al. Chemical characteristics and geochemical processes of high arsenic groundwater in different regions of China[J]. Journal of Earth Sciences and Environment, 2013, 35(3): 83-96. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX201303010.htm

    [11]

    董会军, 董建芳, 王昕洲, 等. pH值对HPLC-ICP-MS测定水体中不同形态砷化合物的影响[J]. 岩矿测试, 2019, 38(5): 510-517. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201808230096

    Dong H J, Dong J F, Wang X Z, et al. Effect of pH on determination of various arsenic species in water by HPLC-ICP-MS[J]. Rock and Mineral Analysis, 2019, 38(5): 510-517. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201808230096

    [12]

    Sahoo P K, Zhu W, Kim S H, et al. Relations of arsenic concentrations among groundwater, soil and paddy from an alluvial plain of Korea[J]. Geosciences Journal, 2013, 17(3): 363-370. doi: 10.1007/s12303-013-0031-1

    [13]

    吴昆明, 郭华明, 魏朝俊. 改性磁铁矿对水体中砷的吸附特性研究[J]. 岩矿测试, 2017, 36(6): 624-632. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201709110147

    Wu K M, Guo H M, Wei C J. Adsorption characteristics of arsenic in water by modified magnetite[J]. Rock and Mineral Analysis, 2017, 36(6): 624-632. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201709110147

    [14]

    Stüben D, Berner Z, Chandrasekharam D, et al. Arsenic enrichment in groundwater of West Bengal, India: Geochemical evidence for mobilization of As under reducing conditions[J]. Applied Geochemistry, 2003, 18(9): 1417-1434. doi: 10.1016/S0883-2927(03)00060-X

    [15]

    Ravenscroft P, Burgess W G, Ahmed K M, et al. Arsenic in groundwater of the Bengal Basin, Bangladesh: Distribution, field relations, and hydrogeological setting[J]. Hydrogeology Journal, 2006, 13(5-6): 727-751.

    [16]

    Kurosawa K, Egashira K, Tani M, et al. Variation in arsenic concentration relative to ammonium nitrogen and oxidation reduction potential in surface and groundwater[J]. Communications in Soil Science and Plant Analysis, 2008, 39(9-10): 1467-1475. doi: 10.1080/00103620802004318

    [17]

    Canfield D E, Glazer A N, Falkowski P G. The evolution and future of Earth's nitrogen cycle[J]. Science, 2010, 330(6001): 192-196. doi: 10.1126/science.1186120

    [18]

    Berner R A. Geological nitrogen cycle and atmospheric N2 over phanerozoic time[J]. Geology, 2006, 34(5): 413-415. doi: 10.1130/G22470.1

    [19]

    Norrman J, Sparrenbom C J, Berg M, et al. Tracing sources of ammonium in reducing groundwater in a well field in Hanoi (Vietnam) by means of stable nitrogen isotope (δ15N) values[J]. Applied Geochemistry, 2015, 61(15): 248-258.

    [20]

    祝贤彬. 砷氧化还原微生物催化的硝酸盐转化及其对环境的影响[D]. 北京: 中国地质大学(北京), 2020.

    Zhu X B. Nitrate transformations catalyzed by the arsenic redox microorganisms and their environmental influences[D]. Beijing: China University of Geosciences(Beijing), 2020.

    [21]

    贾正雷. 土壤砷和氮含量的空间变异及其相互关系研究[D]. 广州: 华南农业大学, 2016.

    Jia Z L. Study on spatial variability and relationship of soil arsenic and soil nitrogen[D]. Guangzhou: South China Agricultural University, 2016.

    [22]

    Gao Z P, Weng H C, Guo H M. Unraveling influences of nitrogen cycling on arsenic enrichment in groundwater from the Hetao Basin using geochemical and multi-isotopic approaches[J]. Journal of Hydrology, 2021, 595: 125981. doi: 10.1016/j.jhydrol.2021.125981

    [23]

    Smith R L, Kent D B, Repert D A, et al. Anoxic nitrate reduction coupled with iron oxidation and attenuation of dissolved arsenic and phosphate in a sand and gravel aquifer[J]. Geochimica et Cosmochimica Acta, 2017, 196(1): 102-120.

    [24]

    Karunanidhi D, Aravinthasamy P, Subramani T, et al. Potential health risk assessment for fluoride and nitrate contamination in hard rock aquifers of Shanmuganadhi River Basin, South India[J]. Human & Ecological Risk Assessment, 2019, 25(1-2): 250-270. http://www.onacademic.com/detail/journal_1000041611805999_e41a.html

    [25]

    Singh G, Rishi M S, Herojeet R, et al. Evaluation of groundwater quality and human health risks from fluoride and nitrate in semi-arid region of northern India[J]. Environmental Geochemistry and Health, 2020, 42(7): 1833-1862. doi: 10.1007/s10653-019-00449-6

    [26]

    Böhlke J K, Smith R L, Miller D N. Ammonium transport and reaction in contaminated groundwater: Application of isotope tracers and isotope fractionation studies[J]. Water Resources Research, 2007, 42(5): W05411(1-19).

    [27]

    Utom A U, Werban U, Leven C, et al. Groundwater nitrification and denitrification are not always strictly aerobic and anaerobic processes, respectively: An assessment of dual-nitrate isotopic and chemical evidence in a stratified alluvial aquifer[J]. Biogeochemistry, 2020, 147(2): 211-223. doi: 10.1007/s10533-020-00637-y

    [28]

    Savard M M, Paradis D, Somers G, et al. Winter nitrification contributes to excess NO3- in groundwater of an agricultural region: A dual-isotope study[J]. Water Resources Research, 2008, 43(6): W06422(1-10). http://dx.doi.org/10.1029/2006wr005469

    [29]

    Rivett M O, Buss S R, Morgan P, et al. Nitrate attenuation in groundwater: A review of biogeochemical controlling processes[J]. Water Research, 2008, 42(16): 4215-4232. doi: 10.1016/j.watres.2008.07.020

    [30]

    Singha S, Anilb A G, Kumarc V, et al. Nitrates in the environment: A critical review of their distribution, sensing techniques, ecological effects and remediation[J]. Chemosphere, 2021, 287(1): 131996.

    [31]

    Rütting T, Huygens D, Müller C, et al. Functional role of DNRA and nitrite reduction in a pristine south Chilean Nothofagus forest[J]. Biogeochemistry, 2008, 90(3): 243-258. doi: 10.1007/s10533-008-9250-3

    [32]

    杨杉, 吴胜军, 蔡延江, 等. 硝态氮异化还原机制及其主导因素研究进展[J]. 生态学报, 2016, 36(5): 1224-1232. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201605005.htm

    Yang S, Wu S J, Cai Y J, et al. The synergetic and competitive mechanism andthe dominant factors of dissimilatory nitrate reduction processes: A review[J]. Acta Ecologica Sinica, 2016, 36(5): 1224-1232. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201605005.htm

    [33]

    Yang W H, Weber K A, Silver W L. Nitrogen loss from soil through anaerobic ammonium oxidation coupled to iron reduction[J]. Nature Geoscience, 2012, 5(8): 538-541. doi: 10.1038/ngeo1530

    [34]

    Ding B J, Chen Z H, Li Z K, et al. Nitrogen loss through anaerobic ammonium oxidation coupled to iron reduction from ecosystem habitats in the Taihu estuary region[J]. Science of the Total Environment, 2019, 662(1): 600-606. http://www.ncbi.nlm.nih.gov/pubmed/30699380

    [35]

    Ding L J, An X L, Li S, et al. Nitrogen loss through anaerobic ammonium oxidation coupled to iron reduction from paddy soils in a chronosequence[J]. Environmental Science & Technology, 2014, 48(18): 10641-10647. http://www.onacademic.com/detail/journal_1000036708963710_7935.html

    [36]

    Chen Y, Syvitski J P, Gao S, et al. Socio-economic impacts on flooding: A 4000-year history of the Yellow River, China[J]. Ambio, 2012, 41(7): 682-698. doi: 10.1007/s13280-012-0290-5

    [37]

    Guo H M, Liu C, Lu H, et al. Pathways of coupled arsenic and iron cycling in high arsenic groundwater of the Hetao Basin, Inner Mongolia, China: An iron isotope approach[J]. Geochimica et Cosmochimica Acta, 2013, 112(1): 130-145. http://www.researchgate.net/profile/Huaming_Guo/publication/236273971_Pathways_of_coupled_arsenic_and_iron_cycling_in_high_arsenic_groundwater_of_the_Hetao_basin_Inner_Mongolia_China_An_iron_isotope_approach/links/5b8b40cb299bf1d5a737f587/Pathways-of-coupled-arsenic-and-iron-cycling-in-high-arsenic-groundwater-of-the-Hetao-basin-Inner-Mongolia-China-An-iron-isotope-approach.pdf

    [38]

    Guo H M, Zhang Y, Jia Y F, et al. Dynamic behaviors of water levels and arsenic concentration in shallow groundwater from the Hetao Basin, Inner Mongolia[J]. Journal of Geochemical Exploration, 2013, 135: 130-140. doi: 10.1016/j.gexplo.2012.06.010

    [39]

    Stachowicz M, Hiemstra T, Riemsdijk W H. Arsenic-bicarbonate interaction on goethite particles[J]. Environmental Science & Technology, 2007, 41(16): 5620-5625. http://pubs.acs.org/doi/suppl/10.1021/es063087i/suppl_file/es063087isi20070419_090234.pdf

    [40]

    DeVore C L, Rodriguez-Freire L, Mehdi-Ali A, et al. Effect of bicarbonate and phosphate on arsenic release from mining-impacted sediments in the Cheyenne River watershed, South Dakota, USA[J]. Environmental Science Processes & Impacts, 2019, 21(3): 456-468.

    [41]

    Gao X B, Su C L, Wang Y X, et al. Mobility of arsenic in aquifer sediments at Datong Basin, northern China: Effect of bicarbonate and phosphate[J]. Journal of Geochemical Exploration, 2013, 135: 93-103. doi: 10.1016/j.gexplo.2012.09.001

    [42]

    Anawar H M, Akai J, Sakugawa H. Mobilization of arsenic from subsurface sediments by effect of bicarbonate ions in groundwater[J]. Chemosphere, 2004, 54(6): 753-762. doi: 10.1016/j.chemosphere.2003.08.030

    [43]

    Appelo C A J, Van Der Weiden M J J, Tournassat C, et al. Surface complexation of ferrous iron and carbonate on ferrihydrite and the mobilization of arsenic[J]. Environmental Science & Technology, 2002, 36(14): 3096-3103.

    [44]

    Smedley P L, Kinniburgh D G. A review of the source, behaviour and distribution of arsenic in natural waters[J]. Applied Geochemistry, 2002, 17(5): 517-568.

  • 加载中

(8)

(1)

计量
  • 文章访问数:  2719
  • PDF下载数:  36
  • 施引文献:  0
出版历程
收稿日期:  2021-10-08
修回日期:  2021-11-04
录用日期:  2021-11-11
刊出日期:  2022-01-28

目录